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ABSTRACT

In waveguide, pressure signals break up into modes. This
paper exposes two signal processing tools to realise a mode
filtering adapted to guided waves. The first one is a time-
frequency representation invertible on which filtering is pos-
sible. The second is an axe warping operator. We test both
methods on real data and compare performances on synthetic
dataset. We finally show that these two tools supplement
each other.

1 Introduction

In Underwater Acoustics, research of geoacoustical param-
eters and source localization (source depth, source-sensor
distance) are very large fields of prospects. In the classical
environment of shallow water, waveguide is taken as a model
of the oceanic medium. Starting from long range, pressure
signal (resulting from an impulse source) breaks up into
modes due to the dispersive propagation in the waveguide.

The mode’s characteristics (energy, phase, time-frequency
evolution...) contain crucial information about environment
parameters and source localization. We can filter them with
a vertical array thanks to their vertical orthogonality [1]and
with a horizontal array thanks to the frequency-wavenumber
transform [2]. Our aim is to obtain the same information
with a single sensor. For pressure wideband signals, modes
are following dispersion curves in the time-frequency (t − f )
plane. The objective of this study is to give tools to filter
modes issued from single sensor analysis. Because they are
dispersive, modes constitute multiple non-linear structures
in the time-frequency plane. We are thus in a complex
situation for t-f representation and filtering.

We first briefly present waveguide and mode dispersion in
section 2. Based on previous works [3], we have already de-
veloped [4] time-frequency representations (TFR) matched
to the shallow water propagation. This TFR is invertible and
allows a mode filtering processing. Its principles are pre-
sented on the section 3. We want now to focus on a new tool
to avoid the non-linearity problem. Starting from the theo-
retical dispersive relationship, we can build an axe warping
operator [5] and use unitary equivalence principle [6]. This
method, its applications and its conditions for mode filtering
and time-frequency localization improvement are exposed in
section 4. We then apply both methods on real dataset and
compare them on synthetic dataset in section 5.

2 Waveguide configuration

In shallow water environment, waveguide is a common
model. The simplest model is called perfect waveguide and
only takes into account the water layer.

Geoacoustic parameters (number of layers, depths, propaga-
tion velocities, densities) associated with modes theory es-
tablish relationship between group velocity and frequency
for each integer modem. In addition, with knowledge of the
source-sensor distanceR, the energy distribution of mode in
the time-frequency plane can be deduced [8]. This energy
follows a non-linear dispersive curve:

ν = um(τ) (1)

For the perfect waveguide, eq. 1 is:

ν =
(2m−1)C2

1 τ
4D[(C1τ)2−R2]1/2

(2)

for the mth mode and whereC1 is the velocity in the water
layer, D the depth guide andR the source-sensor distance
(figure 1).

3 Matched Time-Frequency representations

The first tool developed [4] is time-frequency representations
allowing mode filtering. They respect the two objectives:
- Separate modes in the time-frequency plane;
- Be invertible for mode filtering.

By using a TFR, we are limited by the Heisenberg-Gabor
inequality. We must circumvent the time-frequency uncer-
tainty and avoid interferences between components. TFR
built are matched to the waveguide model of propagation and
consist in projecting the signal on an atom dictionary tiling
thet − f plane. Atoms are defined by:

hτ,ξ (t) = hτ(t)e
jξm(t) (3)

where the modulation rateξm(t) is calculated starting
from the theoretical dispersion relation 1. To cover all the
time-frequency plane, we calculated the mode numberm′

for each point of the plane by inversion of the dispersion
relation. m′ is no more necessarily an integer: we have
a continuumof m. As a result, the atoms of projection
differ from a place to other in the time-frequency plane
(figure 2). Modulehτ(t) is calculated so that the continuous
dictionary {hτ,ξ (t);τ ∈ D f and ξ ∈ R} (with D f the time
domain definition) constitute a base (respecting the ”closing
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Figure 1: 7 first modal curves in the time-frequency plane
(with North Sea survey configuration)

Figure 2: Paving of the time-frequency plane by projec-
tion atoms for Short Time Fourier Transform (left) and for
matched TFR (right)

condition” [9]). Figure 2 shows that atoms are following
modal curves. Taking a large window, TFR is not precise
along the curve but precise perpendicularly to them. Time-
frequency localization is thus not relevant but modes are
well separated. Chenet al. [3] have developed this matched
TFR for the perfect waveguide. We completed it to make
the TFR invertible, we adapted it to an approximation of
the more realistic Pekeris waveguide [7] and generalised the
methodology in [4].

Mode filtering is then allowed and facilitated by these
matched (and invertible) TFR thanks to the better separation
of modes in the time-frequency plane. To realise mode filter-
ing, we use the classical image segmentation Watershed al-
gorithm [10] on the TFR. After segmentation, we select the
wanted mode and invert the TFR. We have consecutively the
time version of modes, we can thus reach phase and ampli-
tude. We can also reach a more precise shape of the mode in
the time-frequency plane because no more interferences with
others modes are present.

4 Axe Warping Operator

To avoid problems due to non-linear time-frequency struc-
tures, we propose to use a classical unitary operator [5]: the
axes warping operator. It is defined for a signalx(τ) as an
operatorW onL2(R) whose effect is given by:

(Wx)(t) = |w′(t)|x[w(t)] (4)

where w(t) is a smooth, one-to-one function. Starting
from the theoretical modulation formulation of modes
function ξ (τ), we want to design the warping function.
This function transforms non-linear modes on time domain
τ, on linear component on warped time domaint. Once

P
−1

W W

^
P

Figure 3: Schema of unitary equivalence principle

this transformation carried out, we can use the concept of
Unitary equivalence developed in [6]. By definition, two
operatorsP̂ andP are unitary equivalent if̂P = W

−1
PW

whereW is a unitary transform. This principle is illustrated
on figure 3. A conventional system of signal processing
P (linear filter, time-frequency representation...) is placed
between two unitary transformsW andW

−1.

Choosing the well matched operatorW allows two possibil-
ities:
1/ As modes are separable in frequency, we can make a mode
filtering designed byP (band-pass filter).
2/ As modes are linear in the time-frequency plane, there is
no more the non-linear time-frequency representation limi-
tations. We can so apply a time-frequency representationP

with an accuracy time-frequency localization.

4.1 Axe Warping matched to perfect waveguide

The instantaneous frequency is the derivate of the instanta-
neous phase. For the perfect waveguide, we start from the
dispersive relation (eq. 2):

ξm(τ) = 2π
∫

νm(τ)dτ = 2π(2m−1)

(

(C1τ)2−R2

4D

)1/2

(5)
The pressure signal which is a sum of modes is:

p(τ) = ∑
m

Amejξm(τ) (6)

whereAm is the mode amplitude. Starting from this law, the
warping operator is described by:

(Wp)(t) = |w′(t)|∑
m

Amejξm(w(t)) (7)

To fit nth mode on pure frequencyfw in the warped domain,
following conditionξn(w(t)) = fwt is necessary. We then
deduce:

w(t) =
(k2t2 +R2)1/2

C1
(8)

with k = fwD/4(2m−1).

The pressure signal studied is multi-components. The warp-
ing operator can shift all the structures to pure frequencies in
the warped space if they are homogeneous. This is the case
for modes in the perfect waveguide as they are linked to each
other by a factor dilationm. By integrating this coefficient
on w(t), we can use the same warping operator to filter all
the modes. Because they are strictly separated in the warped
frequency domain, we can use a perfect band-pass filterF.
F corresponds to theP operator (figure 3). Unitary equiva-
lence allows the modal filtering on applyinĝF = W

−1
FW

with W andW
−1 constructedvia w(t) andw−1(t) function
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Figure 4: Left: Modal curve layout for real mode 3, 4 and
mode 3 with an error onD of 20%. Right: Corresponding
frequency on the warped frequency domain.fw represents
the theoretical warped frequency of the mode 3 with erro-
neous parameter
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Figure 5: Left: Modal curve layout for real mode 3, 4 and
mode 3 with an error onR of 50% andC1 of 100%. Right:
Corresponding frequencies on the warped frequency domain.
fw represents the theoretical warped frequency of the mode
3 with erroneous parameters

following eq. 7 and 8. With this method we are free from
the problem of time-frequency uncertainty which remains
(although circumvented) in matched TFR.

Mode filtering with axes warping method have to two main
limitations:
- Adequacy of the real waveguide with the perfect model;
- Accuracy knowledge of parameters (source-sensor distance
R, waveguide depthD, velocityC1...)

Both of these limitations can cause a spreading out of the
warping mode localization. Instead of being located on a
pure frequencyfw, the warped mode will be located around
this frequency or frequency shifted. To evaluate this shiftor
spreading out, we can compare the real modal dispersion (eq.
1) with that integrated to the warping operator (with error on
parameters and eventually non appropriate model). If those
curve are ”parallel”, there is a simple dilation factor between
them. Consecutively, modal frequency will be shifted in the
warped frequency but not spread out: the mode filtering is
still possible but not at the theoretical frequencyfw. It is
the case for an error on the waveguide depthD (figure 4).
If we have an significant error onR or C1, warped modal
frequency will be shifted and spread out: mode filtering
becomes impossible (figure 5).

4.2 Time-Frequency accuracy localization

A second application of this method is to improve the
time-frequency localization accuracy of modes. In prac-
tical situations, time-frequency localization of a mode is
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Figure 6: Left: Wigner-Ville distribution for filtered mode
3. Right: Wigner-Ville distribution for filtered mode 3 on
warped domain.
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Figure 7: Warping Wigner-Ville Operator application on fil-
tered mode 3

correlated with source-sensor distanceR [12]. Classical
methods (spectrogram, reassigned spectrogram, Wigner-
Ville distribution...) are not efficient to characterize multiple
non-linear structures. In warped domain, structures are
linear, spectrogram or reassigned spectrogram are thus
matched. In case of a single linear filtered structure we can
apply the perfect time-frequency method localization for
single linear structure: the Wigner-Ville distribution.

The protocol applied to the pressure signal to have the bet-
ter time-frequency localization is defined as:F̂ = W

−1
FW

for filtering and then applying the Wigner-Ville warping op-
eratorŴV = W

−1
WV(F̂) W. Example of Wigner-Ville

distribution on mode 3 is given figure 6 and 7: filtering re-
move interferences between modes and Wigner-Ville warp-
ing operator interferences intra mode.

5 Comparison between the two methods

5.1 Results on Real data

Real case results from a survey in North Sea for which the
source-sensor distance R = 5000m. Theoretical curves of the
first 7 modes are presented figure 1. Time version of the pres-
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Figure 8: Pressure signal for R=5000m (North Sea)
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Figure 9: Module of Short Time Fourier Transform for
R=5000m (North Sea)
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Figure 10: Matched TFR for R=5000m (North Sea)

sure signal is shown figure 8. The matched TFR is presented
figure 10 and the Short Time Fourier Transform [11] figure 9.
Benefit given by matched TFR with respect to the traditional
methods can clearly be seen: for the classical methods, time-
frequency compromise doesn’t make possible to distinguish
modes which is the case with matched TFR. Mode filtering is
then possible. To illustrate the warping method, we plot the
spectrum of the original signal (figure 11) and those of the
warped signal (figure 12). Once again, mode filtering is pos-
sible with this method: 7th first modes are clearly separated
in the warped domain which is not the case in the original
domain (we distinguish peaks but not necessarily linked to a
mode).
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Figure 11: Spectrum of the signal for R=5000m (North Sea)
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Figure 12: Spectrum of the warped signal for R=5000m
(North Sea)

5.2 Modal filtering performances comparison

5.2.1 Without errors

Energies of the modes inform us about the source depthzs
[2], their phase and their time-frequency localization about
the distanceR [12]. Modes can also be used to extract geoa-
coustical parameters [12]. We propose to evaluate the mode
restitution in time measuring the absolute mean error onn
samples:

E =
100∑n

i=1 |x(i)− x̂(i)|

∑n
i=1 |x(i)|

(9)

with x the original mode and ˆx the filtered mode. The error
is calculated for different values ofR (from R=2500m to
R=25000m) with the configuration of the real North Sea
dataset presented in the previous section. The model of
simulation is based on Pekeris waveguide (more realistic
that the perfect one).

This evaluation is made with the matched TFR (section
3), with the axe warping method (section 4) and with the
STFT. In this last case, we use the same protocol than with
the matched TFR. With the STFT, mode are not separable
less R=20000m because of the STFT limitations. For this
method, the evaluation begins thus in this value of R. Re-
sults are presented figure 13. As we can see, mode filtering
with warping operator is more efficient that with the matched
TFR. Indeed, with the warping operator, we have no more
problem with time-frequency uncertainty whereas it is still a
problem for the matched TFR even if it is circumvented along
the modal curve. Performances of warping are thus higher.
Starting from a sufficient long distanceR, performance con-
verge towards mode filtering by STFT. Modes are then more
separable but the spreading out of energy in time prevents a
good filtering (performances are lower).

5.2.2 With errors

We apply now significant errors on the knowledge of pa-
rameters: starting with the same signals, we apply methods
considering thatR′ = R/2 andC′

1 = 2C1. Because we have
seen that error onD doesn’t affect the accuracy of filtering,
we don’t apply an error on the depth.

Results are presented figure 14. If performances of filtering
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Figure 13: ErrorE of restitution with the 3 methods
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Figure 14: ErrorE of restitution with errors on parameters
knowledge

via matched TFR are not significantly changed, it is not the
case for warping method. Error onC1 or R must a priori
affect both filtering methods. But as we are projecting sig-
nal locally (on atoms) on acontinuumof m′ values, matched
TFR allows a high robustness (differences are always locally
small). As a result, on the one hand matched TFR are not
sensitive to badly estimated parameters, on the other hand,
warping method which apply a global law (not recalculated
locally) is not matched to this type of badly estimated situa-
tion.

6 Conclusion

We propose in this paper two signal processing tools to
filter modes in a shallow water environment. One is a
time-frequency representation matched to the model of
propagation. We project the pressure signal on dictionary
atoms locally defined. Modes are well separated on the
TFR and can be filtered using a Watershed algorithm.
The second is the application of an axe warping operator
which transform non-linear structures (the modes) on linear
structures in the warped domain. Modes are well separated
in the frequency domain and we can filter them with classical
band-pass filtering.

Performances evaluation show that the filtering with matched
TFR is less efficient when parameters are well estimated but
more on the contrary case. This 2 tools thus supplement
each other: on an filtering application, we can imagine us-
ing the TFR for a first parameters estimation and the warping

method for refining the filtering and the parameters evalua-
tion.
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