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ABSTRACT

In this paper we examine the relation between signal-to-
noise-ratio, oversampling ratio, transition bandwidth, and fil-
ter order for some commonly used sigma-delta-modulators
and corresponding decimation filters. The decimation filters
are equi-ripple finite impulse response filters and it is demon-
strated that, for any given filter order, there exists an optimum
choice of the stopband ripple and stopband edge which min-
imizes the signal-to-noise-ratio degradation.

1. INTRODUCTION

The sigma-delta modulator (Σ∆-modulator) is today often the
preferred architecture for realizing low- to medium-speed
analog-to-digital converters (ADCs) with effective resolu-
tion above 12 bits. Higher resolution than this is difficult to
achieve for non-oversampled ADCs without laser trimming
or digital error correction, since device matching-errors of
semiconductor processes limit the accuracy of critical ana-
log components [1]. The Σ∆-modulator can overcome this
problem by combining the speed advantage of analog circuits
with the robustness and accuracy of digital circuits. Through
oversampling and noise shaping, the Σ∆-modulator converts
precise signal waveforms to an oversampled digital sequence
where the information is localized in a narrow frequency
band in which the quantization noise is heavily suppressed.

The price to pay for these advantages is the required
digital decimators operating on high sample-rate data. For
Nyquist-rate CMOS ADCs, the power consumption in-
creases approximately by a factor of four when increasing
the resolution by one bit [2]. Hence, the power consumption
of accurate Nyquist-rate ADCs tends to become very high.
On the other hand, the analog circuitry of oversampled Σ∆-
modulators, does not need to be accurate and power savings
can therefore be made, in particular for continuous-time in-
put Σ∆-modulators [3], provided that the power consumption
of the necessary digital decimation filter is not too large. The
digital filter is however a major source of power consumption
of a high-resolution Σ∆-modulator and needs to be carefully
designed and optimized.

For FIR filter-based decimators, the filter complexity is to
the largest extent determined by the transition bandwidth [4].
Further, a significant part of the quantization noise energy
of an oversampled Σ∆-modulator is located in this transi-
tion band, in particular when higher-order noise shaping is
applied. Therefore, there exists a pronounced trade-off be-
tween decimator filter complexity and Σ∆-modulator signal-
to-noise-ratio (SNR). This paper presents investigations on
how the SNR is degraded as a function of the filter transition
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Figure 1: A first-order, single-feedback Σ∆-modulator.
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Figure 2: A second-order, double-feedback Σ∆-modulator.
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Figure 3: A multistage noise-shaping (MASH) Σ∆-
modulator.

bandwidth and filter order for various commonly used Σ∆-
modulator architectures and oversampling ratio (OSR). It is
also demonstrated that, for a given filter order, there exists an
optimum choice of the stopband ripple and stopband edge for
equi-ripple filter solutions which minimizes the SNR degra-
dation. Although Σ∆-modulators have been known and used
for quite some time, it appears that a thorough investigation
of the relations just mentioned has not been published before.

2. SIGMA-DELTA-MODULATORS AND
DECIMATION FILTERS

In the linear model of a Σ∆-modulator structure, the input
x(n) and quantization error e(n) are assumed uncorrelated.
For analysis purposes, one then defines a signal transfer func-
tion H(z) and noise transfer function G(z) by which one ob-
tains

Y (z) = H(z)X(z)+G(z)E(z)

where Y (z), X(z), and E(z) are the z-transforms of the output
y(n), input x(n), and quantization noise e(n), respectively.

For the three topologies studied in this paper, shown in
Figs. 1–3, viz, a first-order, single-feedback Σ∆-modulator,
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Figure 4: Illustration of output noise spectral density func-
tion for a 1-bit first-order sigma-delta using an ideal filter
(solid line) and practical filter with a transition band (dashed
line). The dotted line shows the spectral density function be-
fore filtering [see (1)].

a second-order, double-feedback Σ∆-modulator, and a multi-
stage noise-shaping (MASH) Σ∆-modulator, the signal trans-
fer functions are pure delays according to

H1(z) = z−1

H2(z) = HMASH(z) = z−2

whereas the noise transfer functions have highpass character-
istics according to

G1(z) = (1− z−1)

G2(z) = (1− z−1)2

GMASH(z) = 2(1− z−1)4

The signal power at the output is thus the same as that of the
input whereas the noise is highpass shaped. Assuming that
the quantization error e(n) can be modeled as a wide-sense

stationary process, with spectral density function Ree(e
jωT ),

the corresponding spectral density function at the output, say
Ryeye(e

jωT ), becomes

Ryeye(e
jωT ) = Ree(e

jωT )
∣

∣G(e jωT )
∣

∣

2

= Ree(e
jωT )K0 sin2K

(

ωT

2

)

(1)

where K0 = 4,16, and 1024 for the three Σ∆-modulators in
Figs. 1–3 with K = 1,2, and 4, respectively.

It is common to regard e(n) as white noise with average

power σ2
e = 2−2(B−1)/12, B being the number of bits. In this

case, Ree(e
jωT ) = σ2

e and the shape of Ryeye(e
jωT ) becomes

typically as shown in Fig. 4 for K = 1 and 1-bit quantization
(σ2

e = 1/12). The principle of a sigma-delta converter is to
utilize the noise shaping together with oversampling, as ex-
emplified in Fig. 4. By assuming that the signal content lies
in the band [0, ωcT ], and by using a filter to remove out-of-
band noise in the band [ωcT , π], a much higher SNR than
that corresponding to the quantizer alone can be achieved.
However, in practice one can only approximate the ideal low-
pass filter. This means that there will be a transition band
between, say ωcT and ωsT , where we have little or no con-
trol over the filter. Due to the smooth highpass shape of the
noise, this will have a large degrading effect upon the SNR
as a large portion of the noise after filtering remains in the
transition band. This is seen in Fig. 4. In this example, the
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Figure 5: Decimation filter specification.

SNR at the output of the practical filter is 6.55 dB lower than
the ideal filter’s output which corresponds to slightly more
than a one-bit degradation in resolution.

In principle, it is possible to approximate the ideal filter
as closely as desired by increasing the filter order, but beyond
a certain order this becomes intolerable from the implemen-
tation feasibility and cost points of view. It is therefore of
interest to gain more insights into the relation between the
SNR, OSR, which equals π/ωcT , transition bandwidth, and
filter order. The main purpose of this paper is to provide
such insights. Although Σ∆-modulators have been known
and used for quite some time, and many papers exist that
deal with filter design and implementation for such modula-
tors, it appears that a thorough investigation of the relations
just mentioned cannot be found in the literature.

In our investigations, we will in this paper design the fil-
ters in the minimax sense. It may be argued that it would be
more appropriate to instead use a least-squares design tech-
nique which aims at minimizing the energy instead of max-
imizing the stopband attenuation. This is indeed the natural
choice when maximizing the SNR. However, there are usu-
ally additional restrictions that rather makes minimax design
more appropriate than least-squares design. For example, in
communication systems, it is common that blockers have to
be suppressed by a certain amount. To control the level of
suppression, it is necessary to incorporate additional ”min-
imax constraints”. This is why it is interesting to consider
minimax design.

Finally, we like to make the following remark. In order
to reduce the overall implementation complexity, it is com-
mon to make use of multistage decimators [5]. The require-
ments of each individual stage are thereby reduced with leads
to a lowered overall cost. In particular, one can include re-
cursive comb decimator structures which require very few
arithmetic operations. It is stressed that our results by no
means contradict the fact that such decimators are efficient,
as our investigations are independent of the way the filter-
ing and subsequent decimation are performed, i.e., they are
structure independent. In other words, we study the rela-
tion between the stringency of the filter specification and the
other parameters of interest. As a measure of the specifica-
tion stringency we use the filter order because, for obvious
reasons, this parameter increases (decreases) with increasing
(decreasing) stringency. The results to be presented are thus
valid regardless of the decimator structures that one wishes
to use, including in particular the ones that utilize efficient
recursive comb decimator stages.
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Figure 6: Principle of the extraction of quantization noise
from a Σ∆-modulator and the filtering thereof through a time-
domain realization of the Σ∆-modulator noise transfer func-
tion.

3. DESIGN CONSIDERATIONS

3.1 Decimation filter specification

In this paper, we use Nth-order symmetric linear-phase FIR
filters that satisfy the specification shown in Fig. 5 where δc,
δs, ωcT = π/OSR, and ωsT = π(1 + ∆)/OSR, denote the
passband ripple, stopband ripple, passband edge and stop-
band edge, respectively. The filters are designed in the mini-
max sense using the well-known McClellan-Parks-Rabiner’s
(MPR) algorithm that is implemented in Matlab’s function
firpm.m. In this paper, the passband ripple is specified to
be 0.01, but after each design it may be slightly smaller as
there generally is a design margin. This is because the MPR
algorithm only handles the ratio between the passband and
stopband ripples.

The stopband edge is related to the passband edge
through the relative transition bandwidth ∆ that we define as
[see Fig. 5]

∆ =
ωsT −ωcT

ωcT

3.2 Signal-to-noise-ratio

We denote the output signal and noise power (after the fil-
tering) of the Σ∆-modulator as Pyx and Pye, respectively. As-
suming that the input signal xa(t) is bandlimited to ωc, and
the passband ripple δc of the filter H(z) is small enough so
its effect on the signal power can be neglected, Pyx equals
the input signal power, i.e., Pyx = Px. The contribution to the
output noise power emanates from the passband, transition
band, and stopband regions. We denote the corresponding

noise powers as P
(pb)
ye , P

(tb)
ye , and P

(sb)
ye , respectively. The total

noise power is thus Pye = P
(pb)
ye + P

(tb)
ye + P

(sb)
ye . The SNR at

the output is given by

SNR = 10log10

Pyx

Pye

Further, we define the SNR degradation ∆SNR as the degra-
dation in SNR caused by using a practical filter instead of an
ideal lowpass filter. That is,

∆SNR = 10log10

Pyx

P
(pb)
ye

−10log10

Pyx

Pye
= 10log10

Pye

P
(pb)
ye
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Σ∆ order 1, linear model

Σ∆ order 1, extracted noise
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Figure 7: Quantization noise power of Σ∆-modulators of or-
der one and two, after decimation filter, according to the lin-
ear noise model and the computed quantization noise. The
OSR is 32.
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Figure 8: Quantization noise power of a second-order Σ∆-
modulator, in different bands of the decimation filter for the
linear noise model and the computed quantization noise. The
OSR is 32.

Using the linear model discussed in Section 2, the noise
power is easily computed as

Pe =
1

2π

∫

π

−π

Ryeye(e
jωT )d(ωT )

with Ryeye(e
jωT ) from (1). However, this model tends to be

less appropriate for coarse quantization steps. In particular,
problems arise for one-bit quantization. In this work, we
have therefore evaluated the noise power through the model
in Fig. 6, where the extracted quantization error e(n) has
been filtered through a time-domain realization of the Σ∆-
modulator noise transfer function G(z). The so obtained se-
quence is then filtered through the decimation filter in order
to get the final output noise. In Figs. 7 and 8, the noise power
of the two different cases is compared.
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Figure 9: SNR degradation as a function of relative transition
bandwidth ∆ for the first-order Σ∆-modulator.

4. SIMULATION RESULTS

For the three Σ∆-modulator topologies shown in Figs. 1–3
we have performed two different investigations. In the first,
the transition bandwidth of the decimation filter has been var-
ied for different oversampling ratios and filter orders and the
corresponding SNR degradation have been calculated. The
results of this investigation are plotted in Figs. 9–11. For a
given transition bandwidth and filter order the stopband rip-
ple is fixed. From the figures, it can be seen that the SNR
degradation has a minimum for a certain choice of ∆.

In the second investigation, the optimal choice of the rel-
ative transition bandwidth ∆ has been found for filter orders
between 100 and 1000 for different oversampling ratios. The
optimal ∆’s for the three Σ∆-modulator topologies are shown
in Figs. 12–14. The corresponding SNR degradations can be
found in Figs. 15–17. Decreasing the transition bandwidth
below the optimum causes the SNR to worsen considerably,
because of rapidly decreasing stopband attenuation. Also,
for large enough transition bands, increasing the filter order
will yield no significant SNR improvements because essen-
tially all the noise power is from the transition band region. It
should be noted that optimal SNR may occur for a transition
bandwidth several times wider than the passband width.

5. CONCLUSION

In this paper, design trade-offs for linear-phase FIR decima-
tion filters and Σ∆-modulators have been investigated. The
results are useful for designers of Σ∆-modulator-based ADCs
in finding a balanced overall solution that sets reasonable re-
quirements on the modulator as well as the FIR decimation
filter.
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Figure 12: SNR-optimal choice of ∆ as a function of the filter
order for the first-order Σ∆-modulator.

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

FIR filter order

∆

 

 

OSR = 8

OSR = 16

OSR = 32

OSR = 64

OSR = 128

OSR = 256

Figure 13: SNR-optimal choice of ∆ as a function of filter
order for the second-order Σ∆-modulator.
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Figure 14: SNR-optimal choice of ∆ as a function of filter
order for the MASH Σ∆-modulator.
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Figure 15: Minimal SNR degradation as a function of filter
order for the first-order Σ∆-modulator.
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Figure 16: Minimal SNR degradation as a function of filter
order for the second-order Σ∆-modulator.
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Figure 17: Minimal SNR degradation as a function of filter
order for the MASH Σ∆-modulator.
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