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ABSTRACT audio signal. A number of distance measures have been in-

This paper presents a speaker change detection svstem fvestigated such as the symmetric Kullback-Leibler distanc
paper p P 9 Y . Parametric models corrected for finite samples usieg th

broadcast news segmentation based on a vector quantiz ayesian Information Criterion (BIC) are also widely used.

uang and Hansen [3] argued that BIC-based segmentation

orks well for longer segments, while BIC approach with a

system uses mel frequency cepstral coefficients and chan : g : ;
d)(/etection is done us(?ng th)(/e Vg distortion measure and i§' - PlocessSIng step that_use?:%tstatlsuc {0 identify poten-
lal changes, was superior for short segments.

evaluated against two other statistics, namely the symmet- Nakagawa and Mori [4] compare different methods for

ric Kullback-Leibler (KL2) distance and the so-called ‘div : . : . o
gence shape distan(ce’. )First level alarms are further wste change detection, including BIC, Generalized Likelihood

using the VQ distortion. We find that the false alarm rate car?ﬁ%o’.rahn: c%vmecécr)irsgﬁair?gizcaattlgg t(k\ll a?%ht;as/%j r?]':,:ﬁgtéoirsl |;nueae-_
be reduced without significant losses in the detection of cor ) P P

rect changes. We furthermore evaluate the generalizgloffit rior to the other methods.

: d A simplification of the Kullback-Leibler distance, the so-
the approach by testing the complete system on an indepen:- : : ' .
dent set of broadcasts, including a channel not presentdn '[h(:a"‘]?d dlverglence s_hapl)e distance (DSrE)), was preselntéad in
training set. [1] for a real-time implementation. The system includes

a method for removing false positives using "lightweight"
GMM speaker models.
1. INTRODUCTION Model-based methods are based on recognizing specific

The increasing amount of audio data available via the Inl_<nown audio objects, e.g., speakers, and classify the audio

ternet emphasizes the need for automatic sound indexin Ffe%m a:;:co_rﬂmﬁly. The rbnodeg-basebd ap%rogt_:g hashbgen
Broadcast news and other podcasts often include multipl omdme wit dt € m(ejtnc- ased to obtain hybrid-methods
speakers in widely different environments. Efficient index at do not need prior data [5][6]: . .

ing of such audio data will have many applications in search, QUr basic sound representation is the mel-weighted cep-
and information retrieval. Segmentation of sound streams iStr"?1I coefficients (MFCC), they have shown useful in a wide
a significant challenge including segmentation of seqwﬁencé/a”ety of audio application including speech recognifion
of music and different speakers. Locating parts that cantaiSPE2Ker recognition [7] and music modelling, see e.g., [8].
the same speaker in the same environment can indicate stqry SINCe We are interested in segmenting news with an un-
boundaries and may be used to improve automatic speetROWN group of speakers we limit our investigation to met-

recognition performance. Indexing based on speaker reco?pI basled methods. To improve the Fe.rforlmangzy\/er&voke a
nition is a possibility but is hampered by the prevalence of2/S€ @larm compensation step at relative low additionst.co

unknown speakers, thus we have chosen to investigate unsu-
pervised methods in this work in line with other recent sys- 2. DISTANCE MEASURES

tems, see e.g.,ll[l].dHere we are E\tereslteﬁ In sys;errt:s ﬁ\at Hetric based change detection is done by calculating a dis-
not too specialized to a given channel, hence, In DOt SYS3 e petween two successive windows. The distance indi-

"*ates the similarity between the two windows. Below we

the izsue of (gobustness]; I?\ partifular&/ve ShOVIV that a S¥Stege5ent three different distance measures that have been co
can be tuned to a set of channels and not only generalize {95arad in this context.

other broadcasts from these channels, but also to a channe
hot present in the training s_et. .1 Vector Quantization Distortion

Speaker change detection approaches can roughly be di- ) ) )
vided into three classes: Energy-based, metric-based ardde VQ approach is based on the generalized distance be-
model-based methods. Energy-based methods rely dWween two feature vectors sequences designdteahdl $.
thresholds on the audio signal energy, placing changes at’s The VQ-distortion measure VQD betweef &nd the
lence’ events. In broadcast news the audio production can @debook €, created by clustering of the features ifi,S
quite aggressive with only little if any silence betweenape is defined as:
ers, making this approach less attractive. T

Metric based methods basically measure the difference VQD(CA, SB) 1 Zargmin{d(CA,S[B)},

t=

between two consecutive frames that are shifted along the T 1<k<K
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where G denotes the k-th code-vector ifCL1 < k <K. SP

denotes the t-th feature vector in the sequerfel S t < T, || ||||| || || ||| | ||| || | | | | | | | ||| || ||||| | |
and d is theeuclideandistance function, see e.g., [4]. | aw
The codebook € is created by clustering the sequence o | Sn+aw |
of feature vectors’Sinto K clusters, thus each cluster-center
represents a code-vector. k_l_,| gls Grtlsaw |

S

2.2 Kullback-Leibler Distance | | |

The symmetric Kullback-Leibler distance (KL2) has been max
used in speaker identification systems and applied to speake Cbefore Ccatfter E
change detection [9]. The symmetric Kullback-Leibler dis- ==

tance between two audio segments represented by their fea-
ture vector sequence$ and 3 is defined as: Figure 1: lllustration of windows used in the metric caldida.

Speaker change-points are indicated with vertical dashed.IThe
figure assumes that a change is found at time,tand false alarm

KL2(SH,SB) = / [pa(x) — pa(x)]log pAEX; dx (1) compensation windows are shown at the bottom
x pe(x

Assuming that the feature sequenc@sa®d & are n-variate 3.2 Distance Metric Calculation

Gaussian distributed ap~ .4 (M, X4), P8 ~ 4 (Mg, X8),  The audio is divided into analysis windows of length &nd
€. with a shift of length 4, see figure 1. LetSdenote the se-
1 quence of feature vectors extracted from the analysis windo
p(x) = exp{ —Z(x— y)Tzfl(x — y)} with endtime §. Then, 8 and S$t'aw are two succeeding and
2 non-overlapping analysis windows.
o ) ) 2 For each feature vector sequenceacodebook Cis
Combining equation (1) and (2) gives: created by clustering the vector sequence into K clusters us
1 ing the k-meansclustering algorithm. Convergence of the
By _ + _ 1 -1 k-meansalgorithm is sped up by exploiting the overlap of
KLZ(SA’S ) = 2Tr[(2A ¥8)(¥g" — ¥a )} + the analysis windows, which means that most samples are

1
(2mn/2|2|1/2

1 1 1 reused in subsequent analysis windows. The code-vectors

ETr[(EA +357)(Ha — HB) of C" are therefore computed using the code-vectors from
T C"'s as initial cluster centers. This makes theneansal-

(A —Hg) } gorithm converge faster and minimizes the distance between

two succeeding codebooks, resulting in less fluctuating dis
tortion measures.
The KL2 distance presented above is composed of two terms. The conventional VQ-algorithm computes the distortion
The last term depends on the means of the features which cameasure between two feature vector sequenéearl $
vary much depending on the environment [1]. Using onlyby computing VQQIC*,SP). By using the code-vectors of
the first term should remove this dependency, so that onlgB instead of the whole sequenc®, Setter results are ob-
@ called e dvergence anape disance (DSD). e tained. Thus, we use VQP=VQD(CY, ) as the V-

: istortion measure at time.t

1 The KL2Z, and DS, at time t, are given by KL3 =
DSD(S, SP) = éTr[(z:A —3)(Zg* — 2,;1)} KL2(S",S™!aw) and DSD, = DSD(S", S™law)

i 3.3 Change-Point Detection
In all of the three presented distance measures a greate,:] . : .
value means a greater difference in the two distributions. 1 N€ basic change-point detection evaluates the calculated

distance metric M at every time stepat A change-point

is found if My, is larger than a thresholdghand M, is the

3. SPEAKER CHANGE DETECTION local peak within T seconds. The intention of this baseline
spproach is to detect as many true change-points as possible

2.3 Divergence Shape Distance

Based upon the distance metric the change detection alg
rithm determines whether or not a speaker change occurre

Our algorithm works in two steps. The first step is the
change-point detection part where candidate change$oint 4 k515 Alarm Compensation

are found. The second step is the false alarm compensation ) . . )
step. When running the speaker change-point detection algorithm

it is necessary to keep the analysis window relatively sihort
order to be able to detect short speaker turns. The short seg-
ments may lack data to make fully reliable segment models,
MFCCs are chosen as the features for this work. The calcwhich consequently may cause false alarms.

lation of these features is preceded by transforming thewaud  The baseline approach yields a number of potential
streams to a common sampling and bitrate. change-points, dividing the audio stream into speaker seg-

he false alarms that occur should then be rejected by our
alse alarm compensation described below.

3.1 Front-End Processing
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ments. These speaker segments can then be used to mi
more accurate models between the potential change-poin
Comparing these models can then accept or reject the pote
tial change-point.

The false alarm compensation algorithm simply works by
making two speaker VQ-codebooks, for the speaker segme
before the change-poinP&©and another after the change-
point C3fter,

The two VQ-distortion measures VQDPefore cafter)
and VQDCafter cbefore) gre computed and the mean
VQDyeanOf these two measures is found. The change-poir
is then accepted if the measure is larger than the thresho
thiac and rejected if it is below. We found that using the mear
of the two distortion measures is more stable than using ju
one of the measures. 0 2 3 4 s e 7 8 9 100

If a real speaker change is missed during the initia sec
change-point detection, the resulting speaker model would
contain data from two speakers, meaning that the speakelgure 2: The upper part of the figure shows the VQ-distontea-
codebook models both speakers. To counteract this prolsure VQL, for a sample file. The true speaker changes are indi-
lem only the Tax Seconds nearest the change-point is usedated by vertical lines. The dotted line indicates the thogsth.q

VQ distortion measure

to make the speaker codebook. and the estimated change-points found are shown with sirdie
addition to the true speaker change-points four false ahgoints
3.5 Parameter Settings are found. The lower part of the figure shows the VQ-distartio

. . . . VQDmeanfor the found change-points. The thresholgtfs indi-
The proposed change-point detection algorithm requiregsted and the accepted change-points are shown by cirotéthe
some parameters to be adjusted. The two thresholg@atid  rejected are shown by crosses.

thiac should be set according to the desired relation between

recall and precision. As in [1] we use an automatic threshold 4. EXPERIMENTSAND RESULTS
setting method. We use Mhean@s the mean of the distance

metric in a window of 2ax around §: 4.1 Speech Database

M B 1 M. The speech data used was news-podcasts obtained from four
e T max+ 1 IZ n+h different news/radio channels CNN, CBS, WNYC, and PRI.

With —Tmax/ls < 1 < Tmax/ls. The thresholds at time tare
thereby set to:

thean = OcaMnmean
thtacn = OfacMn,mean
The two amplifiersacg andas,c should be set in advance.
The timing parametergy, T;, and Tnhax Should be set ac-

cording to the expected distribution of speaker turn lesgth
Is defines the resolution of the detected change-points.

Probability

3.6 Example

An example of the change-point detection algorithm is

shown in figure 2. The audio clip in this example is o 10 20 30 40 50 60
113 long and contains speaker change-points at time Segment lengths (s)

{14.6,29.3,33.7,43.8,63.5,78.9}sindicated by the vertical
lines. The upper part of the figure shows the VQ-distortiorf-igure 3: Histogram of the speaker segment lengths comtame
measure VQR as function of time. The dotted line indicate the database.
the threshold thy and the estimated change-points found by
our change-point algorithm are shown with circles. Itisssee  The data consists of 103 min of broadcast news, which
that in addition to the true speaker change-points fouefalscontains speech from numerous speakers, in different envi-
false alarms occur. ronments. Music has been removed as this is assumed to be
The lower part of the figure shows the VQ-distortion done using a music/speech discriminator. The length of the
measure VQRan for the found change-points. Again, the segments range from4s to 119 with a mean of approxi-
dotted line indicate the threshold¢th and the accepted mately 14. Figure 3 shows the distribution of the segment
change-points are shown by circles, and the rejected atengths. The number of speaker changes is 388, distributed
shown by crosses. over 47 files. The data was manually labelled into different
In this example all the true speaker changes are foundgpeakers. The number of segments is 435, and 75 of these
and false alarms are removed by the false alarm compendaave a length less thars,5which are segments considered
tion step. relatively hard to detect [1, 3].
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Totallength T Avg. segment] Speaker Comparing the results using the VQD measure the best
(min) length (sec) | changes performance is obtained using 56 clusters. In this cas€/80.1
CNN 38 17.0 134 of the true change-points are detected with a false alarmn rat
CBS 20 9.9 121 of 8.5 %. A relative improvement of 59,7% in precision with
WNYC 26 22.6 69 a relative loss of 7.2% in recall is obtained with our false
PRI 19 15.8 64 alarm compensation scheme.
[AT | 103 [ 15.6 [ 388 | By varying a.q a recall-precision curve can be created.
Figure 4 shows the recall-precision curve for the three met-
Table 1: Summary of evaluation data. rics VQD-56, KL2, and DSD for the baseline algorithm. The

curves for VQD-56 and KL2 are comparable, though VQD-
56 gives better precision at lower recall. VQD-56 and KL2
is clearly better than DSD.
4.2 FeatureExtraction Figure 5 shows the recall-precision curves after the false
larm compensation. This curve is created by varyigg
nd keepingasc constant. Though, the baseline recall-
recision curve for VQD and KL2 is very similar the VQD-
AC performs better than KL2-FAC. A reason for this could
be that VQD and KL2 do not locate the same change-points
Bhd FAC then rejects more true change-point found by KL2
than found by VQD.
The change-points are found with a relatively small aver-
age mismatch of approximately3, which is acceptable for
A change-point proposed by the algorithm may not be premost applications.
cisely aligned with the manual label. For example if the An investigation reveals that approximately 62% of the
change occurs at a silence period or if speakers interrght eamissed change points are due to segments that are shorter
other. To take this into account, a found change is countethan .
as correct if it is within % of the manually labelled change-

First all files have been down-sampled to 16kHz, 16bit mon
channel. The MFCCs are extracted on a 20 ms Hamming fil>
tered window. The windows overlap by 10 ms. The featur
vector consists of 12 MFCCs. ‘delta-MFCCs’ or ‘delta-delta
MFCCs’ were not included because they worsened segme
tation results. The features are not normalized.

4.3 Evaluation Measures

point, as in [3]. Thenismatchis defined as the time between  |_Metric | F [ RCL | PRC | Mismatch |
a correct found change-point point and the manually latlelle | VQD24 0.748| 0.810| 0.695| 209ms
one. VOQD24-FAC | 0.829| 0.740| 0.943| 206ms
The evaluation measures frequently used are recall "yQD48 0.717]1 0.8401 0.627] 208ms
'(RCLt)' and precisitc_)n I(PRC), that correspond to deletions and "QD48-FAC | 0.839| 0.766 | 0.928| 206ms
INSETUONS respectively. VQD56 0.687] 0.863| 0.573| 220ms
no. of correctly found change-points VQDS6-FAC | 0.854] 0.801] 0.915] 202ms
RCL = no. oftrue change-points VQD64 0.722] 0.835] 0.637] 202ms

no. of correctly found change-points VQD64-FAC | 0.837] 0.789] 0.892] 215ms

PRC = : e
no. of hypothesized change-points K2 07637 0833107041 212ms
The F-measure combines RCL and PRC into one measure, KL2-FAC 0823] 0.789] 0.860] 212ms
DSD 0.6237] 0.766] 0.526] 308ms
RCL x PRC DSD-FAC 0.732] 0.665| 0.814| 288ms

axRCL+(1—-a)PRC Table 2: Results obtained with.q and ag,c adjusted to optimize

éhe F measure after the false alarm compensation (FAC). BBeth

with a as a weighting parameter that can be used to emph < Llts before and after the FAC is Shown.

size either of the two quantities. The results presentealbel
use the equal weighting, witln = 0.5.

4.4 Results 45 Generalizability

This section will present the results obtained with ourTo investigate the generalizability of our system, anotbestr
speaker change detection algorithm. The experiments wereas set up where the database was divided into a training set
performed using the following parameter settings: Analysi and four test sets. The training set contains files randomly
window length 4y = 3s, Tj = 2s, and hax Set to & The  chosen from three of the channels, CNN, CBS, and WNYC.
analysis windows are shifted witg4 0.1s. These settings Four test sets were created, one for each of the channels, us-
were found by initial tests using the VQD method. ing the remaining files in the database.

Table 2 shows the results obtained using all the data The system was set up using the VQD measure with 56
from our databasea.y andas,c are set to maximize the F- clusters. The system parameteatg andas,c were optimized
measure after the false alarm compensation (FAC). The V(or the training set and then evaluated on the test setsrd-igu
approach is evaluated using 24, 48, 56, and 64 clusters f@shows the F-measure for this test. The results are compared
both the change detection and in the false alarm compensaith the system optimized for each of the specific test sets.
tion. In the KL2-FAC and DSD-FAC approaches, 56 clusters  Generally our system performs better on the two test sets
are used. CNN and CBS compared to WNYC and PRI. This is most
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1 v v v T [l optimal
[Jtraining a
0.8
0.9r 06
0 8’ 0.4
50
(8] 0.2
o
0.7t
: 0 CNN CBS WNYC PRI
0.6r| —VQD - Y , o . :
- - -KL2 . Figure 6: This figure shows the results obtained for diffetest
_bsb ‘ ‘ ‘ sets. The system optimized for each of the tests are compatted
08’5 0.6 0.7 0.8 0.9 1 a system optimized for a training set. The figure shows thatesh-
precision old chosen on a training set generalize reasonable welher diata

sets.

Figure 4: Recall-precision curve for baseline algorithnihwthe

three distance metrics VQD, KL2, and DSD. The curve is crkate ) ]
by varyingacg. VQD and KL2 are superior to the DSD measure. cluding data from a different channel. We showed that the

VQD gives a better precision at lower recall rates. false alarm rate can be significantly reduced using a post-
processing step on the alarms suggested by the vector quan-

tizer.
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