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ABSTRACT

Approximate vector perturbation techniques assisted by LLL lat-
tice reduction (LR) can exploit all the diversity that is available in
multi-user multi-antenna broadcast systems. However, the required
computational complexity of LLL-LR can be quite large. In this
paper, we propose a much simpler and much more efficient LR al-
gorithm than LLL. This LR technique is based on Brun’s algorithm
for finding approximate integer relations (IRs). The link between
LR and IRs is established by considering poorly conditioned chan-
nels with a single small singular value. Simulation results show that
our scheme can achieve large (but bot full) diversity at a fraction of
the complexity required for LLL-assisted vector perturbation.

1. INTRODUCTION

Precoding based on vector perturbation is a very promising tech-
nique for wireless broadcast scenarios, where a transmitter uses
multiple antennas to serve multiple non-cooperating users [1–3].
With vector perturbation, the data (to be transmitted via pre-
equalization) is perturbed such that the transmit power is mini-
mized. The optimum perturbation vector can be found via sphere-
encoding [2]. In general, this requires exponential complexity (in
the worst case and also on average [4]). As a consequence, sev-
eral efficient approximate vector perturbation techniques have been
developed: [2, 3] discussed Tomlinson-Harashima precoding and
[5] considered lattice reduction (LR) techniques (using the LLL al-
gorithm [6]) as a preprocessing stage to vector perturbation. Re-
cently, it was shown that approximate vector perturbation preceded
by LLL-LR can achieve full diversity [7]. While the LLL algorithm
has just polynomial complexity [6, 8] in the number of users, it can
still be computationally intensive if the number of users is large and
the channel realization is poorly conditioned.

In this paper, we aim at reducing the complexity of the LR pre-
processing stage that depends solely on the channel realization (i.e.,
not on the transmit data) and can often be decisive (e.g. in OFDM-
based transmission schemes). To this end, we propose a novel LR
algorithm that is much simpler and significantly more efficient than
the LLL algorithm. This novel LR technique is then used as pre-
processing for approximate vector perturbation techniques. Our LR
scheme is based on an algorithm proposed by Brun in 1919 (see
[8] and references therein) for finding approximate integer relations
(IRs) [8, 9]. The link between approximate IRs and LR for vector
perturbation is established by considering poorly conditioned chan-
nel realizations that have just a single small singular value. We
hence refer to our LR technique as IR based LR (IR-LR).

In general, the computational complexity of IR-LR is just a
fraction of LLL-LR since it does not require a QR-decomposition of
the channel matrix and repeated Givens rotations and size reduction
steps (cf. [8, 10]). Although IR-LR incurs a performance penalty
compared to LLL-LR, simulation results will reveal that the pro-
posed IR-LR based approximate vector perturbation techniques can
still achieve a large part of the available diversity.

This work was supported by the European Union project MASCOT
within the Sixth Framework Program under contract IST-26905.

The rest of the paper is organized as follows. In the remainder
of this section, we discuss the system model and the basic princi-
ple of (LR-assisted) vector perturbation. In Section 2, we present
the basic idea of IR-LR. Brun’s algorithm and the resulting IR-LR
technique is discussed in detail in Section 3. Finally, simulation
results are presented in Section 4. Section 5 concludes the paper.

1.1 System Model
We consider a multi-user communications system operating in the
downlink (see e.g. [1, 3]). The base station is equipped with M
transmit antennas and there are K ≤ M users, each with a single
receive antenna. We emphasize that in general the user antennas are
not co-located and hence cooperation among users is not possible.

Let x
4
= (x1 . . . xM)T denote the transmit vector, normalized

such that E{‖x‖2} = 1. Furthermore, collect the values rk, k =

1, . . . ,K, received by the K users in a receive vector r 4
= (r1 . . . rK)T .

Under the assumption of a flat-fading channel1 the mapping from x
to r is given by

r = Hx+w. (1)

Here, H is the K × M channel matrix, whose elements hk,m =
[H]k,m are the complex fading coefficients between the mth trans-

mit antenna and the kth user. Furthermore, w
4
= (w1 . . .wK)T ∼

CN (0,σ2
wI) denotes spatially white complex Gaussian noise.

1.2 Precoding and Vector Perturbation
At each time instant, the base station intends to transmit K complex-
valued data symbols dk, k = 1, . . . ,K, which are picked from a
symbol alphabet A . The kth data symbol dk is intended for user
k. With perfect channel state information at the transmitter, inter-
ference free transmission to each user is achieved by using zero-
forcing precoding/pre-equalization (e.g. [1]). Here, the data vector
d = (d1 . . .dK)T is pre-multiplied with an M×K precoding matrix
P which equals the pseudo-inverse2 of the channel:

s = Pd, with P = HH(HHH)−1. (2)

The transmit vector is then obtained by a normalization of s, i.e.

x =
s√γ

, with γ 4
= ‖s‖2. (3)

Inserting (3) and (2) into (1) yields r = 1√γ d+w, i.e., the received
value rk of the kth user reads

rk =
1√γ

dk +wk. (4)

1The flat-fading assumption is no serious restriction since any frequency-
selective channel can be converted into parallel flat-fading channels via the
use of OFDM.

2For simplicity, throughout the paper we do not consider any MMSE-
based precoding (e.g. [1]), although in general the performance is improved
compared to ZF-based precoding.
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Hence, each user sees a scaled and noise-corrupted version of his
corresponding transmit symbol. Optimum detection can thus be
achieved in a non-cooperative fashion by quantizing

√γ rk with re-
spect to the symbol alphabet A (denoted as Q{·}):

d̂k = Q
{√

γ rk
}
. (5)

According to [2], the scaling can be performed with
√

E{γ} instead
of

√γ without significant performance loss.
The major problem of plain ZF precoding is the power enhance-

ment in the unnormalized transmit signal s in (2) [1, 2]. As can be
seen from (4), the receive SNR is inversely proportional to γ , i.e.,
if γ is very large the SNR is small and hence overall system perfor-
mance (error probability) degrades significantly.

This performance degradation can be combated very effectively
by using the vector perturbation (VP) technique proposed in [2].
Here, the vector s in (2), (3) is replaced with

s(z) = P(d+ τ z),

where z ∈ CZ
K is a perturbation vector whose elements are com-

plex integers3 and τ is an appropriately chosen but fixed real-
valued scaling factor. For example, for QAM symbol alphabets
the constant τ is usually chosen such that the extended symbol
alphabet is again a rectangular lattice (e.g., τ = 4 for 4-QAM
A = {1 + j,1− j,−1 + j,−1− j}). Equivalently to (4) one ob-
tains

rk =
1√γ

(dk + τ zk)+wk,

which amounts to having an extended symbol alphabet A + τ CZ

(i.e. all τ-scaled complex-valued integer translates of A ). Each user
can then perform detection by applying a complex-valued modulo
operation Mτ{·} to its

√γ-scaled received value,

Mτ{
√

γ rk}
4
=

(
Re{√γ rk} mod τ

)
+ j

(
Im{√γ rk} mod τ

)
,

followed by quantization:

d̂k = Q
{

Mτ{
√

γ rk}
}
.

It is natural to choose the perturbation vector z such that the receive
SNR is maximum. This is achieved by minimizing the scaling factor
γ = ‖s(z)‖2:

zopt = arg min
z∈CZ

K
‖s(z)‖2 = arg min

z∈CZ
K

∥∥P(d+ τ z)
∥∥2

. (6)

The actual transmit vector is then obtained according to (3) with
s = s(zopt). The minimization (6) is an integer least-squares prob-
lem whose complexity in general is exponential in the number of
users K and thus becomes prohibitively complex even for moderate
K. A promising algorithm to solve (6) is the sphere decoding (SD)
algorithm [2, 11] (in [2] this is then referred to as sphere encoding),
which however is still exponentially complex [4] (in the worst case
and also on average).

Various precoding techniques can be interpreted as approxima-
tions of (6). This includes plain ZF precoding without perturbation
(z = 0), Tomlinson-Harashima precoding [3], and LR-assisted vec-
tor perturbation [5].

1.3 LR-Assisted Vector Perturbation
For later reference, we briefly review the basic concepts of LR-
assisted approximate vector perturbation [5] (see also Babai’s ap-
proximation [9] and various data detection algorithms [10, 12, 13]).

3The set CZ of complex integers comprises all complex numbers with in-
teger real and imaginary parts. For brevity, we refer to vectors with complex-
valued integer entries as “integer vectors.”

For the LR preprocessing, the columns of the precoding matrix
P are viewed as a basis for a K-dimensional lattice L in C

M ,

L
4
=

{
Pz : z ∈ CZ

K
}
.

(We remain in the complex-valued domain although LR is usually
discussed for an equivalent real-valued 2K-dimensional lattice in
R

2M [5, 10].) The volume of a fundamental cell of the lattice L is
defined as |L | = det(PHP) and is independent of the lattice basis.
The goal of LR is to transform the lattice basis P into a “better” ba-
sis P̃ for the same lattice L . The relation between the original and
the reduced bases is given by P̃ = PB, where B = [b1 . . . bK ] is a
K×K unimodular matrix (i.e., it has complex-valued integer entries
and det(B) = ±1). We note that LR can equivalently be performed
on the rows of the channel matrix H since the resulting reduced
channel matrix H̃ = B−1H entails P̃ = PB = H̃H(H̃H̃H)−1.

The orthogonality defect of the basis P̃ is defined as

δ (P̃)
4
=

1
|L |

K

∏
k=1

‖p̃k‖2, (7)

where p̃k = Pbk denotes the kth column of P̃. Since LR aims at
finding short lattice basis vectors p̃k, the orthogonality defect δ (P̃)
will be smaller than the orthogonality defect δ (P) of the original
basis P. Hence, P̃ is a better basis in that it is more orthogonal
than P. This implies that any conventional (approximate) vector
perturbation algorithm operating on the transformed basis P̃ will
in general lead either to better performance results or to a reduced
complexity as compared to operating on the original basis P. In
particular, the cost function in (6) can equivalently be written as

‖P(d+ τ z)‖2 = ‖PBB−1 (d+ τ z)‖2

= ‖P̃(B−1d+ τ B−1z)‖2 = ‖P̃(d̃+ τ z̃)‖2,

where
d̃ = B−1d, z̃ = B−1z. (8)

Due to the unimodularity of B, z̃ ∈ CZ
K . Hence, solving (6) is

equivalent to first solving

z̃opt = arg min
z̃∈CZ

K

{
‖P̃(d̃+ τ z̃)‖2

}
, (9)

and then calculating
zopt = Bz̃opt. (10)

In general, (9) can be solved much more efficiently than (6) since P̃
is more orthogonal than P.

Similarly, one can apply any approximation of optimum vector
perturbation (ZF, THP, etc.) to (9) and then obtain an approximate
solution of (6) via the right-hand side of (8). This results in better
performance than that obtained by applying an approximate vector
perturbation algorithm directly to the original problem (8). In fact
any approximate vector perturbation approach applied after LLL-
LR-preprocessing can indeed achieve full diversity (this is due to
certain properties of an LLL reduced basis) [7]. We note that the
LLL algorithm has a computational complexity that is polynomial
in K [6, 9].

As an example, LR-assisted ZF precoding is performed by re-
placing the lattice basis P̃ in (9) with the identity matrix4:

z̃ZF,LR = arg min
z̃∈CZ

K
‖d̃+ τ z̃‖2 =

⌊
−1

τ
d̃

⌉

4Here, b·e denotes component-wise rounding to complex-valued inte-
gers.
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and thus

zZF,LR = B

⌊
−1

τ
d̃

⌉
. (11)

Note that without LR preprocessing, replacing P in (6) with I re-
sults in ẑZF = 0 since all elements of d/τ have real and imaginary
parts less than 1/2. An equivalent approach can be used for LR-
assisted THP [5].

2. BASIC IDEA OF IR-LR

In this section, we present the basic idea behind using integer re-
lations (IR) for the LR-preprocessing stage in vector perturbation.
The proposed IR-LR algorithm (described in full detail in Section 3)
is much simpler and computationally more efficient than LLL-LR.

In what follows, we will use the singular value decomposition
(SVD) H = UΣVH of the channel matrix H [14]. Here, the diag-
onal matrix Σ contains the singular values σk, k = 1, . . . ,K, and the
columns of the unitary matrices U = [u1 . . .uK ] and V are the left
and right singular vectors, respectively. We assume that the σk are
sorted in nonincreasing order. The condition number of the channel
is given by cH = σ1

σK
≥ 1. Channels that are poorly conditioned (i.e.,

cH is large) are considered bad.

2.1 LR for Bad Channels
As discussed in Section 1.3, LR aims at finding a unimodular matrix
B such that the lengths of the transformed lattice basis vectors are
small. For the original basis P = [p1 . . .pK ] we have

‖pk‖2 =
∥∥HH(HHH)−1ek

∥∥2
= eH

k
(
HHH)−1ek

= eH
k UΣ−2UHek =

K

∑
j=1

1
σ2

j
|uH

j ek|2. (12)

Here, ek denotes the kth unit vector. Obviously, ‖pk‖ will be domi-
nated by the terms in (12) corresponding to small singular values. If
the channel is poorly conditioned, one or more singular values are
very small and ‖pk‖ will be very large for some k. Thus, the corre-
sponding orthogonality defect δ (P) (cf. (7)) will also be large and
conventional approximate vector perturbation techniques operating
on P will perform poorly (see [15] for the impact of poorly condi-
tioned channel realizations on the performance of data detection).

Similar to (12), for a reduced basis P̃ = [p̃1 . . . p̃K ] with p̃k =
Pbk we obtain

‖p̃k‖2 =
∥∥HH(HHH)−1bk

∥∥2
=

K

∑
j=1

1
σ2

j
|uH

j bk|2.

Obviously, small ‖p̃k‖2 (and thus also small δ (P̃)) requires that the
integer vectors bk be as collinear as possible to left singular vec-
tors u j for which σ j is large. This is in fact achieved by LLL-LR
and reduces the degrading influence of bad channels on approxi-
mate vector perturbation techniques dramatically. If the channel is
well-behaved (close to orthogonal, small cH) all approximate vec-
tor perturbation schemes will perform well even without LR. Thus,
LR has to take particular care of poorly conditioned channels.

As verified and discussed in [1, 15], iid Gaussian channels with
large condition number usually have just a single small singular
value, which is primarily responsible for the occurrence of long ba-
sis vectors in P. Motivated by this fact, we propose to perform
LR especially taylored to poorly conditioned channels with a single
small singular value. In view of (12), our task is thus to find a uni-
modular transformation matrix B with integer columns bk that are
sufficiently orthogonal to uK .

2.2 IRs and Diophantine Approximations
In number theory, finding integer vectors bk that are (almost) or-
thogonal to a given vector uK is known as the (approximate) IR

problem [8, 9]. In general, smaller |uH
K bk| requires longer vectors

bk. Hence, when searching for approximate IRs one aims at achiev-
ing small |uH

K bk| using vectors bk that are as short as possible.
In our setting, the channel determines which of the two targets

(small |uH
K bk| and small ‖bk‖) is more important. In particular, the

smaller σK is as compared to the other singular values, the more
important it is to achieve small values of |uH

K bk|. The resulting
increase in the lengths ‖bk‖ leads to an increase of |uH

j bk|, j <

K, (cf. (12)). However, for bad channels 1/σ j � 1/σK , j < K,
and hence this increase will have negligible influence on ‖p̃k‖2 as
compared to the decrease of |uH

K bk|.
The dual problem to approximate IRs is known as simultaneous

Diophantine approximation [8, 9]. Here, the goal is finding short
integer vectors that are sufficiently collinear with a given straight
line (e.g. the straight line given by α uK , α ∈ C). Good simulta-
neous Diophantine approximations and/or good approximate IRs
can be found using basically the same algorithms. In fact, the
original applications of the LLL algorithm were finding simulta-
neous Diophantine approximations and approximate IRs [6]. Sev-
eral advanced algorithms for the IR problem have been developed
recently, including the so-called PSLQ algorithm [16] and the LLL-
based HSLJ algorithm, e.g. [8]. These algorithms (including LLL)
are very attractive in that they offer guarantees regarding execution
time and approximation quality. However, they are computation-
ally quite intensive, which is in contrast to our goal of developing
low-cost LR techniques. Thus, we focus on a extremely simple and
very efficient algorithm proposed by Brun (see [8] for a discussion
of Brun’s algorithm in the context of simultaneous Diophantine ap-
proximations).

3. IR-LR: THE ALGORITHM

Before discussing IR-LR in more detail, we state Brun’s algorithm
(adapted to the complex-valued case) for finding good approximate
IRs for uK (see [8] and references therein).

3.1 Brun’s Algorithm
Set B = I and µµµ = uK , and repeat the following steps until a suit-
able termination condition (see Section 3.2) is satisfied:
1. Find the indices s and t of the two largest |µk|, k = 1, . . . ,K:

s = arg max
k∈{1,...,K}

|µk|, t = arg max
k∈{1,...,K}/{s}

|µk|.

2. Calculate

β =

⌊
µs

µt

⌉
. (13)

3. Perform the updates

B =
[
b1 . . .bs−1 b′

s bs+1 . . .bK
]
, (14)

µµµ = (µ1 . . .µs−1 µ ′
s µs+1 . . .µK)T ,

with
µ ′

s = µs −β µt , b′
s = bs −β ∗bt . (15)

Steps 1–3 correspond to one iteration of Brun’s algorithm. It can be
easily shown via induction that each iteration preserves the property
µk = bH

k uK (equivalently, µµµ = BHuK). We next demonstrate that
Brun’s algorithm results in a monotonic decrease of

|µs| = |uH
K bs| = max

k∈{1,...,K}
|uH

K bk|.

To this end, we rewrite (13) as

β =

⌊
µs

µt

⌉
=

µs

µt
+∆, with |∆| ≤ 1√

2
.
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Figure 1: Behaviour of Brun’s algorithm: average |µk|2 and ‖bk‖2

versus the number of iterations.

Inserting this in the µ-update in (15) results in

|µ ′
s| = |µs −β µt | =

∣∣∣∣µs −
(

µs

µt
+∆

)
µt

∣∣∣∣ = |∆ µt | ≤
1√
2
|µt |.

Since by definition |µt | ≤ |µs|, we finally obtain

|µ ′
s| ≤

1√
2
|µs|.

Thus, at every iteration the largest component of bk, k = 1, . . . ,K, in
the direction of uK is decreased by at least 1/

√
2. Hence, the inner

products |uH
K bk|, k = 1, . . . ,K, are made arbitrarily small. On the

other hand, a decrease in |µs| will in general result in an increase of
the length ‖bs‖ of the corresponding integer vector. This is illus-
trated in Fig. 1, which shows the average5 of |µk|2 and ‖bk‖2 versus
the number of iterations in Brun’s algorithm for the case K = 4.

3.2 LR via Brun’s Algorithm
We next show how Brun’s algorithm can be used to perform efficient
LR for the lattice L (P) generated by the precoding matrix P.

The matrix B in Brun’s algorithm can be shown to constitute
a basis for CZ

K in each iteration, which implies that it is unimod-
ular. Thus, P̃ = PB is a basis for L (P). Since our goal is to
find a reduced basis P̃ for L (P), i.e., the length of the lattice basis
vectors p̃k = Pbk, k = 1, . . . ,K, or equivalently the orthogonality
defect of P̃ (cf. (7)) should be as small as possible, we have to termi-
nate Brun’s algorithm properly. We thus propose to repeat Brun’s
iteration (Steps 1-3) as long as the orthogonality defect δ (P̃) of
P̃ = PB is decreasing. Equivalently, the algorithm will be termi-
nated if

‖Pb′
s‖ > ‖Pbs‖. (16)

After termination, the transformation matrix B is used to perform
LR-assisted approximate vector perturbation (cf. Section 1.3).

3.3 Implementation Aspects
To perform IR-LR via Brun’s algorithm, we need to determine the
left singular vector uK of H corresponding to the smallest sin-
gular value. Note that uK is also the eigenvector of the inverse
Gram-matrix (HHH)−1 associated to its largest eigenvalue. For
the case in which we are interested (poorly-conditioned channels

5The averaging was performed over k = 1, . . . ,K and 1000 randomly
picked vectors uK .

with a single small singular), (HHH)−1 will have a single very
large eigenvalue and can thus be approximated by a rank-one ma-
trix, (HHH)−1 ≈ 1

σ 2
K
uKuH

K . Hence, each column of (HHH)−1

is approximately a scaled version of uK . Since such a scaling is
irrelevant for IR-LR, we replace uK with an arbitrary column of
(HHH)−1, i.e. Brun’s algorithm is initialized as µµµ = (HHH)−1ek
with arbitrary k. Note that (HHH)−1 has already been calculated
for the precoding matrix P.

IR-LR-assisted vector perturbation further requires the inverse
of B (cf. (8)). This inverse can be computed directly within Brun’s
algorithm by using a matrix C = [c1 . . .cK ]T initialized as C = I.
Within each iteration, one performs the additional row update

C = [c1 . . .ct−1 c′t ct+1 . . .cK ]T

with
c′t = ct +β ∗ cs. (17)

It is easily verified that CB = I at every iteration.
Finally, the reduced basis P̃ can itself be calculated efficiently

during the Brun iterations via the initialization P̃ = P and the up-
date

P̃ = [p̃1 . . . p̃s−1 p̃′
s p̃s+1 . . . p̃K ]T

with (cf. (15))

p̃′
s = Pb′

s = Pbs −β ∗Pbt = p̃s −β ∗ p̃t , (18)

Note that (18) allows efficient evaluation of the termination condi-
tion in (16).

The computational complexity of one iteration of the IR-LR
algorithm is governed by the scalar division with quantization in
(13), the scalar update for µs (15), three vector updates (cf. (15),
(17), (18)), and the evaluation of the termination condition (16).
Thus, one iteration requires just one scalar division and roughly 4K
multiplications and additions. In constrast to the LLL algorithm no
costly initialization has to be performed and we also observed that
the number of iterations required by IR-LR is typically much less
than the number of iterations required by the LLL algorithm. IR-LR
is thus significantly less complex than LLL-LR (this will be verified
numerically in Section 4).

4. SIMULATION RESULTS

We will now assess the symbol-error rate (SER) performance and
computational complexity of our method by means of numerical
simulations using a 4-QAM symbol alphabet and iid Gaussian chan-
nels. We compared ZF precoding and THP (unsorted) without LR,
with LLL-LR, and with the proposed IR-LR. As a performance
benchmark, we also considered exact solution of (6) via sphere en-
coding (SE).

4.1 SER Performance
Fig. 2(a) and Fig. 2(b) show the SER versus SNR=1/σ 2

w perfor-
mance obtained using the various precoding schemes for M = K = 4
and M = K = 8, respectively. These results lead to the following
conclusions:
• IR-LR significantly improves the performance of conventional

ZF precoding and THP. While ZF and THP without LR just
achieve diversity one (cf. [1]), IR-LR assisted ZF and THP
achieve a large part of the available diversity. The performance
improvements at SER = 10−2 are about 8dB for ZF and 5dB
for THP, both for M = K = 4 and M = K = 8.

• Since the IR-LR algorithm performs LR using just one singular
vector, the IR-LR assisted schemes suffer from a performance
loss compared to the LLL-LR assisted versions (which achieve
full diversity [7]). For the case M = K = 4, the SNR loss at
SER = 10−2 is about 3dB for ZF and 1dB for THP.

• IR-LR assisted THP looses only 2dB compared to the optimal
SE performance for M = K = 4 and only 3dB for M = K = 8
(again at SER = 10−2).
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Figure 2: SER versus SNR achieved for (a) M = K = 4, (b) M =
K = 8, using ZF and THP without LR, with LLL-LR (denoted LLL-
ZF and LLL-THP), and with the proposed IR-LR (denoted IR-ZF
and IR-THP). Optimum vector perturbation (denoted SE) is shown
as a benchmark.

4.2 Computational Complexity

For a coarse comparison of the computational complexity of IR-
LR and LLL-LR, we measured MATLAB kflops measured within
1000 channel realizations. Only the computation of the unimod-
ular transformation matrices was considered since all other steps
are identical for the two methods. The number of iterations, and
thus the computational complexity, strongly depends on the indi-
vidual channel realization. For the M = K = 8 case, the LLL-LR
algorithm required up to 48.3 kflops with an average of 24 kflops.
In contrast, with the IR-LR algorithm on average only 2 kflops and
at most 8.6 kflops were required. Thus, the IR-LR algorithm is an
order of magnitude more efficient than LLL-LR, which amounts
roughly to 90% of computational savings. Similar results were ob-
tained for the M = K = 4 case.

5. CONCLUSIONS

In this paper, we studied lattice reduction (LR) assisted approximate
vector perturbation techniques for multi-antenna broadcast precod-
ing. Previously, LR was performed almost exclusively using the
LLL algorithm. We proposed a novel integer relation (IR) based
LR algorithm that is based on Brun’s algorithm. This was moti-
vated by carefully examining the case of poorly conditioned chan-
nel realizations, for which LR is most important. The proposed
IR-LR algorithm is extremely simple and essentially performs LR
by determining approximate IRs for the singular vector of the chan-
nel corresponding to the smallest singular value. Simulation re-

sults demonstrated that a large part of the available diversity can
be achieved with a computational complexity that is significantly
smaller than that of LLL-LR.
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