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ABSTRACT
This paper describes novel, computationally efficient ap-

proaches to source separation of underdetermined instanta-
neous two-channel mixtures. A best basis algorithm is ap-
plied to trees of local cosine bases to determine a sparse
transform. We assume that the mixing parameters are known
and focus on demixing sources by binary time-frequency
masking.

We describe a method for deriving a best local cosine ba-
sis from the mixtures by minimising an l1 norm cost function.
This basis is adapted to the input of the masking process.

Then, we investigate how to increase sparsity by adapting
local cosine bases to the expected output of a single source
instead of to the input mixtures. The heuristically derived
cost function maximises the energy of the transform coeffi-
cients associated with a particular direction. Experiments on
a mixture of four musical instruments are performed, and re-
sults are compared. It is shown that local cosine bases can
give better results than fixed-basis representations.

1. INTRODUCTION

Blind source separation is a broad term which describes a
set of techniques which aim to estimate individual sources
from a number of observed mixtures of those source signals.
Cases in which the number of mixtures is greater than, or
equal to, the number of sources are called (over-)determined.
These cases have been well studied, commonly through the
application of independent component analysis (ICA) [5].

In contrast to the overdetermined case, underdetermined
blind source separation considers cases in which there are
more sources than mixtures. In this work, we deal with un-
derdetermined, instantaneous, two-channel mixtures of n > 2
time-domain audio sources:

(
x1
x2

)
=

(
a11 · · · a1n
a21 · · · a2n

) s1
...

sn

 (1)

where s j is the jth source, xi is the ith mixture, ai j is the
positive real amplitude (mixing parameter) of the jth source
in the ith mixture (observation), and 1 ≤ j ≤ n and i = 1,2.

A mixture model given by Equation 1 may represent,
for example, a music signal with a conventional “pan-potted
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stereo” mixing method. Indeed, our experiments will con-
centrate on mixtures in which each source is a musical in-
strument.

The blind source separation problem may be split con-
ceptually into two successive subproblems [10]. Identifica-
tion is the first, and involves determining the mixing param-
eters ai j. Once the mixing parameters are known, the sec-
ond subproblem, filtering, involves separating each source s j
from the mixtures to yield an estimated source ŝ j. The de-
generate unmixing estimation technique (DUET) [11] pro-
vides an example of this partitioning into subproblems: The
mixing parameters are identified by constructing a histogram
from which the values may be read. Once this has been done,
the sources are estimated by time-frequency masking (Sec-
tion 2). DUET is one method which may be applied to mix-
tures in the form of Equation 1. (DUET was originally de-
veloped for blind source separation of anechoic mixtures, in
which the mixture may include relative delays as well as rel-
ative amplitude gains. Instantaneous mixtures are a special
case of anechoic mixtures—simply set all relative delays to
zero—and so DUET may be used as stated.)

The current paper concentrates on the filtering phase. We
assume that the mixing parameters are known or have been
estimated. As such, these methods are equally applicable to
other non-blind scenarios, in which the mixing parameters
are known.

Section 2 describes filtering by time-frequency masking.
Subsequently, Section 3 describes computationally efficient
methods for adapting time-frequency representations to try
to match the time-varying signal characterstics better. These
methods apply the best basis algorithm [3] to a tree of local
cosine bases. In Section 4, we compare and contrast differ-
ent techniques and representations: The short-time Fourier
transform (STFT, which lies at the heart of the filtering stage
in DUET), the modified discrete cosine transform (MDCT), a
best local cosine basis derived from a mixture of the sources,
and a best local cosine basis which sparsifies the representa-
tion at the output of the filtering process.

2. TIME-FREQUENCY MASKING

Consider a real- or complex-valued linear transform T ap-
plied to the mixtures x1 and x2 in Equation 1. This gives
transformed mixtures x̃1 = T x1 and x̃2 = T x2 with the same
mixing structure as Equation 1.

A sparse transform has most coefficients very close to
zero and only a few large coefficients. This will represent
the mixtures in the desired way, such that the sources have
(approximately) disjoint support in the transform domain.
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Figure 1: Scatterplot of sparse transforms x̃1 and x̃2 (MDCT).
The arrows point to the upper and lower bounds of the sym-
metric threshold. It can be seen that between these bounds
are points clustered around a straight line, whose gradient
indicates the ratio of the mixing parameters for one source.

Individual sources can be estimated from x̃1 and x̃2 by
constructing binary time-frequency masks. This assumes that
at each point in the transform domain, energy from at most
one source dominates, that is, it assumes a sparse transform.
Then, the mask can be used to filter (extract) the coefficients
belonging to a particular source.

The masks are constructed as follows. The ratio of mix-
ing coefficients for the jth source can be interpreted as an
angle

θ j = arctan
(

a2 j

a1 j

)
(2)

where the inverse tangent is computed in the first quadrant of
the plane. If the transform T s j = s̃ j of the jth source is sparse
and real-valued, then its coefficients tend to cluster along the
line defined by θ j. A scatterplot of x̃1 and x̃2 shows that
the ratio of the mixing parameters for each source may be
found by visual inspection (Figure 1). For simplicity we will
consider manually defined symmetric thresholds u, although
such restrictions are not generally necessary. A binary time-
frequency mask Mθ j ,u then captures the coefficients which
fall “close” to the line corresponding to θ j and discards all
others:

Mθ j ,u =

 1 if θ j −
u
2

< arctan
(

x̃2

x̃1

)
< θ j +

u
2

0 otherwise.
(3)

This mask Mθ j ,u estimates the mixture coefficients carrying
most of the energy for source j, for the given symmetric
threshold u.

Once the masks have been constructed, they can be used
to determine ˆ̃s j, an estimation of the transformed jth source:

ˆ̃s j = Mθ j ,u · (x̃1 cosθ j + x̃2 sinθ j) (4)

We apply the mask to this linear combination of x̃1 and x̃2 be-
cause it allows extraction of sources which occur entirely in

one mixture. This is in contrast to techniques such as DUET
which apply the mask to x̃1 only, which can be problematic
if a source is mostly or entirely represented in x̃2.

The use of time-frequency masking, in various forms, has
been successfully applied to instantaneous mixtures in the
MDCT domain [4], instantaneous mixtures in the STFT do-
main [1] and anechoic mixtures in the STFT domain [11].
An initial study of the effects of different sparse transforms
appears in [8].

3. ADAPTING THE TIME-FREQUENCY
REPRESENTATION

Transforms such as the STFT and MDCT have constant-
length analysis windows and fixed bases for the entire dura-
tion of the signal. This gives fixed time-frequency resolution.

In order to better match the time-varying characteristics
of the mixtures and sources, in the current work, we adapt the
bases and window lengths to the input signals by construct-
ing a transform whose basis functions are adaptively selected
local cosine bases. This allows longer windows over inter-
vals requiring fine frequency resolution (at the expense of
coarser time resolution), and shorter windows over intervals
with broadband frequency content (giving finer time resolu-
tion). If a signal is decomposed in such a basis, then we
anticipate that its transform may be sparser than transforms
which decompose the signal in a fixed basis.

3.1 Trees of Local Cosine Bases
In our method, we use a cosine packet tree composed of local
cosine bases, which are briefly introduced here. For more
details on these structures, see [6].

The basis functions of the linear transform are defined
over dyadic-length (powers of 2) intervals [cpd ,cp+1,d ]. The
endpoints are given by

cpd = 2−dN p− 1
2

(5)

where N is the length of the (time-domain) signal, and de-
fines a binary tree structure where the depth of a node is given
by d up to a maximum depth D (0 ≤ d ≤ D), and the position
of a node at level d is given by p (0 ≤ p < 2d). A pair of in-
dices (p,d) corresponds to a node in the tree, and identifies
a signal space Wp

d spanned by an orthogonal local cosine
basis: {

wpd [n]

√
2

2−dN
cos

[
π

(
k +

1
2

)
n− cpd

2−dN

]}
(6)

where 0 ≤ k < 2−dN indexes the functions in the basis.
The smooth window wpd localises the basis functions over
a dyadic interval [cpd ,cp+1,d ] and partly overlaps with its
immediately adjacent windows wp−1,d and wp+1,d . Further-
more, the window must satisfy special properties [6]. Fig-
ure 2 is an example tree of local cosine bases.

Each signal space Wp
d is orthogonal to Wq

d whenever
p 6= q, and Wp

j =W2p
j+1⊕W2p+1

j+1 . This means that the union
of the bases corresponding to the children of any node com-
prise an orthogonal basis of the space corresponding to that
node. (The length-N signal being analysed is in the signal
space W0

0.) Bases occuring deeper in the tree correspond to
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Figure 2: Tree of signal spaces spanned by local cosine
bases. Deeper nodes correspond to more localised basis
functions (shorter analysis windows).

shorter time intervals and so are better for representing sec-
tions of the signal with highly time-varying characteristics;
bases occuring higher in the tree are better for representing
sections which need better frequency resolution at the cost of
coarser time resolution. This tree structure offers a computa-
tionally efficient method for computing a good basis.

3.2 Selecting the Best Basis
A tree of local cosine bases describes many possible orthog-
onal bases for representing a signal. A complete binary tree
provides a dictionary of orthogonal bases from which the op-
timal basis can be adaptively chosen to represent the signal.
The l1 cost of representing a length-N signal x in the basis
B = {bm} is given by

C(x,B) =
N

∑
m=1

|〈x,bm〉|
‖x‖

(7)

and provides a convenient measure of sparsity [2]. The best
basis is the one which minimises this cost. The computation-
ally efficient Coifman-Wickerhauser algorithm takes advan-
tage of the binary structure and determines the best basis in
O(N log2 N) time [3].

Figure 3 depicts a tree of local cosine bases adapted to
an audio recording of a glockenspiel showing the original
time-domain signal partitioned into dyadic intervals, each
of which correspond to a basis in the tree. The bars of the
glockenspiel are struck in the first half of the signal and so
relatively short basis functions have been adapted to capture
the transients. The notes all ring out and decay in the sec-
ond half of the signal; here, long basis functions have been
chosen because the signal varies relatively slowly over time.

3.3 Adapting to the Input
We consider two natural ways by which the local cosine basis
may be adapted. The first method attempts to maximise the
sparsity of the average of the two time-domain mixtures x̃1
and x̃2

xa =
1
2
(x1 + x2) (8)

by minimising the l1 cost described in Section 3.2. This
method will be referred to as CP1. Results for CP1, are given

Figure 3: Glockenspiel. Upper plot is a local cosine best ba-
sis tree computed by minimising the l1 norm to a maximum
depth D = 10. Lower plot is the time-domain signal parti-
tioned into intervals; the width of each interval is determined
by the depth of the corresponding basis in the tree.

in Section 4, indicating some improvement over fixed-basis
methods.

3.4 Adapting to a Single Source

One issue with the CP1 method is that it models mixtures of
the sources rather than the sources themselves. For example,
consider a music signal: If a percussive note with broadband
frequency content and a tonal note with fine frequency con-
tent occur at same time, then the basis selected to cover that
time interval may not be particularly well adapted to either.
Furthermore, the basis may not adapt to transients well as
tonal content tends to have more energy.

To overcome this possible limitation, we propose to adapt
one basis to the expected output of the time-frequency mask
for each source. This will select a basis for each source
with the intention that each such basis will capture the time-
frequency structures of that source better than the basis de-
termined by CP1.

A heuristically motivated cost function is now developed,
based on this intuitive reasoning. Whereas the CP1 method
minimises the l1 cost of expressing a signal in some basis,
here we maximise the energy of the local cosine coefficients
associated with a particular source angle θ j. The mixing pa-
rameters for a given source are known; the representation
which has greatest sparsity for this source has local cosine
coefficients clustered around these mixing parameters. By
selecting a basis which maximises the energy of coefficients
that cluster around θ j we would expect that a sparse repre-
sentation will be generated.
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Therefore we use the following cost function:

C(x1,x2,B,θ j,u) = −
N

∑
m=1

Λθ j ,u〈(x1 cosθ j + x2 sinθ j) ,bm〉2

(9)
where

Λθ j ,u =

 1 if θ j −
u
2

< arctan
(
〈x2,bm〉
〈x1,bm〉

)
< θ j +

u
2

0 otherwise
(10)

and B = {bm} is a basis from the dictionary of bases derived
from the complete local cosine tree. The binary mask Λθ j ,u
has a similar form to Equation 3, but instead of masking a
transformed mixture x̃1 or x̃2, it masks local cosine coeffi-
cients in the basis B. Again, the fast tree-searching algo-
rithm of Coifman and Wickerhauser finds the best basis cor-
responding to this cost function. For the rest of this paper,
this method will be referred to as CP2.

This method learns an overcomplete dictionary of bases
adapted to different sources. In this sense, it may be consid-
ered to be equivalent to techniques based on, for example,
the matching pursuit algorithm [7]. However, the advantage
of this method stems from the representation of local cosine
bases as tree structures which allows us to apply the fast tree-
searching algorithm to determine the best basis.

4. RESULTS

A stereo mixture of four musical instrument sources1 were
used to test the source extraction methods. The sources are
excerpts from “real-world” multitracked music, are harmon-
ically related and so overlapping partial frequencies were ex-
pected.

Each of the four sources s1, . . . ,s4 corresponds to the
sounds produced by one instrument, where s1 is percussion,
s2 is acoustic guitar (“guitar 1”), s3 is male vocal and s4 is
another acoustic guitar (“guitar 2”). All sources were con-
verted to a sample resolution of 16 bits and a sample rate of
22050 Hz for 218 samples (11.9 s).

The mixtures x1 and x2 were generated by instanta-
neously mixing as follows:

(
x1
x2

)
=

(
0.90 0.71 0.50 0.28
0.09 0.29 0.50 0.72

) s1
s2
s3
s4

 (11)

The resulting mixture is a realistic simulation of a pan-potted
stereo downmix, and we have found this to be relatively chal-
lenging for standard signal extraction methods.

4.1 Measuring Performance
For each estimated source, we wish to make numerical evalu-
ations of the contribution of unwanted sources (interference)
and the distortion due solely to the separation process (arti-
facts). We do this by measuring the Source to Interference
Ratio (SIR) and the Source to Artifacts Ratio (SAR). Further-
more, in order to simplify direct comparisons, the Source to

1Another Dreamer, Personalized Perfection, 2004. Source files
available online http://anotherdreamer.infobeing.net/
personalizedperfection.htm subject to the Creative Commons
Attribution-NonCommercial 1.0 license.

source transform K D SIR SAR SDR

s1

STFT 512 - 30.31 3.47 3.46
MDCT 512 - 24.95 1.23 1.20

CP1 - 9 25.48 2.17 2.14
CP2 - 8 26.15 3.38 3.35

s2

STFT 1024 - 30.13 7.03 7.01
MDCT 1024 - 35.87 7.07 7.06

CP1 - 6 31.30 7.60 7.57
CP2 - 8 28.24 9.28 9.22

s3

STFT 1024 - 36.48 -0.23 -0.23
MDCT 1024 - 40.94 0.77 0.77

CP1 - 7 36.50 3.16 3.16
CP2 - 8 32.84 4.22 4.21

s4

STFT 1024 - 29.20 4.65 4.63
MDCT 1024 - 29.70 4.12 4.10

CP1 - 7 30.46 6.44 6.41
CP2 - 9 24.64 6.91 6.82

Table 1: Results of source extraction. The STFT and MDCT
block sizes are specified by K. The maximum depths of local
cosine trees are given by D.

Distortion Ratio (SDR) is computed; this combines both the
SIR and SAR into a single numerical measure of total relative
distortion. Methods for computing these measurement crite-
ria are explained in detail in [9]. Whenever these measures
are used, they will be stated in units of decibels (dB).

4.2 Experiments
Time-frequency masks were constructed and applied to the
mixture channels x1 and x2 represented by the following
transforms:
• STFT at block sizes K, Hamming-windowed, and with

K/2 overlap on consecutive blocks. This is essentially
the filtering component of DUET [11]. The STFT is a
complex-valued transform, so the binary masks were de-
termined based on the magnitude of the STFT.

• MDCT critically sampled, with various block sizes K
• CP1 at various maximum tree search depths D
• CP2 at various maximum tree search depths D

All experiments used the same symmetric masking threshold
u = 0.17. This value u was determined experimentally to
give good results overall and ensured that masks for adjacent
sources do not overlap.

Relatively short and medium block sizes K were chosen
for STFT and MDCT testing: K = 256,512,1024. The rea-
son is that informal listening tests reveal this captures tran-
sients well for these transforms, and longer frame sizes seri-
ously degrade note attacks.

The depth d of a node in a local cosine tree corresponds
to basis functions of length 218−d (the example mixture has
length 218). The maximum tree depths tested were D = 10,
so that the smallest basis functions have length 256 (equal to
the smallest K).

4.3 Discussion
It is clear from Table 1 that the effects of the artifacts dom-
inate interference, since the SAR values are typically some
20 dB or more lower than SIR. This is not too surprising,
since these methods are based on binary masking, and we
would expect the masking process to introduce some arti-
facts.
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For STFT and MDCT, the best estimation of the percus-
sion source s1 is given by a shorter analysis window than
those analysing the other (tonal) source estimates. Similarly,
CP1 gives best results on s1 when the algorithm is allowed to
search deeper in the tree than for the other sources (depth 9
rather than 6 or 7). This suggests that shorter basis functions
are indeed preferred for representing signals with broadband
noisy content and that longer basis functions are preferred
for representing tonal structures.

The results presented generally confirm that the sparser
local cosine basis representations (CP1 and CP2) typically
reduce distortion (improve SDR) when compared to STFT
and MDCT. With the exception of the percussion source s1,
where STFT gives the best result, Table 1 shows that CP1
gives better SDR than both STFT and MDCT, and in turn
CP2 gives better SDR than CP1. CP2 appears to reduce ar-
tifacts (increase SAR) at the expense of some increase in in-
terference (reducing SIR) in comparison to CP1, resulting in
an overall improvement in SDR (since the effect of artifacts
dominates).

Even on source s1, informal listening tests have revealed
that source extraction based on the STFT suffers from objec-
tionable “pipe noise” artifacts, while the other methods do
not exhibit such artifacts to the same degree. For future work
we propose to confirm this effect using more formal listening
tests.

5. FURTHER WORK

Results have shown that adapting a local cosine basis to the
output can give good results. However, the energy-based cost
function (Equation 9) is derived from heuristic reasoning and
intuition. It may be the case that a more subtle cost function
is required to represent the estimated source more sparsely.
In particular, the current energy-based cost function consid-
ers only coefficients of the estimated source without regard-
ing the coefficients of the other sources. Therefore, the next
step is to manually examine the basis functions which are
adapted to a particular source direction and determine the
most suitable cost function for this sort of joint adaptation of
local cosine bases.

Similarly, the CP1 technique (Section 3.3) minimises the
l1 cost of x̃a, the average of the input mixtures. Alternatively,
one could minimise the average l1 cost of both x̃1 and x̃2.

The tree structure described in Section 3 is not necessar-
ily tied to local cosine bases. It should be possible to apply
a tree-like framework to other transforms, such as the STFT.
This would give access to phase information so the frame-
work could be used to separate anechoic mixtures.

All techniques in this paper assume the mixing param-
eters are already known (the non-blind case). In practical
situations this information may not be available and so the
mixing structure would need to be identified. It would be
useful to study the sensitivity of the sparse representations to
the accuracy of the mixing parameter estimates.

Finally, the performance measures, SIR, SAR and SDR,
may not correspond well to a subjective human assessment
of separation performance. Informal listening tests show that
each representation imparts a noticeably different timbre to
the extracted sources. Therefore, we believe that listening
tests would give a more meaningful, practical measure of
separation performance.

6. CONCLUSIONS

This paper has described novel research on local cosine
packet representations for source separation of two-channel
instantaneous mixtures. One method is CP1 (Section 3.3)
and the other is CP2 (Section 3.4).

The advantage of the CP1 and CP2 techniques is that they
adapt a basis to match the time-varying characteristics of the
signal. CP2 takes this idea one step further and adapts the
basis to the time-frequency mask used for separating each
separate source. Searching a tree of local cosine bases is fast
and gives promising results. This is in contrast to represen-
tations with fixed bases, which are not adapted to the signal
under analysis. On a stereo mixture of percussion, voice and
two guitars, we have shown that our new methods CP1 and
CP2 improve source extraction performance for all but one of
the four sources. For future work we propose to investigate
futher possible improvements through the use of alternative
sparsifying cost functions.
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