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ABSTRACT
High-speed video cameras are powerful tools for investigat-
ing for instance the biomechanics analysis or the movements
of mechanical parts in manufacturing processes. In the past
years, the use of CMOS sensors instead of CCDs has made
possible the development of high-speed video cameras of-
fering digital outputs, readout flexibility and lower manufac-
turing costs. In this paper, we proposed a high-speed cam-
era based on CMOS sensor with embedded processing. Two
types algorithms have been implemented. The compression
algorithm represents the first class for our camera and allows
to transfer images using serial output link. The second type
is dedicated to feature extraction like edge detection, mark-
ers extraction, or image analysis, wavelet analysis and object
tracking. These image processing algorithms have been im-
plemented into a FPGA embedded inside the camera. This
FPGA technology allows us to process in real time 500 im-
ages per second with a 1,280H×1,024V resolution.
Keywords: CMOS Image Sensor, FPGA, Image Compres-
sion, High-speed Video.

1. INTRODUCTION

In the past years, the use of CMOS sensors instead of CCDs
[1, 2]has made possible the development of industrial high-
speed video cameras offering digital outputs, readout flexi-
bility and lower manufacturing costs. Two main limitations
of these systems may be discussed. First, the huge data
flow provided by the sensor cannot be easily transferred or
processed and has generally to be stored temporarily in a
local fast RAM memory. This RAM is size limited so the
recording time in the camera is only a few seconds long. Us-
ing an image compression approach, we developed an alter-
native solution that allows continuous recording. With this
approach, we do not use an embedded RAM memory, and
store directly to a connected PC memory. A major advantage
is to use the permanent evolution of PC RAM memory.
Second, in order to execute in real-time image processing
dedicated to tracking or object recognition, the interesting
information must be extracted from huge data flow inside
of the FPGA. The image processing algorithms have been
implemented inside a FPGA and with technology, we have
show that it is possible to process in real-time 500 frames
per second (resolution 1,280H × 1,024V ). In particular, to
reach this speed, we implemented on FPGA, fast parallel
algorithms dedicated to image compression and image seg-
mentation. This paper is organized as follow. Our high-speed
camera is described in Section 2. The studied image com-
pression and image processing algorithms and their imple-
mentations inside the FPGA are introduced in Section 3. Fi-

nally conclusions and perspectives are drawn in Section 4.

2. HIGH-SPEED CAMERA DESCRIPTION

Nowadays, many image CMOS sensors exist providing a
high acquisition flexibility. Moreover, some of them en-
able to access simultaneously to several pixels at high fre-
quency (up to 66MHz) therefore the input data bandwidth is
extremely high. This kind of sensor allows many possibilities
in terms of high-speed acquisition and processing. Indeed, in
order to process in real-time, simultaneously pixel access is
required. For these reasons, we have designed a high-speed
camera based CMOS sensor and in order to control this data
flow and to process in real-time these informations, a specific
unit has been designed based on FPGA component. FPGA
features enable to connect a high number of I/O, to design a
specific controller adapted to the sensor and finally to achieve
real-time processing on large input data flow. Low level
image processing are regular, frequently same task can be
done simultaneously on several pixels or different regions of
the image. The FPGA architecture and hardware ressources
are specially adapted to these operations therefore processing
time can be significantly reduce and data flow bottleneck re-
move. In the literature, almost high-speed cameras are devel-
oped with embedded memory (optronis CAMRECORD600
[3], motion Blitz cube Eco2 Mikrotron [4]and others) or with
parallel output (camera link) but the host PC need a frame
grabber (VDS CMC1300 [5] or Basler A504 [6]). To obtain
long sequences, the memory is very large and therefore very
expensive. We propose a new solution based on the suppres-
sion of the embedded memory and direct data transfer into
the external memory on the host PC connected to the camera
output. By using PC memory, the camera benefits of evolu-
tion in terms of size and frequency. The camera output has to
be the most simple as possible with low cost like a standard
serial interface like firewire or USB.
We used the MT9M413 high-speed CMOS image sensor
from Micron in order to design our high-speed camera. The
main features of this image sensor are a high frame rate (500
images per second at full size frame (1,280H × 1,024V )),
the output with 10-bit digital through 10 parallel ports, a high
output data rate at 660Mbs,the shutter exposure time with a
minimum of 100ns. In relation to the image data rate and im-
age resolution we have selected the VIRTEX-II XC2V3000
FPGA from Xilinx with 14,336 logical blocks (slices), 96
dedicated 18-bit× 18-bit multiplier blocks and 18 Kbit dual-
port RAM (BRAM) and 720 I/O pads. USB2.0(Universal
Serial Bus version 2.0) is a interesting solution for our digi-
tal camera because it provides true plug and play installation
and it is an hot-plugging material. Our high-speed camera

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



FPGA board

CMOS Image sensor board Interface board

Internal View

C M O S
s e n s o r

F P G A U S B

E E P R O M

S D R A M
S R A M

S e n s o r
B o a r d

I n t e r f a c e
B o a r d  

F P G A
B o a r d

Synoptic
Figure 1: High-speed camera system.

system is constituted by three boards as shown in Figure 1,
which represents respectively the acquisition board with only
CMOS sensor, the acquisition control and processing based
on FPGA implementation and finally interfaces board. As
any standard CMOS camera, user can define image num-
ber and select random region acquisitions with variable re-
gion size(Region Of Interest(ROI)). In full resolution, with
USB2.0, 17 frames per second can be transferred and simul-
taneously displayed on the VGA screen.

3. ALGORITHMS AND IMPLEMENTATION

In the context of our fast CMOS camera design, we have dis-
tinguished two different types of high-speed image applica-
tions. The first class regroups applications that do not require
real-time operations, for instance off-line image processing
or a visualization of recorded sequences that represent a
high-speed phenomenon (Section3.1). The second class re-
groups applications that require on-line operations like high-
speed feature measurements (motion, boundaries, marker ex-
traction)(Section3.2). Therefore, in this context, most of the
time, the camera output flow is considerably reduced. With
our camera design, FPGA embedded solutions are proposed
for the two presented classes. In order to match to require-
ments of first class applications, an embedded compression is
proposed. With this compression, full resolution images can
be transferred up to 500 frames per second. To demonstrate
on-line capacities of our camera, feature extraction process-
ing has been implemented. As the previous class, the mea-
surement is performed at the highest frequency of sensor data
output. In any case, both solutions must deal with the main
feature of high-speed imaging : the important sensor out-
put data bandwidth (in our case up to 660 Mpixels per sec-
ond). Hence, the embedded solutions must achieved real
time processing on this large input data flow moreover the
hardware ressource should be minimized.
Consequently, some image processing, compression and fea-
ture extraction, has been implemented regards to perfor-
mances and the hardware ressource available. These two dif-
ferent implementations are described in following sections.

3.1 Embedded compression

3.1.1 Analysis for embedded compression

In this section, hardware implementation for image com-
pression are discussed respect to high-speed imaging con-
straints. We will focuss on recent FPGA implementation.
Three hardware implementations of image compression stan-
dard (JPEG, JPEG2000, MPEG4) are then presented. These
methods are based on spatio-temporal algorithms and use dif-

ferent approaches like predictive coding, transform coding
(Fourier transform, Discrete cosinus transform) or wavelet
coding.
First at all, these implementations perform compression
on video stream at high frequency (Table 1). The JPEG,
JPEG2000 and MPEG4 IPs can process respectively 50, 13
and 12 MPixels per second [7, 8, 9]. Nevertheless these
performances do not match with high-speed constraints(660
Mpixels per second = 66 MHz x 10 pixels). Our 10 pixel ac-
cess at each cycle can be a solution to increase performances.
Nevertheless, a parallel processing of the 10 pixels is not an
easy task. Indeed, the spatio-temporal dependency do not
permit to split data flow between several IPs in parallel with-
out modifications on the IP. Once again, the modifications
are not easy tasks on such complex IPs, moreover hardware
ressource cost would be very high. Indeed, the three stan-
dard implementations are require respectively 3034, 10800,
and 8300 slices with a serial pixel access. Even partial im-
plementations, like partial JPEG2000 [10], can not match the
input flow constraint. In this design entropy encoder has
not been implemented, therefore the complexity is reduced
to 2200 slices, nevertheless the processing frequency is still
not sufficient (33 pixels/s). Moreover, nearly all these IPs
require external memory. To solve this problem we propose
a trade off between processing performances and hardware
ressources by implementing a 1D Discrete Wavelet Trans-
form. Therefore, no external memory is required, indeed a
1D transform can be applied directly on the input data flow.
This original implementation permits to process at each cycle
10 pixels in parallel (1D10P-DWT).

Compression input slices freq external
IP flow /BRAM Mpix/s memory

JPEG S 3034/2 50 no
Part. JPEG2000 S 2200/0 33 yes

JPEG2000 S 10800/41 13 yes
MPEG4 S 8300/21 12 yes

1D10P-DWT P 2465/9 130 no
+RLE

1D10P-DWT P 3500/17 660 no
+BC+Huff

P=Parallel data flow S=Serial data flow
RLE=Run-Length Encoding BC=Block Coding

Huff=Huffman Encoding

Table 1: Comparison of compression implementation.

The advantage of wavelet transform coding [11, 12]
for image compression is that resulting wavelet coefficients
decorrelate pixels in the image and thus can be coded more
efficiently than the original pixels. Figure 2a is an illustra-
tion of a 1D wavelet transformation with 3 levels of decom-
position. The original image histogram shows that grey-level
distribution is relatively large (range from 0 to 255) while
the wavelet coefficients histogram is thinner and centred on
the zero value. Using this property, wavelet coefficients can
be coded with better efficiency than the pixels in the origi-
nal image. The 1D10P-DWT implementation and two asso-
ciated compression are described in the next section. Nev-
ertheless as a comparaison point with standard compression
implementations, their performances and hardware require-
ments are reported into the table 1.
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3.1.2 Wavelets pre-processing and compression

In order to implement a wavelet transform compatible with
hardware constraints, we use the lifting-scheme approach
proposed by Sweldens[13] in 1995. This wavelet transform
implementation method is described in Figure 2b were we
consider the original image pixels in a data-flow mode (in
a 1D representation). The one dimension Lifting-scheme
(LS 1D) approach is decomposed into three main blocks:
Split, Predict and Update. The Split block separates pixels
in two signals: odd pixels and even pixels. The Predict and
Update blocks are simple digital first order FIR filters which
produce two outputs: image details (wavelet coefficients) and
image approximation used for the next LS 1D stage. For this
camera, the data flow is 10 pixels width and the IPs that we
designed is based on it (Figure 3a).
The CMOS image sensor 10 pixels simultaneously and there-
fore a real-time parallel processing is necessary. For this, the
10 pixels are split in five odd pixels and five even pixels (Fig-
ure 3a). For the odd pixel we designed the IP1 and for the
even the IP2. This 2 IPs are based on the same principle of
LS 1D [14, 15]. For the IP1 the central pixel is the odd pixel
and we use the 2 neighbor even pixel with the appropriate
coefficients. For the IP2 the central pixel is the even pixel
and we use the 2 neighbor odd pixel and the 2 neighbor even
pixels with the appropriate coefficients (Figure 3b). For each
process, we have 5 detail pixels and 5 approximation pixels
in the same time. In our case, a pyramidal algorithm is de-
scribed where three LS 1D block are cascaded, and this gives
a wavelet transform with three coefficients levels. The same
operation is operated for each level. The approximation pix-
els are processed 5 by 5, and then 10 pixels word is formed
to be used at next level.
In implementation, we have 4 outputs, three for detail level
and 1 for approximation level. This output can be extract at
the same time and we cannot build the wavelet image. To
build this image, the coefficients are stored in 4 FIFOs, one
for each coefficient. For a fast processing, we create 8 FI-
FOs: 4 for odd line and 4 for even line. In term of slices for
the 3 levels is 1465 slices(10%), and we use 8 BRAMs(8%).
To accelerate the data flow, a solution is to reduce informa-
tion from the wavelet coefficients. One method is to use a
threshold and a RLE coding for detail pixels and transfer the
approximation pixels. In this case we have a 5:1 compres-
sion rate with an acceptable PSNR. This wavelet and com-
pression has been implemented (1D10P-DWT+RLE) in the
FPGA and requires 2465 slices(17%) and 9 BRAMS(9%).
Another type of compression is to apply a threshold to the
wavelet coefficients in order to eliminate low values, and
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Figure 3: Wavelet IPs

then code these coefficients using a block coding method.
This compression method consists of processing the image
with an n× n pixel window. In relation to the above FPGA
specifications, it is possible to store inside this chip 8 lines
of 1280 pixels each so we chose n = 8. For each n×n pixel
window, we test the uniformity of the pixels. If the pixels
are not uniform, we divide this window into 4×4 and 2×2
pixels sub-windows and we re-test the uniformities inside
these sub-windows. When we apply this compression after
a wavelet coding we obtain a compression ratio of 15:1, and
the image quality is quite good (PSNR greater than 30dB). To
attempt a compression ratio of 30:1, we use a Huffman algo-
rithm after this processing. This algorithm of block coding
(BC) is currently implemented. The association of wavelet
and block coding (1D10P-DWT+BC) requires around 3500
slices(24%) and 17 BRAMs(17%). To attempt a compres-
sion ratio of 30:1, we use a Huffman algorithm after this
processing.

3.2 Low level image processing
A lot of fast vision applications do not need to store the full
image because only pertinent informations in the image are
necessary like object position detection. To illustrate this ap-
proach, we present in this section a real-time markers ex-
traction in the context of biomechanics analysis. In the first
part of this section we describe the preprocessing allowing
objects segmentation and in the second part the marker ex-
traction.

3.2.1 Pre-processing

In many applications, objects in the image are extracted from
the background; the image is then binarised: objects are
coded at high logic level and background in low logic level.
Many segmentation methods exist[16] to extract the object
from the background, we have retained a very simple one in
term of implementation: binarise with a threshold. In our im-
plementation the threshold is defined by the user and transfer
via USB2.0 link to the processing block. The threshold can
be processed off-line on the PC in view of the image nature.
The user can apply its own segmentation method, this solu-
tion is then very flexible. The threshold determination can be
also implemented into the FPGA, some local adaptative bi-
narisation based on robust Niblack algorithm [17](using 8x8
or 16x16 neighborhood) can be implemented with a moder-
ate hardware cost: 1286 slices(9%) and 5 BRAMs(5%). In
aimed application, the number of the segmented regions are
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Figure 4: Mouse tracking

low and the resulting high-level regions very homogenous.
The information can then be compressed. The transfer is ob-
viously done row by row, therefore, on each row, only the
beginning, the end of each high level regions is transferred.
For many applications, the obtained compression rate is over
30, that enables to reach a 500 images per second for a full-
frame resolution (1,280H× 1,024V ). The image frequency
increases proportionally with a reduction of the image size.
This solution is very economic in terms of hardware imple-
mentation only one embedded memory block and less than
330 slices(2%) are required. Most of the logic is mainly due
to the large input data flow (10 pixels) simultaneously.

3.2.2 Markers extraction

In this part, we present a specific application concerning the
tracking of a mouse running on a moving pavement with a
speed of 12, 20 or 37cm/s. For this application, biologists
have a simple commercial video camera with a frame rate
of 25 images per second and no embedded processes. After
discussions and tests with biologists, the conclusion was that
standard video acquisition is too slow. A minimum speed of
250 images per second is necessary for a good observation
of the leg movement. Only the movement of the leg markers
interest the biologists [18]. It is in this perspective that we
proposed a embedded markers extraction. In this case, our
camera works with a 500 images per second mode. We
have implemented inside the FPGA device of our camera
some basic real time image processing operators like: ROI
detection, image thresholding, image edge detection, image
merging, erosion, dilation and centres of gravity calculation.
In particular we have previously studied the implementation
of real-time centres of gravity calculation in the context
of sub-pixel metrology[19]. We used this result for our
application. Figure 4 illustrates this application and simple
image processing which can extract the X and Y positions
of specific markers placed on the mouse. Thus, Figure 4-a
shows the mouse running on the moving pavement. On
this mouse, 7 markers have been placed. A first step of our
algorithm consists to extract the ROI (where the markers
are) and for this, using a local edge detector, we obtain the
right edge of the mouse (located near its nose). As we know
the average length of a mouse, we can easily determine the
position of the ROI. From this ROI (shown in Figure 4-b),
two image processing are executed in parallel: Image thresh-
olding (Figure 4-c) and Edge detection using Sobel filter
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Figure 5: Schematics of a fast parallel Sobel calculation
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(Figure 4-d). A logic combinaison between the 3 images
(Figures 4-b, 4-c, 4-d) followed by an erosion produce the
final image shown in figure 4-e. Erosion allows to suppress
isolated white pixels. The final image corresponds to the
markers extraction. The final step consists to determine,
with a sub-pixel resolution, the coordinates of the centres of
gravity of each detected marker[19]. The resulting regions
can be then transferred or only centres of gravity to reduce
the output flow. In order to illustrate our approach, we
only present in this section, the description of real time
image processing implementation for Edge detection using
Sobel filter. If we consider f (x,y) the grey value of the
current pixel, where x and y are the pixel coordinates, the
output g(x,y) of the Sobel filter edge detector is given by
the following equation: g(x,y) = |(g1(x,y))|+ |(g2(x,y))|
where:
g1(x,y) = ( f (x,y) + 2 f (x− 1,y) + f (x− 2,y))− ( f (x,y−
2)+2 f (x−1,y−2)+ f (x−2,y−2)) and
g2(x,y) = ( f (x,y) + 2 f (x,y − 1) + f (x,y − 2)) − ( f (x −
2,y)+2 f (x−2,y−1)+ f (x−2,y−2)).
Using the Z transform respectively to g1(x,y) and g2(x,y),
we obtain G1(z) and G2(z).
Thus, G1(z) = (F(z) + 2Z−1F(Z) + Z−2F(Z)) −
Z−2N(F(z)+2Z−1F(Z)+Z−2F(Z))
where F(z) is the Z transform of f (x,y) and N is the number
of pixels per line.
G1(z) can be factorized as:
G1(z) = (F(z).(1 + Z−1).(1 + Z−1)) − Z−2N(F(z).(1 +
Z−1).(1+Z−1)).
Similarely, we obtain g2(x,y),
G2(z) = (F(z) + 2Z−NF(Z) + Z−2NF(Z)) − Z−2(F(z) +
2Z−NF(Z)+Z−2NF(Z))
G2(z) can be factorized as:
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G2(z) = (F(z).(1 + Z−N).(1 + Z−N)) − Z−2(F(z).(1 +
Z−N).(1+Z−N)).
These last equations show that the g1(x,y) and g2(x,y)
components can be calculated using simple first order digital
FIR filters. The full schematics of the Sobel filter operator is
given in Figure 5.
For the implementation, we factorize G2(z) like this:
G2(z) = (F(z).(1+Z−N).(1+Z−N))(1−Z−2).
With this factoring, we see that we can eliminate 3 FIFO
from the original architecture shown in figure 5. The new
simplified schematic is given in figure 6.
This basic block described has been adapted to the par-
allel pixel access. The major of the original structure is
repeated as adders, but all the delays are obtained with
large 100 bits fifo based on BRAM embedded mem-
ory. This implementation required 1560 slices(9%) and
9 BRAMs(9%). The erosion implementation has been
done with the same methodology. The marker extraction
implementation is then requiring 2103 slices and 18 BRAMs
and enables to reach 500 frames per second with a full
resolution(1,280H × 1,024V ). The processing is less than
20 ns for 10 pixels, the edge filter is then reaching the
performance of 500 MPixels/s (10-bits/pixel).

4. CONCLUSION AND PERSPECTIVES

In this article we have shown that it is possible to imple-
ment into a FPGA device several real-time image coding
and processing algorithms dedicated to fast vision applica-
tions like long fast image recording or real time movement
analysis. Long fast image recording is possible using em-
bedded compression approach based on wavelet coding into
a FPGA device. Thus, it is possible to capture fast image with
1,280H × 1,024V pixels resolution running at 500 images
per second, and transmitting in real-time coded images with a
30:1 compression ration with a PSNR higher than 30dB. We
describe also real-time image segmentation implementation
dedicated to fast movement analysis. In particular, we have
described an application concerning tracking of a mouse run-
ning on a moving pavement with a speed of 37 cm/s. For this
application, basic image processing have been implemented
into the FPGA device like edge detection, erosion and cen-
tres of gravity calculation.
In perspectives, we wish to design and to implement new
algorithms for Fast Motion capture without markers using
pattern recognition approaches like Neural Networks and for
this, we will use previous results that we already obtained for
real-time face tracking[20].
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