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ABSTRACT
This paper deals with the problem of designing widely-linear
(WL) fractionally-spaced (FS) finite-impulse response equal-
izers for both real- and complex-valued improper modula-
tion schemes. Specifically, the synthesis of both WL-FS
minimum mean-square error and zero-forcing equalizers is
discussed, by deriving the mathematical conditions assuring
perfect symbol recovery in the absence of noise. In a general
framework, the feasibility of designing WL-FS blind equal-
izers based on the constant modulus criterion is also inves-
tigated, and both unconstrained and constrained designs are
provided. The effectiveness of the proposed equalizers is cor-
roborated by means of computer simulation results.

1. INTRODUCTION

In digital communications, blind channel equalization tech-
niques allow one to cancel or reduce the intersymbol inter-
ference (ISI) introduced by frequency-selective transmission
channels, without wasting the available bandwidth resources
due to transmission of training sequences. Among the nu-
merous blind equalization approaches proposed, the linear
fractionally-spaced (L-FS) finite-impulse response (FIR) Go-
dard or constant modulus (CM) algorithm is the most widely
used due to its simplicity and robustness [1]. It is known
(see, e.g., [2]) that, in the absence of noise and under certain
mathematical conditions, all the local minima of the L-FS-
CM cost function are global ones and allow one to exactly
suppress the ISI, provided that the transmitted symbol se-
quence is proper [3]. On the other hand, when the symbol
sequence is improper [3] and the channel impulse response
is complex-valued, the ISI suppression capabilities of L-FS-
CM equalizers turn out to be adversely affected. With refer-
ence to BPSK modulation, this weakness was evidenced in
[4], wherein it was pointed out that linear CM equalizers ex-
hibit convergence to undesired global minima, which do not
enable perfect ISI cancellation. Relying on the results of [4],
a single-axis baud-spaced (BS) CM equalizer was proposed
in [5], which is essentially targeted at real-valued modula-
tion and can be seen as ad hoc modification of the standard
CM adaptation rule, whereby the equalizer coefficients are
adapted by using only the real part of the equalizer output.

Besides real-valued modulation schemes, the transmitted
symbol sequence turn out to be improper in many complex-
valued modulation formats of practical interest [6, 7]. In all
these cases, it is well-known [8] that a better (in the sense of
second-order statistics) estimate of the transmitted symbols
can be obtained by resorting to widely-linear (WL) estima-
tors, which jointly process the received signal and its com-
plex conjugate. Recently, with reference to BS processing,

WL minimum mean-square error (MMSE) non-blind equal-
izers have been devised in [6], whereas subspace-based blind
channel identification issues have been studied in [7]. In
this paper, borrowing concepts from the theory of WL fil-
tering [8], we provide a general and unified framework to
design WL-FS equalizers for both real- and complex-valued
improper modulations, by deriving the conditions assuring
perfect symbol recovery in the absence of noise and provid-
ing some insights into the synthesis and analysis of blind
WL-FS-CM equalizers. Our proposed designs generalize
and subsume as a particular case some previously proposed
WL-BS equalizers [5, 6] targeted at real-valued modulations.

2. PRELIMINARIES

Let1 us consider a digital communication system employing
linear modulation with symbol period Ts. The complex en-
velope of the received continuous-time signal, after filtering
and ideal carrier-frequency recovering, can be expressed as
ra(t) =

∑∞
q=−∞ s(q) ca(t−q Ts)+wa(t), where s(n) (with

n ∈ Z) is the sequence of the transmitted symbols, ca(t)
denotes the composite impulse response (including transmit-
ting filter, physical channel, receiving filter, and timing off-
set) of the linear time-invariant channel and, finally, wa(t)
represents additive noise at the output of the receiving fil-
ter. If the channel impulse response ca(t) spans Lc sym-
bol periods, i.e., ca(t) = 0 for t �∈ [ 0, Lc Ts ), after sam-
pling ra(t) at rate N/Ts, with N ≥ 1 being an integer
number, the expression of the kth (k ∈ Z) received data
block r(k) � [r(0)(k), r(1)(k), . . . , r(N−1)(k)]T ∈ C

N ,
with r(�)(k) � ra(k Ts + � Ts/N), is given by

r(k) =
Lc−1∑
q=0

c(q) s(k − q) + w(k) , (1)

where c(k) � [ c(0)(k), c(1)(k), . . . , c(N−1)(k) ]T ∈ C
N

w(k) � [ w(0)(k), w(1)(k), . . . , w(N−1)(k) ]T ∈ C
N , with

1Upper- and lower-case bold letters denote matrices and vectors; the su-
perscripts ∗, T , H , −1, − and † denote the conjugate, the transpose, the
Hermitian (conjugate transpose), the inverse, the generalized (1)-inverse [9]
and the Moore-Penrose generalized inverse [9] of a matrix; the subscripts
R and I stand for real and imaginary parts of any complex-valued matrix,
vector or scalar; C, R and Z are the fields of complex, real and integer
numbers; Cn [Rn] denotes the vector-space of all n-column vectors with
complex [real] coordinates; similarly, Cn×m [Rn×m] denotes the vector-
space of the n×m matrices with complex [real] elements; 0n, On×m and
In denote the n-column zero vector, the n × m zero matrix and the n × n
identity matrix; ‖ · ‖ and rank(·) denote the Frobenius norm and the rank
of a matrix; the subscript a stands for continuous-time (analog) signals, E[·]
denotes statistical averaging and, finally, j � √−1 denotes imaginary unit.
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c(�)(k) � ca(k Ts + � Ts/N) denoting the �th phase of the
discrete-time channel c(n) � ca(nTs/N), and, similarly,
w(�)(k) � wa(k Ts + � Ts/N), for � ∈ {0, 1, . . . , N − 1}.

To compensate for ISI and noise, namely, to produce
a reliable estimate of the symbol s(k − d), with d denot-
ing a suitable equalization delay, the equalizer jointly elabo-
rates Le consecutive symbols, by processing the input vector
z(k) � [ rT (k), rT (k − 1), . . . , rT (k −Le + 1) ]T ∈ C

NLe .
Accounting for (1), the vector z(k) can be written as

z(k) = Cs(k) + v(k) , (2)

where s(k) � [s(k), s(k − 1), . . . , s(k − K + 1)]T ∈ C
K ,

with K � Le + Lc − 1,

C �


c(0) . . . c(Lc − 1) 0N 0N

0N c(0) . . . c(Lc − 1) 0N
...

. . . . . .
. . .

...

0N 0N c(0) . . . c(Lc − 1)


(3)

is the (NLe)×K channel block Toeplitz matrix and, finally,
v(k)� [wT (k), wT (k−1), . . . , wT (k−Le+1)]T ∈ C

NLe .
In the sequel, it is assumed that: A1) s(n) ∈ C is a zero-

mean sequence of independent and identically distributed
(i.i.d.) improper [3] random variables, with second-order
moments σ2

s � E[|s(n)|2] and γs(n) � E[s2(n)] �= 0,
∀n ∈ Z, whose improper nature comes from the linear de-
pendence existing between s(n) and its conjugate version
s∗(n), i.e., s∗(n) = ej 2πβn s(n), with β ∈ {0, 1/2}, for
any realization of s(n); A2) w(n) � wa(nTs/N) ∈ C

is a zero-mean sequence of i.i.d. proper [3] random vari-
ables, statistically independent of s(n), whose second-order
moments are σ2

w � E[|w(n)|2] and E[w2(n)] = 0, ∀n ∈
Z; A3) c(n) is a complex-valued channel, that is, neither
cR(n) nor cI(n) vanish identically. A large number of digi-
tal modulation schemes of practical interest satisfy assump-
tion A1, including ASK, differential BPSK (DBPSK), off-
set QPSK (OQPSK), offset QAM (OQAM), MSK and its
variant Gaussian MSK (GMSK) (see [6, 7] for a detailed
discussion). Specifically, real modulation schemes, such
as ASK and DBPSK, fulfill assumption A1 with β = 0,
i.e., s∗(n) = s(n), whereas for complex modulation for-
mats, such as OQPSK, OQAM, and MSK-type, it results
that β = 1/2, i.e., s∗(n) = (−1)n s(n). Assumption A2 is
surely satisfied if the continuous-time filter used at the receiv-
ing side has (approximatively) a square root raised-cosine
impulse response; more generally, A2 holds if a whitened
matched-filter is employed at the receiver.

Let us characterize the second-order statistical proper-
ties of z(k) given by (2). Accounting for assumptions
A1 and A2, the second-order statistics of z(k) are given
by the autocorrelation matrix Rzz � E[z(k) zH(k)] =
σ2

s CCH + σ2
w INLe

and the conjugate correlation matrix
Rzz∗(k) � E[z(k) zT (k)] = σ2

s e−j 2πβk CJ∗CT , with
J � diag[1, e−j 2πβ , . . . , e−j 2πβ(K−1)] ∈ C

K×K . Since
Rzz∗(k) is nonvanishing, ∀k ∈ Z, the vector z(k) is im-
proper [3]. Additionally, for real modulation schemes (for
which β = 0), such as ASK and DBPSK, the vector z(k) is
wide-sense stationary (WSS), whereas for complex modula-
tion formats (for which β = 1/2), such as OQPSK, OQAM,

and MSK-type, it results that z(k) is wide-sense conjugate
(second-order) cyclostationary with period 2.

3. WIDELY-LINEAR FRACTIONALLY-SPACED
EQUALIZATION

Since z(k) is an improper vector, it is well-known [8]
that, compared with L-FIR processing, a WL-FIR estimator,
which is linear both in z(k) and z∗(k), can assure a better
estimate of the symbol s(k−d), with d ∈ {0, 1, . . . ,K−1}.
The weight vector of the resulting WL-FIR estimator de-
pends on both Rzz and Rzz∗(k). To account for the (pos-
sible) time-varying feature of Rzz∗(k), we consider a slight
modification of the classical WL-FIR estimator [8]. More
precisely, we observe that, as a consequence of assumption
A1, one has s∗(k) = ej 2πβk J s(k) and, hence, it follows
from (2) that z∗(k) = ej 2πβk C∗ J s(k) + v∗(k). Thus, the
(possible) wide-sense conjugate cyclostationarity of z(k) can
be compensated by performing a derotation of z∗(k) before
constructing the WL-FIR estimator, that is,

y(k) = fH
1 z(k) + fH

2 z∗(k) e−j 2πβk

=
[
fH
1 fH

2

]︸ ︷︷ ︸
f̃

H∈C1×2NLe

[
z(k)

z∗(k) e−j 2πβk

]
︸ ︷︷ ︸

z̃(k)∈C2NLe

= f̃
H
z̃(k) , (4)

where

z̃(k) =
[

C
C∗J

]
︸ ︷︷ ︸

C̃∈C2NLe×K

s(k) +
[

v(k)
v∗(k) e−j 2πβk

]
︸ ︷︷ ︸

ṽ(k)∈C2NLe

= C̃ s(k) + ṽ(k) .

(5)
Let Jmse(f̃) � E[|y(k)−s(k−d)|2], according to the MMSE
criterion the weight vector f̃ is chosen as follows

f̃wl-fs-mmse �
[
f1,wl-fs-mmse
f2,wl-fs-mmse

]
= arg min

f̃∈C2NLe

Jmse(f̃) (6)

= σ2
s R̃

−1

zz C̃ ed (7)

where ed � [

d︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0]T ∈ R

K and the auto-
correlation matrix of the augmented vector z̃(k) is given by

R̃zz � E[z̃(k) z̃H(k)] = σ2
s C̃ C̃

H
+ σ2

w I2NLe
. Moreover,

by partitioning R̃zz and C̃ according to the structure of z̃(k),
resorting to the inverse of a partitioned matrix and account-
ing for the expression of Rzz∗(k), one has

f1,wl-fs-mmse = σ2
s

[
Rzz − σ4

s CJ∗CT (R∗
zz)

−1C∗JCH
]−1

·
[
C − σ2

s CJ∗CT (R∗
zz)

−1C∗ J
]

ed , (8)

f2,wl-fs-mmse = e−j 2πβd f∗1,wl-fs-mmse , (9)

which shows in particular that a linear dependence exists
between f2,wl-fs-mmse and f∗1,wl-fs-mmse. Furthermore, observe
that, when real modulation schemes, such as ASK and
DBPSK, are employed at the transmitter and N = 1, i.e., the
received signal ra(t) is sampled at the baud rate, the WL-
FS-MMSE equalizer (7) boils down to the WL-BS-MMSE
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equalizer devised in [6]. The performance of the WL-FS-
MMSE equalizer (7) strongly depends on the existence of
WL-FIR zero-forcing (ZF) solutions, in the absence of noise.
This important issue is investigated in the next subsection.

3.1 Noise-free WL-ZF equalization

As it can be seen from (4) and (5), in the absence of noise,
imposing the ZF condition y(k) = s(k − d) leads to the

system of linear equations f̃
H
C̃ = eT

d ⇔ C̃
H
f̃ = ed,

which is consistent if and only if (iff) C̃
H
(C̃

H
)−ed = ed

(see [9]). If the augmented channel matrix C̃ is full-column

rank, i.e., rank(C̃) = K, it results that C̃
H
(C̃

H
)− = IK and,

then, this system turns out to be consistent regardless of the
equalization delay d. In this case, the minimal norm solution,
i.e., the solution of the constrained optimization problem

f̃wl-fs-zf = arg min
f̃∈C2NLe

‖f̃‖2 , subject to C̃
H

f̃ = ed , (10)

is given by (see, e.g., [9])

f̃wl-fs-zf �
[
f1,wl-fs-zf
f2,wl-fs-zf

]
= (C̃

H
)† ed = C̃ (C̃

H
C̃)−1ed .

(11)
It is worth noting that, accounting for (7) and the limit for-
mula for the Moore-Penrose inverse [9], it can be verified

that limσ2
w/σ2

s→0 f̃wl-fs-mmse = (C̃
H

)† ed = f̃wl-fs-zf, that is,
as the noise variance σ2

w vanishes, the WL-FS-MMSE solu-
tion approaches the ZF one. Henceforth, we maintain that,
similarly to (9), the following relationship

f2,wl-fs-zf = e−j 2πβd f∗1,wl-fs-zf (12)

holds between the subvectors f1,wl-fs-zf and f2,wl-fs-zf in (11).
Theorem 1 (whose proof is omitted) provides the conditions
assuring the existence of WL-FIR-ZF solutions, i.e., condi-
tions assuring that C̃ is full-column rank.

Theorem 1 Let C(�)(z) denote the Z-transform of the �th
channel phase {c(�)(k)}Lc−1

k=0 , for � ∈ {0, 1, . . . , N − 1},
and assume that at least one polynomial {C (�)(z)}N−1

�=0 is of

maximum order Lc − 1. Then, the augmented matrix C̃ is
full-column rank if the following conditions hold:

C1) 2N Le ≥ K = Le + Lc − 1;

C2) the 2N polynomials C(�)(z) and C(�)(z∗ e−j 2πβ),
for � ∈ {0, 1, . . . , N − 1}, are coprime.

Some interesting remark are now in order. First, as re-
gards condition C1, observe that, unlike linear FIR-ZF (L-
FIR-ZF) equalization, WL-FIR-ZF solutions might exist not
only when fractionally sampling is performed at the re-
ceiver, but also when the received signal ra(t) is sampled
at the baud rate, i.e., N = 1; in this case, condition C1
requires that Le ≥ Lc − 1 and condition C2 is fulfilled
if, ∀q1, q2 ∈ {1, . . . , Lc − 1}, there is no pair (ζq1 , ζq2)
of zeros of the Z-transform of c(n) = ca(nTs) such that
ζq1 = ζ∗q2

e−j 2πβ . Second, and most important, note that,
in comparison with L-FIR-ZF fractionally spaced equaliza-
tion, condition C2 imposes a milder constraint on the chan-
nel phases {c(�)(k)}N−1

�=0 . Indeed, when N > 1, L-FIR-ZF

solutions exist if the N polynomials {C(�)(z)}N−1
�=0 are co-

prime [4]; in contrast, Theorem 1 states that WL-FIR-ZF so-
lutions exist even when {C(�)(z)}N−1

�=0 share a common zero
z0, i.e., C(0)(z0) = C(1)(z0) = . . . = C(N−1)(z0) = 0,
provided that the complex number z0 is not a common zero
of C(�)(z∗ e−j 2πβ), ∀� ∈ {0, 1, . . . , N − 1}, that is, there
exists at least one index �0 ∈ {0, 1, . . . , N − 1} such that
C(�0)(z∗0 e−j 2πβ) �= 0. Hereinafter, it is assumed that condi-
tions C1 and C2 are fulfilled.

As it is apparent from (7) and (11), the synthesis of both
WL-FS-MMSE and WL-FS-ZF equalizers requires the ex-
plicit knowledge of the channel vectors {c(k)}Lc−1

k=0 , which
are unknown at the receiver side. To design a blind ISI-
resilient receiver, without requiring any training sequence,
we resort in the next subsection to the CM criterion.

3.2 Blind WL CM-based equalization

With reference to the WL-FIR estimator given by (4), one
might attempt to blindly choose the augmented weight vector
f̃ by minimizing the WL-FS-CM cost function

Jwl-fs-cm(f̃) � E[(γs − |y(k)|2)2] , (13)

where γs � E[|s(k)|4]/σ2
s denotes the dispersion constant

of the transmitted symbol sequence. Note that the classical
L-FS-CM cost function Jl-fs-cm(f) can be obtained from (13)
by setting f̃ = [fT ,0T

NLe
]T , with f ∈ C

NLe . It is known
(see, e.g., [2]) that, when noise is absent and the transmit-
ted symbols are complex proper sub-Gaussian2 i.i.d. ran-
dom variables, all the local minima of Jl-fs-cm(f) are desired,
i.e., they are global ones and enable perfect recovery of the
transmitted symbols. Additionally, in the presence of noise,
it was pointed out in [2] that, under certain mathematical
conditions, the vector f l-fs-cm corresponding to a local mini-
mum of Jl-fs-cm(f) is approximately proportional to the L-FS-
MMSE weight vector f l-fs-mmse � σ2

s R−1
zz Ced. On the other

hand, when noise is absent, the channel impulse response is
complex-valued (see A3), and the transmitted sub-Gaussian
symbols fulfill assumption A1, it can be seen that, besides
containing desired local minima, the function Jl-fs-cm(f) also
exhibits undesired global minima, which do not lead to per-
fect source recovery. With reference to BPSK modulation,
this undesired behavior of linear CM equalizers for complex-
valued channels was evidenced in [4].

On the basis of widely-linear filtering theory [3, 8], it can
be argued that the presence of undesired global minima for
the L-FS-CM cost function is a consequence of the fact that,
when the transmitted symbol sequence is improper, a linear
estimator cannot take advantage of the additional information
available in the conjugate correlation matrix of z(k). Con-
sequently, it should be concluded that the minimization of
the WL-FS-CM cost function (13) might lead to a blind re-
ceiver whose ISI suppression capabilities are close to those
of the WL-FS-MMSE equalizer given by (7) [or, in the ab-
sence of noise, to those of the WL-FS-ZF equalizer given by
(11)]. Interestingly enough, as it is confirmed by the simula-
tion results reported in Section 4, this conclusion is not en-
tirely true. Indeed, similarly to Jl-fs-cm(f), the cost function

2The symbol sequence {s(k)}k∈Z is called sub-Gaussian if its kurtosis

κs � E[|s(k)|4] − 2 E2[|s(k)|2] − ∣∣E[s2(k)]
∣∣2 is strictly negative.
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Jwl-fs-cm(f) exhibits undesired global minima, whose pres-
ence is basically due to the fact that the vector fwl-fs-cm corre-
sponding to a local minimum of Jwl-fs-cm(f) might not exhibit
the conjugate symmetry property (9) and (12), which charac-
terizes instead the WL-FS-MMSE and WL-FS-ZF equaliz-
ers. To overcome this drawback, we propose to resort to the
following constrained minimization of Jwl-fs-cm(f), by im-
posing that f2 = e−j 2πβd f∗1, i.e.,

f̃wl-fs-ccm = arg min
f̃∈C2NLe

Jwl-fs-cm(f) ,

subject to f2 = e−j 2πβd f∗1 , (14)

which will be referred to as the WL-FS constrained
CM (WL-FS-CCM) equalizer. Since CM equalizers do
not have closed-form solutions, minimization of (14)
is adaptively carried out by resorting to the stochas-
tic gradient descent (SGD) algorithm. Specifically, let
f̃wl-fs-ccm(k) � [fT

1,wl-fs-ccm(k), fT
2,wl-fs-ccm(k)]T ∈ C

2NLe ,
with f2,wl-fs-ccm(k) = e−j 2πβd f∗1,wl-fs-ccm(k) ∈ C

NLe , de-

note the estimate of f̃wl-fs-ccm at iteration k, starting from (14),
one obtains the updating equation

f1,wl-fs-ccm(k + 1) = f1,wl-fs-ccm(k) + µ y∗
wl-fs-ccm(k)

· (γs − |ywl-fs-ccm(k)|2) z(k) , (15)

where

ywl-fs-ccm(k) = fH
1,wl-fs-ccm(k) z(k)

+ fT
1,wl-fs-ccm(k) z∗(k) e−j 2πβ(k−d) (16)

and µ > 0 denotes the step-size of the algorithm. It should be
observed that, when real modulation schemes, such as ASK
and DBPSK, are employed at the transmitter and N = 1,
i.e., the received signal ra(t) is sampled at the baud rate,
the proposed WL-FS-CCM equalizer (14) boils down to the
single-axis equalizer devised in [5]. The fact that the single-
axis equalizer is actually a WL equalizer was not recognized
in [5]. The performances of the WL-FS-CCM equalizer are
studied in Section 4 through computer simulations.

4. SIMULATION RESULTS

In this section, we investigate the performances of both WL-
BS (i.e., N = 1) and Ts/2-spaced WL-FS equalizers (i.e.,
N = 2). Specifically, we considered the following equaliz-
ers: WL-BS-MMSE, WL-BS-CM, WL-BS-CCM, WL-FS-
MMSE, WL-FS-CM, WL-FS-CCM. For the sake of com-
parison, we also considered the L-FS-MMSE and L-FS-CM
equalizers3. All the MMSE equalizers are non-blind and are
implemented in batch-mode, by assuming perfect knowledge
of the channel impulse response and by inverting the appro-
priate sample correlation matrix, estimated over K symbol
intervals; additionally, for each MMSE equalizer, we chose
the value of the equalization delay d ∈ {0, 1, . . . ,K − 1} as-
suring the best performance. On the other hand, all the CM
blind equalizers are adaptively implemented by resorting to
the SGD algorithm [1], wherein the step-size is continuously
adjusted to achieve fast convergence without compromising

3Linear baud-spaced equalizers were not considered since, at symbol
spacing Ts, L-FIR-ZF solutions do not exist.

stability. More specifically, we set µ(k) = 0.01µmax(k),
where, according to [10], µmax(k) is the maximum value of
the step-size that assures SGD stability at iteration k, and
can be evaluated in real-time, since it depends only on the
equalizer output y(k) and γs; moreover, we employed single-
and double-spike initialization [1] for baud- and fractionally-
spaced CM equalizers, respectively. All the equalizers under
comparison jointly elaborate Le = 5 consecutive symbols.

The input stream s(n) is drawn from an OQPSK con-
stellation and the additive noise w(n) is a complex proper
Gaussian process. The signal-to-noise ratio (SNR) at the
equalizer input is defined as SNR � (σ2

s/σ2
w)‖c‖2 and both

the symbol and noise sequences are randomly and indepen-
dently generated at the start of each Monte Carlo run. Since
BS and FS equalizers employ different discrete-time chan-
nels, we considered for all the receivers the same continuous-
time channel ca(t), which spans Lc = 3 symbol periods;
more precisely, we started from the Ts/2-sampled version of
ca(t), i.e., c(n) � ca(nTs/2), for n ∈ {0, 1, . . . , 2 Lc − 1},
which can be expressed in terms of the two polyphase com-
ponents c(0)(k) � c(2k) and c(1)(k) � c̃(2k + 1), for
k ∈ {0, 1, . . . , Lc − 1}. Thus, we obtain the unique symbol-
spaced channel for BS methods as c(n) = c̃ (0)(n), n ∈
{0, 1, . . . , Lc − 1}. The two channels c̃ (�)(n), for � = 0, 1,
are assigned in terms of their Z-transforms:

C̃ (�)(z) = (1 − 0.5 ej θ1,�z−1) (1 − 1.2 ej θ2,�z−1) , (17)

where θ1,0 = 0.5 π + γ, θ2,0 = θ1,0 +π, θ1,1 = θ1,0 + γ and
θ2,1 = θ2,0 +γ, and the angular separation γ is fixed to 0.2π
so as to assure the existence of ZF solutions for all the meth-
ods under comparison. As performance measure, we eval-
uated the average bit-error-rate (ABER) and, denoting with
q�, for � ∈ {0, 1, . . . ,K − 1}, the �th entry of the combined

channel-equalizer impulse response q � C̃
H
f̃ ∈ C

K , we
also resorted to the residual ISI expressed in dB

ISI [dB] � 10 log10

(∑K−1
�=0 |q�|2 − max�|q�|2

max�|q�|2
)

. (18)

Note that (18) only quantifies the ISI suppression capabil-
ity of the equalizer and does not take into account noise en-
hancement at its output. For each of the 104 Monte Carlo
trials carried out, after estimating the receiver weights on
the basis of the given data record of length K, an indepen-
dent record of 1000 symbols was considered to evaluate the
ABER.

In the first experiment, we evaluated the ABER perfor-
mances of the considered equalizers as a function of the
SNR, with K = 500 symbols. Results of Fig. 1 show that
the performances of the L-FS-CM, WL-BS-CM and WL-FS-
CM blind equalizers are significantly worse than those of the
corresponding non-blind MMSE equalizers. In particular, it
is worth noting that both the WL-FS-MMSE and WL-BS-
MMSE equalizers remarkably outperform the L-FS-MMSE
equalizer for all the considered values of the SNR. On the
other hand, as it has been previously claimed, the proposed
WL-FS-CCM and WL-BS-CCM blind equalizers perform
better than their unconstrained WL-BS-CM and WL-FS-CM
counterparts, for all the considered values of the SNR. Inter-
estingly, the WL-FS-CCM and WL-BS-CCM equalizers also
outperform the L-FS-MMSE one and, as the SNR increases,
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Figure 1: ABER versus SNR.

their ABER curves approach those of their corresponding
WL-MMSE equalizers. As a side remark about Fig. 1, ob-
serve that, for the considered sample size, the ABER per-
formances of the WL-BS-CCM and WL-BS-MMSE equal-
izers are superior to those of their corresponding WL-FS-
CCM and WL-FS-MMSE counterparts. This behavior stems
from the fact that, for the WL-FS-CCM and WL-FS-MMSE
equalizers, one has to estimate 2N Le (complex) parame-
ters, whose number is doubled with respect to the number
of parameters that must be estimated for the WL-BS-CCM
and WL-BS-MMSE equalizers; strictly speaking, reducing
the number of parameters to be adapted allows one to reduce
the performance degradation due to the finite sample-size.
In the second experiment, the ISI suppression capabilities of
the considered equalizers were studied as a function of the
sample size K, with SNR = 20 dB. It can be seen from
Fig. 2 that, due to the presence of undesired global minima,
the performances of the WL-FS-CM, L-FS-CM and WL-BS-
CM equalizers do not significantly improve as K grows. In
contrast, the ISI suppression capabilities of both the WL-FS-
CCM and WL-BS-CCM equalizers rapidly improve as K
increases. Remarkably, the ISI suppression capabilities of
both WL-FS-CCM and WL-BS-CCM equalizers turn out to
be better than those of all the MMSE equalizers, for all the
considered values of K.

5. CONCLUSIONS

We tackled the synthesis of blind and non-blind WL equal-
izers for real- and complex-valued improper modulation for-
mats. In a nutshell, we provided the mathematical conditions
assuring perfect symbol recovery in the absence of noise, by
evidencing that WL-ZF solutions exist even when the chan-
nel phases exhibit common zeros. Furthermore, we enlight-
ened that, similarly to the L-FS-CM equalizer, the perfor-
mances of unconstrained WL-CM equalizers suffer from the
presence of undesired global minima and, finally, we showed
that this limitation can be overcome by introducing suitable
constraints in the design of WL-CM equalizers.
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Figure 2: ISI versus sample size K (in symbols).
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