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Orthogonal Frequency Division Multiplexing (OFDM) is
one of the most promising techniques for high-speed trans-
mission over severe multipath fading channel. However,
once delays of secondary multipath rays are greater than
the guard interval duration, intersymbol interference causes
a severe degradation in the transmission performance. To
solve this problem, a multiple antenna array can be used at
the receiver, not only for spectral efficiency or gain enhance-
ment, but also for interference suppression. In this paper
we analyze the asymptotical behavior of two beamforming
algorithms, a low complexity pre-FFT method and a more
efficient post-FFT system. The optimum weight set for beam-
formers is derived on the basis of the minimum mean square
error (MMSE) criterion and the Wiener solution is studied
under different working conditions.

1. INTRODUCTION

Multipath fading is due to the presence of many reflected sig-
nals, which arrive at the receiver at different times. These
echoes cause ISI and combined can produce fading. This ef-
fect is more and more severe as the distance range or the data
rate of the system increase. Orthogonal Frequency Division
Multiplexing (OFDM )[1] is a special form of MultiCarrier
Modulations that allows reliable transmission over a channel
with a relatively large maximum delay. However when the
delay of the arriving signals is longer than the guard interval,
ISI causes severe degradations in the system performance.
To solve this problem, a multiple antenna array can be used
at the receiver, not only for spectral efficiency or gain en-
hancement, but also for interference suppression.
In an OFDM system, the beamforming algorithm can be ap-
plied in either time domain or frequency domain. Time do-
main array processing has lower complexity, because only
one FFT is required. In frequency domain a processing of
the individual subcarriers is provided, generally with better
results, but always with higher complexity. Time-domain
beamforming methods are normally called pre-FFT [2][3]
whereas frequency-domain algorithms are called post-FFT
[4][5].
In this paper we analyze two beamforming algorithms, a low
complexity pre-FFT and a more efficient post-FFT, by deter-
mining the optimum weights that satisfy the Minimum Mean
Square Error (MMSE) criterion. This set is usually named
Wiener solution and represents the weights to which differ-
ent classes of adaptive algorithms asymptotically converge.

The detailed comparison of the two methods, provided in
this paper, can represent a key element in the design phase
of an OFDM receiver equipped with a smart antenna, espe-
cially in the cases when it is a crucial problem to assess the
best trade-off between complexity and performance. In lit-
erature only some partial results in terms of algorithm com-
parison are available. For example in [6] performance and
computational complexity are studied, but only for the case
of multipath delay within the guard interval; in [7] the analy-
sis has been performed in different work conditions, in terms
of channel model as well as applied algorithms.
An important result of this study is the proof that the two
methods are equivalent when the multipath delay is greater
than the cyclic prefix of the OFDM frame. For multipath
delay lower than the cyclic prefix the pre-FFT tends to elim-
inate the multipath, while the post-FFT tends to combine the
line-of-sight with its multipath rays. Therefore both meth-
ods are able to cope with the multipath problem, however the
post-FFT exhibits better performance because the transmit-
ted information is retrieved from each received ray. How-
ever we can conclude that the pre-FFT should represent the
best solution in most cases of interest. In fact the cost of a
smart antenna is worthwhile only in some critical applica-
tions, when multipath with long delay is expected to degrade
the OFDM receiver performance, while the OFDM itself is
able to directly manage shorter delays without the need of
a smart antenna. On the other hand, for a very robust re-
ceiver, with a smart antenna able to perform the best oper-
ation (multipath cancellation and/or equalization) according
to the delay amount, post-FFT should be preferred, even if
much more computationally complex.
This paper is organized as follows: Section 2 recalls the prin-
ciples of OFDM and describes the adopted channel model,
introducing the basic notation used in the article; Section 3
introduces pre and post-FFT systems and Section 4 analyzes
the Wiener filter solution. In Section 5 performance in term
of Bit Error Rate (BER) is analyzed and finally, Section 6
concludes this paper.

2. SIGNAL AND CHANNEL MODEL

In this Section we briefly introduce the expressions of the
signals we are dealing with in the considered system. The
base-band channel model is also described. Let us consider
a general OFDM system. The modulation parameters are:
• N, the number of data samples in the OFDM frame, with-
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Figure 1: OFDM transmitter functional scheme

out the cyclic prefix;
• Ng, the number of samples of the cyclic prefix;
• NT = N+Ng;
• NQAM, the number of bits for each symbol in the

QAM/PSK constellation used to modulate the OFDM
frame.

At the transmitter side the input binary data are serial-to-
parallel converted and mapped into the considered constel-
lation. The obtainedN samples are IFFT transformed and
a block of N samples, called OFDM symbol, is generated
(Figure 1). The generickth OFDM symbol can be written as:

sk[n] =
1√
N

N−1

∑
i=0

Sk,i exp{ j2π in/N} 0≤ n≤ N−1

wheren denotes the sample within the symbolk. Then the
cyclic prefix is attached and the symbol is transmitted. The
channel is considered affected by Additive White Gaussian
Noise (AWGN) and multipath. The effect of multipath can
be modelled by means of a linear system, whose impulse re-
sponse can be written as

h(t) = δ (t)+
M

∑
i=1

αiδ (t− τi)

whereM is the number of multipaths,τi is the delay of arrival
of thei-th path andαi its complex attenuation with respect to
the Line Of Sight (LOS).
In this work a receiver equipped with a Uniform Linear Ar-
ray (ULA) is considered; this kind of multiple antenna con-
sists in an array ofL omnidirectional sensors located along
a straight line andλ/2 spaced, withλ the wavelength of the
signal carrier. The effect of a ULA can be modeled [8] mul-
tiplying each received ray by its correspondent steering vec-
tor that takes into account the DoA (Direction of Arrival) of
each multipath. For example, if a ray arrives with an an-
gle θ , the signal carried by this ray will be multiplied by
exp{π jhsinθ}, with h = 0, ...,L−1. The signal received by
the ULA can be represented by means of aN× L matrix,
the cyclic prefix being discarded by the first stages of the re-
ceiver:

X = a(θd)sT +
M

∑
i=1

a(θi)rT
i +M

wheres and ri are the column vectors containing samples
carried by the direct and the reflected rays,θd andθi are their
respective angles of arrival anda(·) is the column steering
vector:

a(θ) = [1 exp{ jπ sin(θ)} ... exp{ jπ(L−1)sin(θ)}]T

The additive noise (AWGN) is represented byM. Each el-
ementary sensor receives independent noise samples and all
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elements ofM are independent gaussian random variables.
Thehth row of the matrixX contains theN samples received
by thehth sensor, indicated asxk,h, wherek is the OFDM
frame.
After the down-conversion and the analog to digital stage,
which is not considered in this paper, the received signals
are translated into the frequency domain using at least one
FFT - it depends on the smart antenna architecture - and then
processed before decision. Frequency-domain signals will
be indicated hereafter by ã· over the correspondent time-
symbol. For instance the matrix̃X refers to the frequency-
domain translation of the matrixX and has ashth row
x̃k,h = FFT

{
xk,h

}
.

3. PRE AND POST-FFT BEAMFORMING

In Figure 2 a general pre-FFT scheme is presented: each
replica of the received signalxk,h[n] is multiplied by the con-
jugate of a complex weightwk,h and then summed up to form
the spatially filtered signalyk[n]. Thek index indicates the
OFDM frame number, whilen is the time index. It is impor-
tant to notice that weightswk,h do not depend onn but only
onk: this means that samples belonging to the OFDM frame
are multiplied by the same weightwk,h; yk[n] is a pondered
mean of the different replicas ofxk,h[n]. This kind of beam-
forming hasL freedom degrees and it does not exploit the
possibility of a time filtering. In Figure 3 a general post-FFT
scheme is presented: this method requiresL FFT-blocks, one
for each antenna, and only after the transposition of the sig-
nals in the frequency domain the beamforming is applied. In
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this case each frequency sample is multiplied by a different
weightw̃k,h[ j], where j is the frequency index.
In both schemes the complex weightsw are determined by
minimizing the Mean Square Error (MSE) that has differ-
ent expressions for pre and post-fft beamforming. In order
to evaluate the MSE a reference signal is needed: it can be
provided by a periodically transmitted preamble [5], or by
pilot tones embedded into the OFDM frame. In this paper
we consider the case whereJ pilot tones are embedded into
the OFDM frame and used to form the error signal.

3.1 Pre-FFT beamforming

Let be:
• s, the vector of dimensionsJ×1, with J the number of

pilot tones, containing the reference signal;
• wk, theL×1 vector containing the complex gains;
• X̃k, theL×J matrix containing in thehth row the values,

received by thehth antenna, corresponding to pilot tones.
Using these notations, the MSE can be written as:

MSE= E
{∥∥sT −wH

k X̃k
∥∥2

}
(1)

The Wiener solution is the weight setwk that minimizes
Equation (1) and that nullifies the MSE gradient that is given
by

∇wkMSE= 2E
{
X̃k

(
X̃H

k wk− s∗
)}

(2)

UsuallyX̃k is not available, since only one FFT is performed,
and a different strategy has to be adopted. In particular it is
possible to apply the Parseval equality, which, transposing
the error signalX̃H

k wk− s∗ in the time domain, allows the
utilization ofXk instead ofX̃k [9].

3.2 Post FFT beamforming

In a post-FFT scheme, the OFDM replicas are recovered by
the different antennas and transposed in the frequency do-
main by an FFT at each sensor. Then each sample is mul-
tiplied by a complex weight̃wk,h[ j] and combined to form
ỹk[ j]. In the following the indexesk will be omitted to allow
a more legible reading.
Let be:
• s: the reference signal of dimensionsJ×1;
• bj = [0,0, ...,1, ...,0]T : a base vector with only a not-null

element in positionj;
• x̃ j : the different replicas of thejth pilot tone collected

by the different sensors and belonging to thekth OFDM
frame;

• w̃ j : the complex vector containing weights correspond-
ing to thex̃ j received pilot vector.

In this case the MSE is given by:

MSE= E





∥∥∥∥∥s−
J

∑
j=1

bj

(
w̃H

j · x̃ j
)
∥∥∥∥∥

2


 (3)

Developing (3) we obtain:

MSE= ‖s‖2−
J

∑
j=1

E
{[

s∗j
(
w̃H

j · x̃ j
)]}−

−
J

∑
j=1

E
{[(

x̃H
j · w̃ j

)
sj

]}
+

J

∑
j=1

E
{|w̃H

j · x̃ j |2
}

Thesj term is thej-th element of the reference vectors, ob-
tained by the scalar productbj

H · s.
Using the generalized derivative rules we find the expression
of the MSE gradient:

∇w̃MSE=
[
∇w̃1

MSE, ...,∇w̃JMSE
]

with
∇w̃ j MSE= 2E

{
x̃ j

(
x̃H

j w̃ j −s∗j
)}

(4)

Observing Equation (4) it is easy to notice that:
• the expression of∇w̃ j MSE involves only the replicas of

the j-th pilot: the information carried by the other pilot
tones is not used;

• Equation (4) is very close to the expression of the gra-
dient in the pre-FFT case (see eq.(2)): the beamformer
minimizes the MSE minimizing separately itsJ compo-
nents. This kind of beamforming can be considered as
a bank of parallel pre-FFT beamformers onJ different
sub-bands.

4. THE WIENER SOLUTION

In this Section we analyze the asymptotical behavior of
both beamforming schemes, determining the Wiener’s filter
weights that are solution of
•

E
[
2X̃k

(
X̃H

k wk− s∗
)]

= 0 (5)

in the pre-FFT case;
•

E
[
2x̃ j

(
x̃H

j w̃ j −s∗j
)]

= 0 for j = 1, ...,J (6)

in the post-FFT case.
Since Equations (5) and (6) are very similar, the two beam-
forming schemes have common properties: in particular it is
possible to show that bothwk andw̃ j are a linear combina-
tion of the steering vectors relative to the direct ray and to the
reflected ones, such that all the noise components orthogonal
to the steering vectors are eliminated. Such a condition can
be expressed as

w = ωda(θd)+
M

∑
i=1

ωia(θi) (7)

In the rest of the paper, the absence of index and of·̃ indi-
cates that the considered Equation refers to both pre and post-
FFT cases. Furthermore coefficientsωd and{ωi}M

i=1 depend
only on the correlation matrix of direct and reflected rays, on
the correlation matrix of the steering vectors and on the noise
variance, and in particular they are solution of the system:

[
ΓS+σ2I

]
Ω = Γ1 (8)

whereΓ is the direct-reflected rays correlation matrix,S is
the steering vectors correlation matrix or spatial signature,
σ2 the noise variance,I the identity matrix of sizeM +1, Ω
the column vector containingωd and{ωi}M

i=1 andΓ1 the first
column ofΓ. More in detailΓ is given by:
•

Γ =
1
J




E[sTs∗] E[sTr∗1] · · · E[sTr∗M]
E[rT

1 s∗] E[rT
1 r∗1] · · · E[rT

1 r∗M]
· · · · · · · · · · · ·

E[rT
Ms∗] E[rT

Mr∗1] · · · E[rT
Mr∗M]



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in the pre-FFT scheme; theri are column vectors con-
taining theJ pilot tones extracted from theith reflected
ray and obtained as explained in Figure 4.

•

Γ j =




E[|sj |2] E[sT
j r∗1, j ] · · · E[sT

j r∗M, j ]
E[rT

1, js
∗
j ] E[|r1, j |2] · · · E[rT

1, j r
∗
M, j ]

· · · · · · · · · · · ·
E[rT

M, js
∗
j ] E[rT

M, j r
∗
1, j ] · · · E[|rM, j |2]




in the post-FFT scheme. For a post-FFT beamforming
a system like the one described in (8) must be applied,
independently, for each pilot tone. For this reason a dif-
ferentΓ j must be determined for each pilot tone. The
variabler i, j is the jth pilot tone recovered by theith re-
flected ray.

The spatial signature matrixS is a definite positive hermitian
matrix, given by

S =




aH(θd)
aH(θ1)

...
aH(θM)


 [a(θd)a(θ1) · · ·a(θM)]

4.1 Array factor

An important parameter normally taken into account in order
to evaluate the behavior of a smart antenna is the array factor,
i.e. the gain offered by the antenna to a signal coming from
the directionθ . The array factor is given by

F(θ) = wHa(θ) (9)

For a post-FFT beamforming an array factor is provided for
each pilot tone, that means that the smart antenna offers dif-
ferent gains to different frequencies providing also a fre-
quency domain filtering. Substituting expression (7) in (9)
we have:

F(θ) = ω∗
da

H(θd)a(θ)+
M

∑
i=1

ω∗
i a

H(θi)a(θ) (10)

By using Equation (10) it is possible to evaluate the gain of
the smart antenna correspondent to direct and reflected rays
and it is easy to show that

F =




F(θd)
F(θ1)

...
F(θM)


 = S∗




ω∗
d

ω∗
1
...

ω∗
M


 = S∗Ω∗

4.2 Low noise conditions

If the noise powerσ2 is very reduced, system (8) can be ap-
proximated by

ΓSΩ = Γ1

that corresponds to
ΓF∗ = Γ1

As the first column of the matrix coefficientΓ is equal to the
right-hand side vector, it is easy to verify, for example using
the Kramer’s rule, that:

F =




1
0
...
0


 (11)

This means that in low power noise conditions the beam-
former completely eliminates the reflected rays. This con-
dition is true asM < L, as supposed in the current scenario.
Notice that condition (11) does not depend on the nature of
Γ and it is true for both pre and post-FFT methods, so that, in
low noise conditions, both methods eliminate reflected rays,
the post-FFT method does not perform any frequency filter-
ing and thew̃ j are equal for all pilot tones.

4.3 Delay impact

The behavior of the post-FFT methods is strongly influenced
by the delays of reflected rays. Consider a single reflected
ray: when its delay is within the guard interval the sam-
ples carried by this signal belong all to the same OFDM
frame, and are, thanks to the OFDM frame structure, cycli-
cally shifted. This cyclic shift is transposed by the FFT oper-
ation in a modulation by a complex exponential, dependent
on the samples position in the frequency domain. Since the
post-FFT method performs separate beamforming on each
pilot tone it is able to recover attenuation and modulation
caused by the reflected ray channel, bettering performance.
In this case, for the post-FFT methods, the matrixΓ jS is a
space-frequency estimation of the channel response for the
jth pilot tone and the weightsΩ j are obtained by equalizing
it with a MMSE criterion (the equalization is provided taking
into account noise components).
When the delay is greater than the cyclic prefix,Γ j cannot
provide an estimation of thejth pilot channel because of
inter-frame interference and the method perceives reflected
rays as interfering that must be cancelled. As pre-FFT is not
allowed to accede to frequency information, it always per-
ceives reflected rays as interfering and it always eliminates
them. For these reasons, when the delays are greater then
the cyclic prefix, pre-FFT and post-FFT are likely to behave
in the same manner, cancelling reflected rays: this statement
has been proved by simulations.

5. BER PERFORMANCE

Figure 5 shows the bit error rate (BER) performance versus
the ratio of the energy per bit received by a single sensor

to the white noise power spectral density
(

Eb
N0

)
in different

working conditions. The system parameters are the ones re-
ported in table 1. The case of 1 reflected ray is analyzed: the
LOS signal arrives from the angleθ = 60o and the secondary
ray fromθ = 30o. The multipath attenuation isα1 = 0.5. It
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Figure 5: BER performance vs.Eb/N0 under different work-
ing conditions, 8 antennas

Modulation scheme 4QAM/OFDM
No of data subcarriers 48
No of pilot subcarriers 4
No of zero subcarriers 12

FFT/IFFT size 64point
Guard interval 16 samples

Antenna array
8-element linear array omni-
directional antenna as elemen-
tary sensor

Element spacing Half wavelength

Table 1: System parameters

is possible to notice that pre and post-FFT algorithms lead to
the same results in absence of interfering and when the mul-
tipath delay is greater then the cyclic prefix. The pre-FFT
behavior does not depend on the delay and the performance
is the same even when the delay is within the guard inter-
val; on the contrary, the post-FFT is able to retrieve useful
power from the reflected ray bettering performance. In this
case the BER curve results better than the one obtained in
absence of reflected ray, this because the

(
Eb
N0

)
on the ab-

scissa of Figure 5 only refers to the direct ray power. By the
way all the curves are distant from the one labeled “Maxi-
mum theoretical”, which is obtained when two rays arrive at
the same instant, from the same direction and so their powers
are coherently summed.

6. CONCLUSION

In this paper a pre-FFT and a post-FFT beamformer for
OFDM communications have been proposed and analyzed
considering the Wiener’s solution. The analysis has clar-
ified the behavior of both methods, showing their equiva-
lence when the delays of reflected rays are greater than the
guard interval duration. In such a case inter-frame interfer-
ence corrupts both data and pilot carriers so that the post-
FFT method perceives reflected rays as interfering and can-
cels them. When delays are within the cyclic prefix duration,
the post-FFT is able to recover information carried by re-

flected rays, improving performances. The pre-FFT method
always cancels reflected rays. For this reason in a scenario
with a reduced number of reflected rays, i.e. when their num-
ber is inferior to the number of sensors, the pre-FFT method
seems to be preferable for its reduced complexity, payed with
a performance degradation when delays are within the cyclic
prefix.
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