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ABSTRACT

The general problem of sampling and flattening of folded
surfaces for the purpose of their two-dimensional rep-
resentation and analysis as images is addressed. We
present a method and algorithm based on extension of
the classical results of Gehring and Viisila regarding the
existence of quasi-conformal and quasi-isometric map-
pings between Riemannian manifolds. Proper surface
sampling, based on maximal curvature is first discussed.
We then develop the algorithm for mapping of this sur-
face triangulation into the corresponding flat triangu-
lated representation. The proposed algorithm is basi-
cally local and, therefore, suitable for extensively folded
surfaces such as encountered in medical imaging. The
theory and algorithm guarantee minimal metric, angular
and area distortion. Yet, it is relatively simple, robust
and computationally efficient, since it does not require
computational derivatives. In this paper we present the
sampling and flattening only, without complementing
them by proper interpolation. We demonstrate the al-
gorithm using medical and synthetic data.

1. INTRODUCTION

Two-dimensional representation by flattening of three-
dimensional object scans is a fundamental step, required
in various medical and other volumetric imaging appli-
cations. For example, it is often required to present
three-dimensional MRI scans of the brain cortex as flat
two-dimensional images. In the latter case it is possible,
for example, to better observe and follow up develop-
ments of neural activity within the folds. Flattening
of three-dimensional scans is in particular important
in the case of CT virtual colonoscopy; a non-invasive,
rapidly advancing, imaging procedure capable of deter-
mining the presence of colon pathologies such as small
polyps [7]. However, because of the extensive folding
of the colon, rendering of the 3D data for detection of
pathologies requires the implementation of cylindrical
or planar map projections [8]. In order to map such
data in a meaningful manner, so that diagnosis will be
accurate, it is essential that the geometric distortion,
in terms of angles and lengths, caused by the represen-
tation, will be minimal. Due to these medical and also
other applications such as face recognition, this problem
has attracted a great of attention in the last few years.

In a recent study of Haker et al., a method for map-
ping a 3D-surface onto a flat surface in a conformal man-
ner was presented [7], [8]. This method is basically a
variational method. The method is essentially done by

solving Dirichlet problem for the Laplace-Beltrami op-
erator Au = 0 on a given surface X, with boundary
conditions on 93.

In [5] and a series of consequent papers, Gu et al.
suggest to use holomorphic 1-forms in order to compute
global conformal structure of a smooth surface of arbi-
trary genus and arbitrary number of boundary compo-
nents. As such, this method can be applied to tissue or
facial unfolding. Yet, implementation of this method is
extremely time consuming.

In [10] Hurdal et al. suggest to build such a confor-
mal map using circle packing. This relies on the ability
to approximate conformal structure on surfaces by circle
packings. The authors use this method for MRI brain
images and conformally map them to the three possible
models of geometry in dimension 2 (i.e. the 2-sphere,
the Euclidian plane and the hyperbolic plane).

In all the above-mentioned methods the outcome is
in fact not a conformal map but a quasi-conformal map.
This fact implies that all the geometric measures are
kept up to some bounded distortion. Yet, sometimes
the resultant distortion may render the data to become
unacceptable. This is due to the fact that, in general, a
surface is only locally conformal to the plane so, if one
tries to flatten a surface in some manner of globality, the
best result is obtained by means of a quasi-conformal
flattening. Given this fact, it would be desirable to have
a precise bound on the distortion caused by the flatten-
ing. However, none of the mentioned methods is capable
of yielding such a bound.

In this paper we propose an approach to minimal
distorting representation of 3D-surfaces. The method
adopted in this study is derived from theoretical results
obtained by Gehring and Vaisédld in the early 1960’s
[1]. They were studying the existence of quasi-conformal
mappings between Riemannian manifolds. A simple al-
gorithm, that can be easily implemented, was derived
by the authors out of Gehring and Vaiséla results ([3]).
The basic advantages of the proposed method, insofar
as implementation is concerned, are its robustness and
speed. An additional advantage is that it is possible
to guarantee that the distortion does not exceed a pre-
defined bound, which can be as small as desired with
respect to the amount of localization one is willing to
accommodate. The proposed algorithm is most suit-
able for cases where the surface is complex (high and
non-constant curvature) such as colon wrapping. It is
important to stress that our algorithm, based on the
study of Gehring and Vaiséilé is the only one that yields
the desired bound on distortion.
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The paper is organized as follows: In Section 2 we
provide some theoretical background to the fundamental
work of Gehring and Viiséld and also regarding the sam-
pling and reconstruction problem. In the subsequent
section we describe our algorithm for surface flatten-
ing, based on their ideas. In Section 4 we present some
experimental results obtained by means of this scheme
and in Section 5 we summarize the paper and discuss
possible future studies.

2. THEORETICAL BACKGROUND

Definition 1 Let D C R? be a domain. A homeo-
morphism f : D — R? is called a quasi-isometry (or a
bi-Lipschitz mapping), iff %|p1 —p2| < |f(p1) — f(p2)| <
Clp1 — p2l, for all p1,p2 € D; 1 < C < 0.

C(f) = min{C|f being a quasi — isometry} is called
the minimal distortion of f (in D). (The distances con-
sidered are the induced intrinsic distances on the sur-
faces.)

Any quasi-isometry is a quasi-conformal mapping
(see, e.g. [16]), while not every quasi-conformal map-
ping is a quasi-isometry). The definition of quasi-
conformality closely resembles that of quasi-isometry,
where distances are replaced by angles. For quasi-
conformal mappings, the role of C(f) is played by K(f)
— the maximal dilatation of f.

Definition 2 Let S C R? be a connected surface. S is
called admissible iff for any p € S, there exists a quasi-
isometry 7, such that for any € > 0 there exists a neigh-
bourhood U, C R3 of p, such that ip : Up — R3 and
ip(SNU,) = D, C R? where D,, is a domain and such
that C(i,) satisfies:

(i) sup,es C(ip) < oo and (ii) sup,eg C(ip) < 1+¢.

Let S be a surface, 77 be a fixed unitary vector, and
p € S, such that there exists a neighbourhood V C S,
such that V ~ D2, where D? = {z € R?|||z]| < 1}.
Moreover, suppose that for any q1,q2 € S, the acute
angle £(q1g2,M) > «. We refer to the last condition as
the Geometric Condition or Gehring Condition.

Then, for any x € V exists a unique representation
of the form: x = ¢, + wri, where ¢, lies on the plane
through p which is orthogonal to 7 and u € R. We
define: Pr(z) = g.. (Note that 7 need not be the normal
vector to S at p.)

We have that for any pi,p2 € S, and any a € Ry,
the following inequalities hold: & [p1 — po| < |Pr(p1) —
Pr(ps)| < Alp1 —pa|, where A = J[(acsca)?+2a+1]2+
1

5[(acsca)? — 2a + 1]2. In particular for a = 1 we get

that C(f) < cota+1and K(f) < ((%(co‘coz)2 —|—4)% +

%cota)E < (cota+1)%.

Wl

Theorem 1 ([3]) The quasi-isometric projection, Pr,
produces minimal distortion: C(f) < cot a+1 and max-

imal dilatation K (f) < (cota + 1)2.

From the above discussion we conclude that S C R3
is an admissible surface if for any p € S there exists 7,
such that, for any qi,q2 € U, close enough to p, the

acute angle £(q1¢2,7p) > a. In particular, any smooth
surface in S € R? is admissible.

Naturally, the existence of faithful quasi-
conformal /quasi-isometric representations for sampled
surface strongly depends on the quality of the sampling.
In this context, we present here the following basic
versions of the sampling and reconstruction theorems
proven in [2].

Theorem 2 ([2]) Given a C? surface X, with absolute
principal curvatures bounded by some bound Ky, there
exists a sampling scheme of the surface 3, with a proper

density D, corresponding to the maximum absolute cur-
vature Ky, i.e. D =D(Ky).

Theorem 3 ([2]) If ¥ is not a C? surface, then there
exists a smoothing reproducing kernel Hy, for which
Hs, % X is of class C2. The smooth surface can be repre-
sented by a sampling scheme of density D, according to
Theorem 2.

3. THE ALGORITHM

In this section we present our algorithm, we developed
in order to apply Gehring - Vaiiséla‘s theorem ([3]) for
quasi-isometrically flattening of a 3D-surface. Exten-
sion of this approach to flattening of images and sur-
faces embedded in higher dimensional manifolds, incor-
porating image attributes, such as color and texture, are
addressed elsewhere ([18]).

Assume that the surface is equipped with some
nonuniform set of sampling points and corresponding
triangulation T'. Let IV, stand for the vector normal to
the surface at a point p on the surface.

A triangle A, of the triangulation must be chosen.
We project a patch of the surface quasi-isometrically
onto the plane included in A. This patch is called the
patch of A, and it consists of at least one triangle, i.e.
A itself. There are two possibilities to chose A, one is in
a random manner and the other is based on curvature
considerations. We will refer to both ways later. For
the moment, assume A was somehow chosen. After A is
(trivially) projected onto itself we move to its neighbors.
Suppose A’ is a neighbor of A having edges e1, e, €3,
where e; is the edge common to both A and A’.

We consider A’ to be Gehring compatible w.r.t A, if
the maximal angle between es or e and Na (the normal
vector to A), is greater then a predefined measure suited
to the desired predefined maximal allowed distortion,
ie. max{«(e2, Na),4£(e3,Na)} > a. We project A’
orthogonally onto the plane included in A and insert it
to the patch of A, iff it is Gehring compatible w.r.t A.

We keep adding triangles to the patch of A moving
from an added triangle to its neighbors (of course) while
avoiding repetitions, till no triangles can be added.

If by this time all triangles are added to the patch,
we have concluded. Otherwise, we choose a new triangle
that has not been projected yet, to be the starting tri-
angle of a new patch. A pseudocode for this procedure
can be easily written.

We conclude this section with the following remarks:
One should keep in mind that the above given algorithm,
as for any other flattening method, is local. Indeed, in a
sense the (proposed) algorithm gives a measure of “glob-
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ality” of this intrinsically local process. Our algorithm
is most suitable for highly folded surfaces, because of
its intrinsic locality on the one hand and computational
simplicity, on the other.

Furthermore, as stated earlier, one could may choose
the starting triangles in two ways. If one takes into
account the curvature at vertices of the triangles then
choosing those triangles having minimal curvature at
their vertices will reduce the number of patches in the
final flat presentation of the surface. Experimental re-
sults show that the reduction in the number of patches
is of approximately 25 percent w.r.t. the version where
triangles are randomly chosen.

Another important comment refers to the robust-
ness of the algorithm proposed herein. The outcome of
the algorithm does not depend on the triangulation of
the surfaces. It depends only on the surface geometry
and in particular its curvature, given that the triangu-
lation well represents the surface, as far as its sampling
is concerned. Surface sampling in particular and of high
dimensional signals/manifolds, in particular, is a major
subject of study, and various results exist on this mat-
ter (e.g. [1], [9]). As far as our algorithm is concerned,
we assume the nonuniform sampling is faithful to the
geometry of the surface, i.e. to surface curvature ([2]).
This is analogous to determining the density of nonuni-
form sampling of one-dimensional signal according to its
derivative ([18]).

4. EXPERIMENTAL RESULTS

We present some experimental results obtained by ap-
plying the algorithm presented in the previous section
to flattening of the skull (Fig. 1), tooth (Fig. 2) and a
lobe of the brain (Fig. 3). In each of the examples both
the input surface and a flattened representation of some
patch are shown. Distortion is computed according to
the theory presented in Section 2. In addition, details
regarding the resolution of the mesh and the number of
patches are also available.

Since at this stage we did not address the problem
of properly gluing of patches, in the following example
of colon flattening, one can see the appearance of holes
in the flattened presentation caused by artificially glu-
ing neighboring patches to each other. We refer to this
problem in the next section.

5. CONCLUDING REMARKS AND
FUTURE STUDY

Sampling and flattening of folded surfaces embedded in
higher dimensional Riemannian manifolds combines sev-
eral important facets and problems encountered in im-
age processing and analysis of surfaces. In our broader
study [2], we deal with the issues of nonuniform smooth-
ing and sampling by proper reproducing kernels. Here
we assumed that a proper sampling and triangulation
of the surfaces are given. the emphasis was therefore on
quasi-conformal and quasi-isometric aspects of the map-
ping between Riemannian manifolds. While the theory
is general and applicable to mapping from any higher to
lower dimensional manifolds, here we presented a spe-
cific algorithm developed for the case of mapping from
a three-dimensional to two-dimensional flat surface.

From the implementation results it is evident that
this algorithm while being simple to program as well as
efficient, also gives good flattening results and maintains
small dilatations even in areas where curvature is large
and good flattening is a challenging task. Moreover,
since there is a simple way to ases the resulting dilata-
tion, the algorithm was implemented in such a way that
the user can set in advance an upper bound on the re-
sulting dilatation.

An additional advantage of the presented algorithm
resides in the fact that in contradiction to some of the
related works, no use of derivatives is made. In conse-
quence the algorithm does not suffer from typical draw-
backs of derivative computations like robustness, etc.

Moreover, since no derivatives are employed, no
smoothness assumption about the surface to be flat-
tened are made, which makes the algorithm presented
herein ideal for use in cases where smoothness is ques-
tionable (to say the least).

The algorithm may be of extremely practical use for
applications where local yet good analysis is required
such as medical imaging with the emphasis on flat-
tened representation of the brain and the colon (virtual
colonoscopy). Such a study is undertaken these days.

The main question for future study, remains that of
passing from local to global in a more precise fashion,
i.e. how can one glue two neighbouring patches while
keeping fixed bounded dilatation. (In more technical
terms, this amounts to actually computing the holon-
omy map of the surface — see [15].) Indeed, we may
flatten the neighborhood of some vertex u obtaining the
flat image I, and the neighborhood of another vertex v
obtaining the image I, so that these two neighborhood
have some intersection along the boundary yet, it will
not be possible to adjust the resulting images to give
one flat image I, of the union of these neighborhood
which still keeping the quasi-isometric property. Here
too, study is underway.

Evidently, as can be noted in Fig. 4, of the
colon flattening example, one can have two neigh-
bouring patches, with markedly different dilata-
tions/distorsions,producing different lengths for the
common boundary edges. Therefore, “cuts” and “holes”
appear when applying a “naive gluing”.

We conclude by remarking that while the applica-
tion presented here is for 2D-images of 3D-surfaces, the
results of Gehring and Viisald are stated and proven
for any dimension (and co-dimension). Therefore, im-
plementations for higher dimensions are feasible.
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Figure 1: Skull flattening: The role of almost flat re-
gions is accentuated. The resolution is of the whole
skull 60,339 triangles. Here a = 10°. The dilatation is
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Figure 2: Tooth model: This represents part of skull
model. Here again @ = 10° and the dilatation is 1.1763.
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Figure 3: Cerebral Cortex Flattening: patch obtained
in the representation of the parietal region. The reso-
lution is of 15,110 triangle. Here a = 5°, producing a
dilatation of 1.0875.
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Figure 4: Colon CT-Images: (a) Triangulated colon sur-
face taken from 3 slices of human colon scan and (b)
One half of the colon, after flattening. One is able to
observe the holes caused by improper gluing of neigh-
bouring patches. CT-data is in curtesy of Dr. Doron
Fisher from Rambam Medical Center in Haifa.



