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ABSTRACT 

This paper studies a new spectral analysis strategy for 
detecting, characterizing and classifying spectral structures of 
an unknown stationary process. The spectral structures we 
consider are defined as sinusoidal waves, narrow band signals 
or noise peaks. A sum of an unknown number of these 
structures is embedded in an unknown colored noise. The 
proposed methodology provides a way to calculate a spectral 
identity card, which features each of these spectral structures, 
similarly to a real I.D. The processing is based on a local 
Bayesian hypothesis testing, which is defined in frequency and 
which takes account of the noise spectrum estimator. Thanks to 
a matching with the corresponding spectral window, each I.D. 
card permits the classification of the associated spectral 
structure into one of the following four classes: Pure 
Frequency, Narrow Band, Alarm and Noise. Each I.D. card is 
actually the result of the fusion of intermediate cards, obtained 
from complementary spectral analysis methods. 

1. INTRODUCTION 

This paper studies a new spectral analysis strategy for 
detecting, characterizing and classifying spectral structures of 
an unknown stationary process. A spectral structure is defined 
as a sinusoidal wave (called Pure Frequency – PF), a Narrow 
Band signal (NB) or a noise peak. A sum of an unknown 
number of these structures is embedded in an unknown 
colored noise. Spectral analysis of such signals is particularly 
interesting in several applications, including vibratory, 
acoustic, seismologic or radar signal processing. In these 
application fields, signals are rich in spectral components and 
therefore, windowed discrete Fourier Transform remains a 
useful tool even if the problem can after that be formulated in 
a more specific application framework. 
The proposed strategy is automatic and based on the use of 
complementary spectral analyses. Few methods have been 
actually published in this context. The spectral analysis 
developed in [1] is automatic but focused on the estimation of 
the period length of one periodic signal by minimizing a cost 

function in frequency. In [2], the authors define a local least 
square approach in the frequency domain, the signal being 
modeled by a sum of sinusoids and a white noise. More 
recently, the authors in [3] came up with the idea of using two 
different bandwidth resolutions but with two signal 
measurements, not always available. 
The proposed strategy consists of matching up a number of 
spectral analysis methods. An optimal method does not always 
exist and it seems to us to be of interest to take all the 
properties of diverse analyses into account. The proposed 
methodology provides a way to calculate a spectral identity 
card of each spectral structure, similarly to a real I.D. card. 
This I.D. card results from the fusion of intermediate cards, 
which are obtained from complementary spectral analysis 
methods and permits the classification of the detected spectral 
structure into the right class. The spectral analysis strategy is 
divided into two steps: 

 
1. Analysis and interpretation: the signal is subjected to L 

complementary spectral analyses. Each analysis allows the 
creation of intermediate cards of spectral structures detected 
via a local Bayesian hypothesis testing defined in frequency 
and taking into account the noise spectrum estimator. In 
particular, a feature space is proposed to characterize a 
spectral structure. 

2. Spectral I.D. cards and classification: We construct a 
sequence of cards connected to the same frequency band but 
which result from different spectral estimations. A card 
fusion criterion allows us to define the spectral I.D. card of 
each detected structure. A final classification process is 
performed using each I.D. card. 
 
Note that we have already published some part of this work in 
[4], [5]. This paper presents new results about the peak 
detector, the validation of the spectral matching by Monte-
Carlo simulations and the I. D. card fusion process. 
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2. ANALYSIS AND INTERPRETATION 

Within the framework of investigated signals, we focus on 
Fourier based methods. The choice of L methods is the result 
of a trade off between low variance, high frequency resolution 
and low window leakage properties [4]. These L estimators 
provide L estimates of the Power Spectral Density (PSD) 
( )γ̂ νi  of the analyzed signal through, what we called, L 

cycles. 

2.1. Multi-PFA detection 

At cycle i and at each frequency ν , a detection scheme is 
defined as follows 

( ) ( ) ( ) ( ) ( )0 1: :i b i s bH Hγ ν γ ν γ ν γ ν γ ν= = + , (1) 

where ( )γ νb  is the continuous PSD of a zero mean stationary 

Gaussian noise and ( )γ νs  is a PSD of a stationary random 

process or a deterministic signal belonging to ( )2 RL . Under 
H0, the PSD estimation achieved by Fourier-based methods is 
a chi-square random variable with  degrees of freedom such 
that 
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with ( )γ̂ νb  an estimation of ( )γ νb . does not depend on the 
signal but only on the chosen spectral estimator, which 
explains the subscript i. This statistics is true for Welch-
WOSA estimator with non-overlapping data segments and is 
an approximation in the other cases 

ir

[4]. 

In order to estimate ( )γ̂ νb , after having compared median, 
percentiles, morphologic and 2-pass mean filters [5], we 
propose an original iterative method combining detection steps 
and a nonlinear n-pass mean filter [4], [7]. The noise PSD is 
thus estimated by filtering ( )ˆiγ ν . Let ( )bγ ν%  be this 

estimation. The exact distribution of ( )bγ ν%  is difficult to 
assess. Therefore, an approximation is taken into account by 
assuming that ( )bγ ν%  is as a mean of 2M+1 values of ( )ˆiγ ν  

around the analyzed frequency. Under this assumption, ( )bγ ν%  
is distributed as 
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Taking into account (2) and (3), we define a test statistics at 
frequencies of all peak maxima of the DSP ( )γ̂ νi , namely 
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T is a ( )( ), 2 1+i iF r r M -distribution, where the threshold μ 
can be adjusted from the Probability of False Alarm (PFA). 
Two original points of this study can be highlighted. First, the 
noise estimator statistics is taken into account. Second, the test 
is implemented in a particular way. The estimated spectrum is 
split up into a partition of elementary structures, each one 
matching with a possible peak of the true spectrum. Moreover, 
since the probability of non-detection under H1 is not easy to 
compute, we propose a multi-PFA test rather than fixing only 
one value of PFA. A set of PFA values is chosen. At each 
detected peak referred to as ( ),ˆp iγ ν , we assign the lowest 
PFA, which has allowed detection. This PFA, called joint PFA, 
gives an indication about the local noise level of the peak. 

2.2. Spectral adjustment 
In order to classify detected peaks, we propose an iterative 
adjustment between each peak and the spectral window 
associated with the estimator of the cycle i. This window, 
denoted by ( ),p iQ ν , is oversampled and centred on each peak 

( ),γ̂ νp i  such that the following normalized quadratic error is 
minimized 
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where ( )( )max ,ˆarg maxγ ν= p i kk
k  and  the peak number in iP

( ),γ̂ νp i .Values k1 and k2 are determined depending how the 
error is calculated, either from all of the points on the peak 
main lobe, or from points above the -3 dB level only. These 
quadratic errors are therefore denoted etot(p,i) and e-3dB(p,i) 
respectively. Contrary to a maximum likelihood approach, this 
method is suboptimal but incurs a rather low computational 
expense, which is a necessary requisite owing to a possible 
large number of peaks. Signals of interest can have hundred of 
components, see for example spectrum of communication 
signals in [8], in biomedical [9], in vibratory mechanics [10]. 

2.3. Error space and Monte Carlo simulations 
When applying the detection test (4) on a discrete spectrum 
and then computing the adjustment errors (5), the performance 
is going to be dependent on the sampling frequency. In order 
to evaluate the thresholds to be applied to these errors, we 
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perform Monte Carlo simulations over 50 runs of two 
simulated stationary signals of 10000 samples. Sampling 
frequency is 1000 Hz. The first signal is deterministic and is a 
PF defined by 

 ( ) ( )sin 2πν=PF PF PFs t A t , (6) 

with 110ν =FP Hz . The second one is a random NB signal 
simulated as a sine function with a frequency additively 
corrupted by a Gaussian noise ( )ε t  with a low variance 2

εσ , 

 ( ) ( )(sin 2π ν ε⎡= +⎣NB NB NB ) ⎤⎦s t A t t , (7) 

with 2
εσ =25 and ν ν=NB FP . 

Both signals are embedded in an additive white Gaussian 
noise as in (1). Amplitudes A are determined by the Signal to 
Noise Ratio (SNR) equal to 30 dB, 0 dB, -15 dB and -20 dB. 
Spectra ( )ˆiγ ν  of these two signals are estimated by Welch-
WOSA estimator over 1 signal segment smoothed by a 
Blackman window. The FFT is computed over 32768 points. 
According to section 2.1, noise spectra ( )bγ ν%  are estimated 
by n-pass filters and peaks are detected using test defined in 
(4) with PFA=10-3, 10-4, 10-5, 10-6. 

Figure 1 - Error space, etot versus e-3dB, performed with Monte Carlo 
simulations of signal sPF(t) at 4 SNRs. Peaks detected at νPF 

(whatever the PFA) are figured by orange squares and surrounded 
by a black ellipsoid except in the -20 dB case, detected peaks at 

other frequencies with PFA=10-6 by green circles, with PFA=10-5 by 
green crosses, with PFA=10-4 by black triangles and with PFA=10-3 

by empty black squares. 

Figures 1 and 2 show that the proposed error space (e-3dB(p,i), 
etot(p,i)) is relevant for discriminating PF and NB signals and 
can be used to characterize the associated classes. Black 
ellipses highlight clusters corresponding to frequency νPF. 
These Monte Carlo simulations in the error space are used to 
define regions, which correspond to different spectral 

structures. Indeed these regions are the classes we want to 
identify. 

 

Figure 2 - Error space, etot versus e-3dB, performed with Monte Carlo 
simulations of signal sNB(t) at 4 SNRs. Color codes are the same as 

in Figure 1. 

We then define a distance, which can be considered as a 
measure of membership degree of a peak towards a specific 
class. So as to, at each region delimited by the thresholds 
shown in Figure 3, we associate an integer distance dkl. Index 
k identifies the region and index l a spectral pattern: l=0 for 
PF, and l=2 for NB. Class PF is located at low errors under 
TPF, defined as a line up to PF cluster at SNR equal to 0 dB. 
 

Figure 3 - Class contours defined from Monte Carlo simulations and 
parameterized by dkl. Class PF=d00; class NB=d32, class Noise=d31. 

Others regions are uncertainty classes. 

We characterize it by the minimal distance d00. The more the 
errors increase, the more the peak departs from a PF. At the 
opposite, the noise class is located at high errors above TN, 
defined as the line up to PF and NB clusters at SNR equal to -
20 dB. We characterize it by a higher distance d31. 
Intermediate distances, d11 and d12, measure an uncertainty 
between a PF or a noise peak, such as 

 00 11 21 310d d d d= < < < . (8) 
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The cluster of NB peaks is located under TN but above TNB, 
defined, in the same way, as the line down NB cluster at SNR 
equal to 0 dB. In this region, we notice a difference compared 
to PF region because of a possible uncertainty between a NB 
or a noise peak. The joint PFA defined in section 2.1 is used to 
discriminate them.. A joint PFA equal to 10-3 or 10-4 will detect 
a noise peak whereas a joint PFA equal to 10-5 or 10-6 will 
detect a NB. The studied NB in (7) has a frequency band given 
by the chosen variance of the corrupting noise ε(t). If this 
variance decreases, the cluster will go down under TNB and 
approaches the PF cluster. Therefore, an increasingly weak 
distance is associated to the concerned regions such as 

 . (9) 00 12 22 32d d d d< < <

with d00 = 0. Between TNB and TPF is a region, which has to 
manage an uncertainty between a PF at low SNR and a NB at 
high SNR. We separate it into two regions, delimited by a line 
Tun, which corresponds to the separation between PF and NB 
clusters at SNR equal to –15 dB. In the same way as above, the 
joint PFA is used to separate peaks of different SNR in the 
same region. Finally, at each couple (k,l) is given a numerical 
value such as dkl=kd1l, with an initial value d1l. This 
classification can be locally extended to multi-component 
signals embedded in a correlated Gaussian noise. At last, for 
each ( ),γ̂ νp i , a set of characteristics can be given: the 
adjusted central frequency, the time amplitude, the mean noise 
variance, the local SNR, the emerging SNR which depends 
upon the estimator, the adjustment errors, a frequency interval 
I(CiPp) defined by the –3dB bandwidth as a peak frequency 
base, the joint PFA referred to as PFAi and the distance (dkl)i. 
This list is referred to as an intermediate card of the peak. 

3. SPECTRAL I.D. CARDS AND CLASSIFICATION 

Intermediate cards are established for each ( ),γ̂ νp i  and for 
each cycle, i=1,L. A null card, with a distance higher than the 
value associated to noise, is added when a peak is not detected 
at one cycle. So as to associate cards corresponding to the 
same peak, a simple criterion is defined 

  (10) I(CiPp) I(CjPp') , i j∩ ≠ ∅ ≠

with I(CiPp) being the frequency interval of Peak p in Cycle i. 
The connected cards form a set called a sequence. Owing to its 
construction, a sequence describes the same spectral structure, 
which is also represented by L points in the error space. 
In each sequence, the intermediate cards are merged according 
to the following procedure. If the sequence presents more than 
one uncertainty (non constant index l in dkl over the sequence), 
if alarms on PFA (two far PFA are not accepted) or on the 
noise level were set on, the peak is classified into an Alarm 

class, which points out a bad estimate of the noise spectrum. 
Afterwards, in each sequence, distances are combined as  

( ) ( ) 2 2

1 1

1 1L L

peak kl peak kl peaki i
i i

d d and d
L L

σ
= =

= =∑ ∑ d− . (11) 

The final distance  is defined as ,peak fd

 , ,
min ,peak f peak klk l

d d= d , (12) 

and determine the final spectral pattern of the peak. The 
standard deviation σpeak allows the computation of a stability 
index Stpeak, which indicates the stability of the results on the 
sequence with a known maximum standard deviation maxσ , 

 ( )max100 1peak peakSt σ σ= − . (13) 

A final PFA, PFApeak, is calculated as 

 ( )1
1=

=∏
L

L
peak i

i

PFA PFA . (14) 

The final card is called the spectral I.D. and gathers these new 
characteristics. The final distance dpeak is used to classify all 
the peaks in one of the following classes: PF, NB, Alarm and 
Noise. Finally, it is important to notice that the detection 
probability of a peak is high if the classification yields a high 
stability index  and a low final PFA PFApeakSt peak 
simultaneously. 
In order to underline this property, a simulation is carried out 
on a signal s(t) computed as the sum of one NB as defined in 
(7) and two PF as defined in (6), 

 ( ) ( ) ( ) ( )1 2= + +NB PF PFs t s t s t s t . (15) 

The parameters of the NB are unchanged, νNB = 110 Hz and 
ANB=10. The first PF is located at νPF1 = 112 Hz, close to the 
NB, but with an amplitude ten-fold weaker, APF1=10. The 
second one, at νPF2 = 180 Hz, is separated from the others but 
at a lower amplitude, APF2=0.4. The global signal to noise ratio 
is 10 dB. 
Figure 4 presents L=5 complementary spectral analyses (an 
hybrid periodogram-correlogram with Blackman window, a 
Welch-Wosa first with Blackman window then with Hanning 
window, a Blackman-Tuckey first with Blackman window 
then with Hanning window [4]). For sake of simplicity, only a 
zoom between 90 Hz and 200 Hz is shown. The colored peaks 
correspond to the peaks detected by test (4). As can be seen, 
the different estimated PSDs do not lead to the same detected 
peak set, reinforcing the idea of using jointly all these different 
analyses. The only peak, which is detected in the same way 
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through all cycles, is the NB one at νNB = 110 Hz with a joint 
PFA equal to 10-6. 
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Figure 4 – Zoom spectra of signal s(t) for L cycles with L=5 

To derive spectral I.D. cards based on these 5 cycles, it is 
necessary to take into account the stability index (13) and the 
final PFA (14), presented in Figure 5. The NB structure is 
detected with a stability index of 100% and a low mean PFA 
of 10-6. Indeed, only high stability indexes have to be 
considered since they correspond to a consensus in the 
different spectral analyses, together with low final PFAs. With 
the NB signal, this occurs only at 112 Hz and 180 Hz, 
frequencies of sPF1 and sPF2.. Moreover, in this signal 
realization, the final PFAs are rather high, except for the 3 
structures of interest and for two other high frequency peaks, 
surrounded by a red ellipsoid. However, their related stability 
indexes are null, showing that the different analyses lead to 
unstable results. 

4. CONCLUSION 

The strategy of spectral analysis presented in this paper leads 
to an automatic process for detecting, characterizing and 
classifying sinusoidal waves and narrow band signals of an 
unknown stationary process. This kind of tool is of interest 
when needing a fast and outstanding analysis of signals. The 
idea of fusion of different spectral analysis methods is original 
in signal analysis field. Operating spectral estimator properties 
allows a rigorous and accurate identification of spectral peaks, 

which breaks free from a visual interpretation. It is important 
to note that the proposed classification was derived from a 
particular stationary NB process. Works are in progress to 
extend these results to other NB models and to validate the last 
step of card fusion. 
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Figure 5 – Stability Index and final PFA of signal s(t) for all the 

detected peaks. 
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