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Figure 1: An electro–acoustic loop with a feedback controller f̂0.

ABSTRACT
We propose a combination of the well known generalized sidelobe
canceller (GSC) or Griffiths–Jim beamformer, and the so–called
PEM-AFROW algorithm for closed loop room impulse response
estimation, resulting in a system for multimicrophone proactive
acoustic feedback cancellation. For public address applications in
low–reverberant environments, the computational complexity is re-
duced dramatically compared to state of the art proactive acous-
tic feedback cancellers, while performance is only marginally de-
graded.

1. INTRODUCTION

Acoustic feedback (the Larsen-effect) is a well known phenomenon
that appears in systems (e.g. hearing aids (HA) or public address
(PA) systems) that have an electro-acoustic closed loop. Anexam-
ple is the loop consisting of the microphone, gaing, delayq−D, the
loudspeaker and the room impulse responsef shown inFigure 1.
If the loop gain exceeds unity for a certain frequenciesωi where
the loop phase is 2niπ radians (withni integer), system instability
becomes audible as a loud ’howling’ sound.

Most of the acoustic feedback cancellation techniques thathave
been derived up till now are single channel techniques [1, 2,3, 4, 5]
(although some multi–channel examples exist [6, 7]). Traditional
approaches are mostly ’reactive’, because they allow the system to
become unstable first, in order to then identify the frequency where
acoustic feedback occurs, and introduce a notch filter for this fre-
quency into the signal path. More recent approaches [8, 9, 10] are
proactive and do not introduce signal distortion, as they are based
on an adaptive filter that models the loudspeaker–room–microphone
impulse response, and insert a so–called controllerf̂0, cfr. Figure
1, into the scheme, which effectively removes the component from
the microphone signal that stems from the loudspeaker. Suchap-
proaches are based on acoustic echo cancellation procedures, where
additional signal modelling is required to avoid a biased room im-
pulse response estimate due to the correlation between the desired
speech signal (“near–end signal”) and the (“far–end”) loudspeaker
signal (indeed meant to be a processed (amplified) version ofthe
speech signal). The PEM–AFROW algorithm of [8] applies sig-
nal model based prewhitening and effectively achieves an unbiased
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Figure 2: Griffiths–Jim beamformer. The coefficients inM andB
are examples :u does not contain a component correlated with the
broadside speech signalv, and hence forms a noise reference. Cor-
related noise is removed fromd by means of an adaptive filter.

estimate. Modelling the room impulse response, however, may be
computationally expensive, especially in the PA context, and there-
fore in this paper we will focus on a cheaper approach.

In its usual setting, the GSC provides noise cancellation, by
minimizing the noise energy in the GSC output, while preserving
the desired speech signal energy. In the present feedback cancella-
tion setting, the aim of the GSC is to cancel the “noise” signal pro-
duced by the loudspeaker (plus other noises perhaps), whileagain
preserving the desired speech signal.

However , a major impediment is that the noise signal (loud-
speaker signal) is now correlated with the desired signal, and so
cannot be cancelled by the standard GSC. An additional signal mod-
elling and whitening step will be included, which will be adopted
from the PEM-AFROW approach.

In section 2, a Griffiths–Jim (or GSC) based multichannel noise
reduction scheme is reviewed. In section 3.1, we propose thenew
algorithm that combines the GSC with a signal whitening proce-
dure. In section 3.2, we show how the optimisation problem intro-
duced in section 3.1 can be solved with the PEM–AFROW algo-
rithm. In section 4, a number of simulations are shown for different
scenario’s, which prove the effectiveness of the new scheme, both in
noiseless and noisy environments. Conclusions are given insection
5.

2. GSC BASED NOISE REDUCTION

A traditional approach to multichannel noise reduction is the so–
called Griffiths-Jim beamformer [11], or GSC, shown inFigure 2.
A fixed beamformerm produces a speech reference signald(k) by
“zooming in” on the speech signal sourcev(k). The input vector of
theM–microphone array can be written as

y(k) = v(k)+x(k) (1)

y(k) =











y(1)(k)
y(2)(k)

...
y(M)(k)











(2)
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y(i)(k) =











y(i)(k)
y(i)(k−1)

...
y(i)(k−Nm +1)











. (3)

wherev(k) andx(k) have a similar structure asy(k), and where
x(k) is the component in the microphone signal which stems from
the noise source, whilev(k) stems from the desired speech source.

The fixed beamformerm already suppresses some noise com-
ing from directions different from the speech signal direction, as
well as diffuse noise. This meansd(k) is a signal which contains
both a speech– and a noise component. A blocking matrixB is
chosen such that it suppresses the signal and hence creates anoise
referenceu(k). In this paper, we only use one single noise reference
channel, hence the blocking matrix reduces to a blocking vector. An
adaptive filter then removes the noise component ind(k) which is
correlated withu(k). In low reverberation situations, this amounts
to implementing a beam–pattern on the sensor array which hasa
zero in the direction of the noise sourcex(k).

The signald(k) can be written as

d(k) = mT v(k−D1)+mT x(k−D1), (4)

and the signal
u(k) = Bx(k). (5)

The adaptive filterf(k) with lengthN f now should converge to

min
f

ε{
∥

∥

∥
d(k)− fT u(k)

∥

∥

∥

2
}, (6)

with

u(k) =









u(k)
u(k−1)

...
u(k−N f +1)









. (7)

Hence,
f(k) = E{u(k)uT (k)}−1E{mT x(k)u(k)} (8)

The output inFigure 2 is

e(k) = mTv(k−D1)+mT x(k−D1)− (9)

E{u(k)uT (k)}−1E{mT x(k)u(k)}u(k). (10)

If no signal leakage occurs throughB, that is the signalu(k)
does not contain a component correlated withv(k) (a signal com-
ponent), thene(k) contains an undistorted version ofmT v(k). This
means the GSC approach works better in less reverberant environ-
ments.

3. FEEDBACK CANCELLATION

We propose to use a GSC–like structure for acoustic feedbacksup-
pression. In an electro–acoustic loop, a microphone signalis ampli-
fied, and emitted from a loudspeaker in the same room. A GSC–like
structure should then steer a zero in the direction of the loudspeaker
in order to provide acoustic feedback cancellation. It is obvious
though, that in a traditional GSC scheme, the loudspeaker signal
would lead to signal leakage through blocking matrixB, and hence
result in signal distortion.

3.1 Procedure

Still referring toFigure 2, we first assume thatv(k) is a white noise
signal instead of a speech signal (further on we will drop this as-
sumption), that contains FIR filters of lengthNm, and finally that
B is a perfect blocking matrix, which means thatv(k) does not
leak directly into the signalu(k). If a delayD2 > Nm is inserted
into the loop (cfr.Figure 2), then signalx(k) is not correlated with

B

+v

u
f0

A A

f

dy
y

y
1

2

3
x

e
q
−D

q
−D1 2

−

−

+

m

Figure 3: New GSC–based scheme for acoustic feedback suppres-
sion.

mv(k−D1), which is one of the components ind(k). On the other
hand, the componentmx(k−D1) is correlated withu(k) and will be
removed by the adaptive filter. Hencee(k) = mv(k−D1) ande(k)
does not contain a component stemming from the loudspeaker,thus
feedback cancellation is effectively performed. This shows that for
a white noise input signal, in an environment with low reverberation
(which means that a goodB can be found), feedback cancellation
can be obtained by using a GSC.

This simple observation can be of use in a PA application where
the geometry of the loudspeaker/microphone array setup is fixed.
The adaptive filter can then be trained with a white noise sequence,
and kept fixed during use. On the other hand, it may be of interest
to be able to adapt to changing acoustic environments. Hencewe
derive an algorithm which uses the (speech) signal to perform a
continuous training of the adaptive filter.

For a speech signalv(k), we propose the use of prewhitening
filters, as shown inFigure 3 and adopt a procedure similar to the
so–called PEM-AFROW algorithm of [8]. Here, the updating of
the adaptive filterF is performed with prewhitened versions of the
signalsd(k) andu(k). The prewhitening filter is a linear prediction
error filterA, and the coefficients ofA are estimated together with
f . The resulting adaptive filter coefficientsf are copied at regular
time instants to the so–called ’controller’f0 (dashed arrow).

For the analysis, we assume a stationary AR–input signal and
a noise–free environment. In the simulations in section 4, we will
show results for real speech signals, both in a noise–free and in a
noisy environment. Define

H(z) =











H(1)(z)
H(2)(z)

...
H(M)(z)











, (11)

whereH(i)(z) is the transfer function from the loudspeaker to theith
microphone. SimilarlyHv(z) is the transfer vector from the signal
source to the microphone array. VectorM(z) is aM–element vector,
andB(z) is an 1×M blocking matrix . We assume that the response
of M(z) in the direction of the signal of interest is unity,

MT (z)Hv(z) = 1 (12)

and that the blocking matrix is perfect (no signal leakage),i.e.

B(z)Hv(z) = 0. (13)
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The vector

Y(z) =











Y (1)(z)
Y (2)(z)

...
Y (M)(z)











(14)

is the z–transform of the microphone array input signal. We have

E(z) = D(z)−U(z)F0(z), (15)

Y(z) = H(z)E(z)z−D2 +Hv(z)V (z), (16)

D(z) = MT (z)Y(z)z−D1 , (17)

U(z) = B(z)Y(z). (18)

Define
E(z) = D(z)−U(z)F(z) (19)

The whitened residual signal is

Ew(z) = A(z)(D(z)−U(z)F(z))

= A(z)E(z). (20)

The minimization problem that will be solved is now

min
A,F

ε{‖Ew(z)‖2}. (21)

We have

E(z) =

(

z−D1MT (z)−B(z)F(z)
)

Hv(z)V (z)

1− z−D2(MT (z)H(z)z−D1 −B(z)H(z)F(z))
. (22)

Defining the 1×M vector

Q(z) = z−D1MT (z)−F(z)B(z), (23)

we can write

Ew(z) = A(z)
Q(z)Hv(z)V (z)

1− z−D2Q(z)H(z)
(24)

With a time invariant modelV (z) = 1
Ã(z)

W (z) andW (z) a white

Gaussian noise process andÃ(z) a P’th order, monic polynomial
(cfr. A(z)), this becomes

Ew(z) = A(z)
Q(z)Hv(z)

Ã(z)− z−D2 Ã(z)Q(z)H(z)
W (z). (25)

If the minimum ofε{‖Ew(z)‖2} corresponds toEw(z) = z−D1W (z),
i.e. when (25) is whitened byA(z) and F(z), and if in this case
A(z) = Ã(z), the desired solution is found, since then (using (12)

and (13))E(z) = z−D1 W (z)
Ã(z)

= z−D1V (z). After copyingf to f0, the

loudspeaker signalz−D2E(z) = z−D2E(z) = z−D2z−D1V (z) (which
is the delayed near end speech signal).

We note that for monicA(z) andÃ(z), ε{‖W (z)‖2} is a lower
bound forε{‖Ew(z)‖2}, which is reached when

A(z)
Q(z)Hv(z)

Ã(z)− z−D2 Ã(z)Q(z)H(z)
= z−D1. (26)

From this expression, it can be seen that ifD2 > P (with P the order
of the speech model AR process, and hence the largest exponent
in Ã(z) ), a unique solution is found forA(z), namelyA(z) = Ã(z).
Using (13), we can now write (26) as

MT (z)Hv(z)z−D1

1− z−D2(MT (z)z−D1 −F(z)B(z))H(z)
= z−D1. (27)

This results in

F(z) =
1− z−D1−D2MT (z)H(z)−MT (z)Hv(z)

z−D2B(z)H(z)
. (28)

With the assumption of unit response in the direction of the near
end signal, the last term in the numerator becomes 1 and we obtain
the unique solution

F(z) =
z−D1MT (z)H(z)

B(z)H(z)
(29)

In practical (PA) scenarios, usually several loudspeakers, all pro-
ducing the same signal, are used. The proposed scheme also per-
forms well in this case because the resulting signal at the micro-
phone array can also be written asHv(z)Vz) whereHv(z) is now
the sum of all transfer functions from all the loudspeakers to the
microphone array. This may seem counter–intuitive, since it is well
known that a traditional GSC with one single reference can only
steer a zero towards a single interferer, but in our case all interfer-
ence signals are correlated (i.e. the same).

3.2 Implementation

Due to the joint estimation ofF andA, the minimization problem
(21) is nonlinear. It is similar to the minimization in [8, 12], and
the same strategy (PEM–AFROW) can be applied. This technique
consists of separating the nonlinear minimisation problemin two
linear problems. First,F is assumed known, and for a frame of data
e(k−L+1) . . .e(k), a predictorA is computed. Note that in the ideal
case (either no noise or no reverberation), and ifF is correct, the es-
timatedA corresponds to the AR coefficientsÃ of v(k). Then, in a
second step, for the same time frame, the datad(k−L +1) . . .d(k)
andu1,2(k−L+1) . . .u1,2(k) is filtered with the prediction error fil-
ter corresponding toA, as shown inFigure 3, and the residuals are
used to update the adaptive filterF . Because of the separation of
the nonlinear cost function, it is possible that convergence to a lo-
cal minimum occurs. However, because of the nonstationarity of
the speech signal (and the relative stationarity ofF, which deter-
mines the relatively constant direction of the loudspeakerversus the
microphone array), the cost function constantly changes, and so it
can be seen that the convergence process may also leave theselocal
minima. This is confirmed by our simulations.

The PEM–AFROW algorithm of [8, 12] implements a different
approach, where the impulse response from the loudspeaker to the
microphone is estimated as in an echo–cancellation scenario. It also
involves a signal whitening, to avoid a signal correlation that other-
wise leads to a biased solution. The major advantage of the GSC–
structure compared to the direct PEM–AFROW approach in [8, 12]
is that the order of the adaptive filter can be significantly lower (e.g.
40 taps) than in the room impulse modelling setup (e.g. 4000 taps
for a 16 kHz sampling rate). Significantly less degrees of freedom
are required to steer a zero in the direction of the loudspeaker than
for modelling the exact room impulse response. In addition,if the
filter order is taken small enough, namely smaller than the minimal
pitch period in the speech input signal, the use of both a short–term
and a long term predictor as in [8, 12] is not required. For such a
small filter order, the estimation bias due to the pitch period does
not occur if the stimulus signal for voiced sounds is modelled as an
ideal impulse train. In practice, this is a good approximation, and
so the long term predictor can indeed be left out.

The computational complexity of the proposed algorithm is
roughly equal to that of a PEM–AFROW implementation with a
filter length of e.g. 40 taps (instead of e.g. 4000 taps).

4. SIMULATIONS

First we evaluate the scheme in the noise–free case. The feedback
suppression performance is measured based on the ’added gain’,
which is the difference in maximum stable loop gain for the uncon-
trolled system (f0 = 0), and the maximum stable loop gain for the
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controlled system (f0 after convergence). As near end speech sig-
nal, a 3 second sentence sampled at 8kHz and pronounced by a male
speaker is used. The near end signal is assumed to be pronounced
sufficiently close to the array so that no reverberation occurs. A 500
taps simulated room impulse response [13] of a 5x4x3 meter room
is used, once with wall reflection coefficientsr = 0.5, and once with
wall reflection coefficientsr = 0.1. Three microphones are spaced 5
cm on a linear array centered at [1,2,1]. The loudspeaker is at [4.5,
3.5,1]. An RLS adaptive filter with 40 taps is used. Values forthe

steering vector and the blocking matrix arem =
(

1
3

1
3

1
3

)T
,

andB = ( 1 1 −2 ). The simulation shows that in this case a
maximum added gain of 7.2 dB can be reached (maximum means
that the system is still marginally stable at that point). Note that
this value is lower than typical added stable gains with the PEM–
AFROW approach in [8, 12]. On the other hand, if the loudspeaker
to microphone array angle is fixed, a more robust performancecan
be expected because the parameters mostly depend on this angle,
and not on small changes in the room impulse response (moving
objects or persons) .

If a white noise point source is added at position [1.29, 1.5,1],
with a SNR of the near end signal versus the noise measured at the
position of the middle microphone of 25 dB, the added gain de-
creases to 6.4 dB. The GSC will now also attempt to perform noise
reduction. We measure the noise reduction performance by letting
the adaptive filterf = f0 in the GSC–system converge. Adapta-
tion is then switched off, and the feedback loop is removed. Now
only the noise input signal is applied (not the speech) and the out-
put energyσ2

proc is measured. Then the filter coefficients inf are
set to zero, and the simulation is repeated. This results in arefer-
ence output energyσ2

noproc. The noise reduction measure is then

10log
σ2
noproc
σ2
proc

, where a negative value corresponds to noise ampli-

fication. This measure shows the noise reduction performance due
to the adaptive filter, it does not contain the extra noise reduction
provided by the steering matrix. Note that when a feedback loop is
present, the noise is also reproduced in the feedback loudspeaker,
and hence in a practical situation, the noise reduction of the scheme
will be even larger than what is measured here.

The following table shows the results in different scenarios.

SNR AG NR AG NR

r=0.5 r=0.1

∞ 7.2 dB * - 14 dB * -

25 dB 6.4 dB * -6 dB

10 dB 3.5 dB * 1.89 dB 14 dB * -10 dB

10 dB 6 dB -2 dB

10 dB 3 dB 0.5 dB

10 dB 0 dB 3.1 dB 0 dB 9.3 dB

5 dB 1.5 dB * 2.62 dB 14 dB * -10 dB

0 dB 0 dB * 7.37 dB 14 dB * -10 dB

The added gains marked by an asterisk are the maximum
achievable added gains. In the low reverberation case, the maximum
added gain is constant as a function of the SNR, and the systemwill
make a trade–off between feedback suppression and noise reduc-
tion. If feedback is the most important part in the minimisation cri-
terion (high gains), then noise may even be amplified (e.g. SNR=10
dB, added gain=14 dB), but the system will remain stable. In the
case with high reverberation, the maximum added gain decreases
when the SNR decreases. It is found that the PEM–AFROW based
GSC system performs feedback cancellation in a noise–robust fash-
ion.

5. CONCLUSIONS

We have derived a GSC–based scheme for feedback cancellation
which is robust to additional noise. In low reverberant environ-
ments, the complexity of this setup is much smaller comparedto

feedback–cancellation based on PEM–AFROW only, while perfor-
mance is only marginally degraded.
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