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ABSTRACT

In this paper, the problem of nonlinear equalization is
adressed. We use an algebraic approach which allows us
to define the existence conditions of a left inverse, for a
nonlinear system and therefore the equalization conditions.
These existence conditions need the computation of the rank
of some jacobian matrices. This approach is applied to a
Volterra filter, which represents a nonlinear system. We will
show also that these equalizability conditions depend to the
coefficients of the nonlinear system and input values there-
fore we can verify for any channel with assumed known co-
efficients if this system is ideally equalizable or not. The ap-
propriate algorithm that we have used to test the performance
of the equalization is the APA (Affine Projection Algorithm).
The choice of APA is justified by the use of a colored exci-
tation signal as an input signal due to the nonlinear channel
characteristics.

1. INTRODUCTION

Nonlinear Equalization techniques are becoming increas-
ingly important to improve the performance of telecommu-
nication channels. In fact, many real world communication
systems, such a satellite telecommunication channel, high
density magnetic, etc, uses a nonlinear devices that gener-
ate a nonlinear InterSymbol Interference (ISI). To resolve ef-
ficiently this problem we need to verify the existence of a
perfect equalizer for those systems.

A few approaches have been proposed in that sense, we can
cite the method given in [1] where under certain conditions
a linear Finite Impulse Response (FIR) filters can perfectly
equalize nonlinear SIMO channels. In fact [1] assume that
the so-called channel matrix constructed from the channel
coefficients has full column rank. In that case linear FIR
equalizer always exists.

Other papers which treat the problem of existence of equal-
izer for a nonlinear systems are ([2],[3],[4]). The authors
present expressions for the exact inverse and the pth order
inverse for a specific nonlinear model. The pth order inverse
is used due to that not all nonlinear systems possess an in-
verse and many nonlinear systems admit an inverse only for
a certain subset of input signals.

The main contribution of this paper, is to present a re-
laxed method and conditions based on the system theory
([5L,[6],[7])where using some algebraic tools we will justify
the existence of a left inverse for a nonlinear system which
coincides with the ideal equalizer. Using these conditions we
give an explicit expressions for the subset of input signals for
which the nonlinear channel is perfectly equalizable.

Due to the nonlinear channel characteristics i.e the use of col-
ored input, we use the Affine Projection Algorithm (APA).

Because it employs several input vectors, then the APA pro-
vides faster convergence than the NLMS and the LMS espe-
cially when the reference input is highly correlated. The AP
Algorithm will be applied to a Volterra equalizer using the
Mean Square Error (MSE) criterion versus the number of it-
erations.

The outline of this paper is the following. In section 2 we
present a mathematical background. In section 3 we present
the algebraically equalizability conditions that allow us to
test the existence of equalizer for a nonlinear system. This
approach will be applied on a nonlinear channel given by [1]
as we will show in section 4. In section 5 we present the
APA that will drive the Volterra equalizer. And finally, we
conclude with some simulation results and conclusion.

2. MATHEMATICAL BACKGROUND

To present the algebraic approach, we need to introduce some
mathematical tools where for more details you can see( [6],
(81, [91,[10]).
o Difference fields:
Let z be the unit delay operator, acting on discrete time

signals as:
2(x(n)) = x(n—1)
x(n) = x(n—k)
2(x(n) +y(n)) = z(x(n))+z(y(n))
2(x(n)y(n)) = z(x(n))z(y(n))

A constant is an element ¢ such that zc = c.

Definition 1 A difference field # is a commu-
tative field equipped with the delay operator z.

e Left module:
Let ¥ be a given ground field. We denote by #[z],
where z is the delay operator, the ring of polynomials
with coefficients in % of the form

.
P(z) =Y @,
=0

A [z] is in general non-commutative (it is commutative if
and only if #" is a field of constants).

Let M be a left ! J#[z]-module. A finitely generated
left % [z]-module spanned by w(n) = (w;(n),...,ws(n))
is denoted by M = [w(n)].

because multiplication by scalars (the elements of .#[z]) applies on the
left
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3. ALGEBRAIC EQUALIZABILITY

In this section, we present the algebraic approach that will
define the existence conditions for an algebraic equalizer
concerning the nonlinear channel . with a transmitted sig-
nal u(n) = (u;(n),...,un(n)) and the received signal

y(n) = (y1(n),...,yp(n)). In fact, finding an algebraic equal-
izer means finding a left inverse for the above system. For
that we need to give some results presented in [11].

3.1 Nonlinear left invertibility

This section briefly outlines some notations and results from
nonlinear system theory, introduced by Fliess (see [6], [7]).
The part of mathematics underlying these results is the
theory of K&dhler differentials (see , [12], [13]).
Kdhler differentials can be seen as the alge-
braic version of the usual infinitesimal differential cal-
culus. We attach to the difference field ¢ (y(n)), the
left # (y(n))[z]-module [dy(n)] spanned by the so-called
Kdhler differentials dx(n), for x(n) € & (y(n)).
The mapping

d: A (y(n)) — [dy(n)]

satisfies the following rules

2(dC(n)) =d(z8(n)) VL(n)e A (y(n)) (1)
d(a(n)B(n)) =d(a(n))B(n)+a(m)d(B(n) (2
d(c)=0 Ve 3)

In this framework, the rank of a nonlinear system admits
a clear-cut definition given by Fliess [6, 7]

Definition 2 The rank of the input-output system . with in-
put u(n) and output y(n), denoted as tk{.7}, is defined as

k{.#} 2 tk[dy(n)]. @)

This rank satisfies the following properties:
o tk{."} <inf(m,p)
o rk{.7} extends to nonlinear system the usual transfer
matrix rank of linear time-invariant system.

And we have the following definition:

Definition 3 The system . with the input u(n) and output
y(n) is left invertible if and only if

tk{S} =m Q)

The left invertibility means that the input variables may be
recovered from the output variables by a finite set of differ-
ence equations.

3.2 Conditions of Algebraic Equalization

Using the left invertibility condition of the nonlinear system,
the rank of . must be determined. The computation of this
rank need the use of notion of filtration.

Definition 4 A filtration of a system % with input u(n) and
output y(n) is an ascending chain of subspaces:

A= span ) {dy (n) ... dy(n— 1))

Using the above definition, we give the following proposi-
tions:

Proposition 1 :
o dim7 =pr+f8
o dims7 | —dims# = p =k{S}

for r large enough.
Hence

Proposition 2 The nonlinear system . with m-input u(n)
and p-output y(n) is algebraically equalizable if and only if,

p=1k{S} =m (©)

Matrix formulation: We can also give an equalization
test for a nonlinear channel 4 using a matrix formulation as
shown:

Let y(n)be the output of a nonlinear channel /() represented
by a Volterra model, with input u(n) as given by the follow-
ing expression:

y(n) =h(u(n), u(n—1),...

Then, the Kéhler differential of y(n) is given by:

;u(n—N)) ©)

dy(n) = i Ldu(n =) ®)
j=0 du(n— j)
so that we have
dy(n) du(n)
dy(n—1) _, du(n—1) ©)
dy(n.—r) du(n —.N—r)

where J, denotes the Jacobian matrix of {y(n), y(n —
1),...,y(n—r)} with respect to {u(n), u(n—1),...,
u(n—N—r)}. A matrix formulation of the above proposition
then reads as:

Proposition 3 [11][5] The nonlinear channel h(-) is alge-
braically equalizable if and only if, forr > N

o tk/, =mr+f
o tkJ, 1 —1kJ, =m
4. APPLICATION EXAMPLE

In this example we choose # = R. We consider . the
nonlinear channel reported in [1] in example 2 whose input-
output expression is given by:

ihl(l) n—1I) +Zh2
=0
+ h3(0)u(n—1u(n )+V( )

y(n) = nfl

(10)

where the input u(n) is once chosen as a two-level PAM data
(u(n) =0, 1), once as a four-level PAM data (u(n) = £3,£1),
and v(n) is an additive white gaussian noise. Then, using
Kihler differentials we have

dy(n)

= oy du(n) + Budu(n—1) (11)
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where

oy = h1(0) +2h2(0)u(n) + h3(0)u(n—1)
Bn=hi(1)4+2hy(Du(n—1)+ h3(0)u(n)

12)
(13)

Note that the system (1) is linear time-varying, and its co-
efficients belong to the difference field .# (y(n)) since they
depend on the delayed versions of the input, as for the output
y(n).

Recalling the filtration (.Z7) associated to the above
time-varying system, we have for r =0,

Ho = span_y (y(m)){dy(n) } (14)

Now

dims%g =1k, Bu] =1

so long as @, or f3, # O for all n.
Next, for r = 1, we have

A = span ;) {dy(n),dy(n—1)} (15)

and dim.77] is equal to the rank of the Sylvester matrix

{Ogt 05: .Brf)1:|

When a, 0,1 # 0 or B,8,—1 # 0, this rank is equal to 2. We
may check that if o, 0,1 # 0 or B,8,—1 # 0 forall n € N,
then

dmst =r+1, Vr
and therefore, dim 57, | — dim 7. = 1 = number of inputs.
But if there exists an instant ng for which @, =0 and ﬁno =0
i.e
Oy = hy (0) + 2h2(0)u(no) + h3 (O)M(no - 1) =
By = h1(1) +2ha(1)u(no — 1) + h3(0)u(no) =

0 (l16)
0 (17
then finding the perfect equalizer which correspond to the left
inverse of the nonlinear channel isn’t possible. But we may
find an estimate of the ideal equalizer using an appropriate
algorithm.

Using the values of channel coefficients given in [1] are as
follow:

[71(0), 1 (1), h2(0), o (1), h3(0)) =[1,-2.5,0.01,0.2,0.007)’

we have verified that for all n and for any input value of u(n)
belonging to set {0,1} and the set {-3,-1,1,3}, the conditions
of a, or B, # 0 and also &, 0,1 # 0 or B,B,_1 # 0 are al-
ways verified. This implies that the channel is left invertible
and therefore we have an ideal equalization for this channel.
Using these equalizability conditions we give a clear defini-
tion for the subset of input signal for which we can have a
best equalization performances. In fact, the expressions of
oy, or B, #0and o, @, # 0 or B,B,_1 # 0 define this sub-
set.

But as shown in [14], we may have a certain input subset for
which the nonlinear channel isn’t algebraically equalizable.

5. AFFINE PROJECTION ALGORITHM

In this section we present the Affine Projection Algorithm
(APA) used to drive a Volterra equalizer for the nonlinear
channel represented also by a Volterra model. The APA of
order P, in a relaxed and regularized form, is defined as fol-
lows:

€y =Up — YpWy (18)
Cn = [Y’nYn + 61 (19)
Wni1 = Wn + 1YnC, len (20)

The excitation signal matrix for the equalizer is,Yy, and has
the structure,

Yn= [YnaYn-la"'aYn-P+l] (21)

where the y, = [y(n),y(n—1),...,y(n— N +1),
y()y(n),y(n)y(n—1),....y(n = Na+1)y(n = Na + 1)]", Ny
and N, indicate respectively the linear memory order and the
nonlinear memory order of the Volterra equalizer. Also,

Wp = [wl(l)wl(Z) . ..Wl(Nl)Wz(l, 1)W2(1,2) . ..W2(N2,N2)]
(22)

€n = [enaen—17"'7en—P+1]/ (23)
The scalar 0 is a regularization parameter used to cope with
the ill-conditioning in matrix inversion and U is a step size
parameter.

6. SIMULATION RESULTS

In this section, we consider the nonlinear real channel re-
ported in [1] and given by the equation (10) where SNR =40
dB. Equation (10) suggests the form of the nonlinear Volterra
equalizer with input y(n). The output of the equalizer, de-
noted by #(n), consists of a linear combination of all linear
terms and all possible combinations of nonlinear terms of
y(n). In fact, we have considered a 4-tap 2nd order Volterra
equalizer given as follow:

3 3

Y w(l,k)y(n—1)y(n—k) (24)
=0 1=0k=I

As mentioned previously, we will use the Affine Projection
Algorithm for adaption the equalizer. This due to the robust-
ness of such algorithm towards the correlated input. We will
use the NLMS algorithm (which represent the Affine Projec-
tion Algorithm of order 1) and Affine Projection algorithm of
order 2 and 3. The step size used to control the convergence
speed is equal to 0.1.

Also, as depicted previously, the proposed channel is always
algebraically equalizable when using a 2-PAM (i.i.d) data
(u(n) =0,1) or a 4-PAM (i.i.d) data (u(n) = £1,£3). In
fact, when we use at first a 2-PAM (i.i.d) data (u(n) =0,1) as
input, we can see in Fig.3 that we have a good performance
of the equalizer in terms of the Mean Square Error (MSE)
criterion obtained over 100 independent trials and also we
can increase the convergence speed of the algorithm when
we increase the order of the Affine Projection Algorithm. A
typical eye diagram of the channel’s output is plotted in Fig.1
with its equalized version in Fig.2.
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Also, for the 4-PAM (i.i.d) data (u(n) = +1,£3) as input (i.e
we have increased the order of constellation), we can see in
the Fig.5 that the conditions of algebraic equalizability stay
verified. The Fig.6 depicted the MSE performance for a re-
lated data.

Sample value

0 500 1000 1500 2000
Number of iterations

Figure 1: Eye-patterns before equalization

Sample value

i i i
0 500 1000 1500 2000
Number of iterations

Figure 2: Eye-patterns after equalization

7. CONCLUSIONS

In this paper we have presented an algebraic method that
allow us to compute the rank of a nonlinear channel and
gives a relaxed conditions using this rank, in order to justify
the existence of a nonlinear equalizer. Due to the nonlinear
characteristics of the transmission channel in terms of corre-
lated input, we have applied the Affine Projection Algorithm
(APA)as an adaptive algorithm, which will drive the equal-
izer coefficients because such algorithm was robust towards
the colored excitation. The simulation results show the co-
herence between the algebraic equalizability conditions and
the performance of the adaptive equalizer in terms of MSE
and equalizer output.

REFERENCES

[1] G.B. Giannakis and E. Serpedin, ‘“Linear multichannel
blind equalizers of nonlinear FIR volterra channels,”

NLMS
——— APAorder 2| |
APA order 3

)
=
w -101
]
=

-15}

-20

L

“‘ “;W‘“

W “ﬂKWWWW‘

MWMW‘M’M‘ e

i i i
500 1000 1500 2000
Number Of Iterations

25 "\\‘W\‘

-30
0

Figure 3: MSE Curves

Sample value

i i i i
0 2000 4000 6000 8000 10000
Number of iterations

Figure 4: Eye-patterns before equalization

IEEE Trans. Signal Processing, vol. 45, pp. 67-81, Jan-
uary 1997.

[2] A.Carini, Adaptive and Nonlinear Singal Processing.
PhD thesis, Universita Degli Studi Di Triesti.

[3] A. Carini, G.L.Sicuranza, and V.J.Mathews, “On the in-
version of certain nonlinear systems,” IEEE Trans. Sig-
nal Processing Letters, December 1997.

[4] A. Carini, G.L.Sicuranza, and V.J.Mathews, “On the
exact inverse and the pth order inverse of certain non-
linear systems,” Processing of NSIP, September 1997.

[5] S. El Asmi and M. Mboup, “On the equalizabil-
ity of nonlinear time-varying multi-user channels,” in
ICASSP’2001, 2001.

[6] M. Fliess, “Generalised controller canonical forms for
linear and nonlinear dynamics,” IEEE AC, vol. 35,
pp- 994-1001, September 1990.

[7] M. Fliess, “Reversible linear and nonlinear discrete-
time dynamics,” IEEE AC, vol. 37, pp. 1144-11153,
August 1992.

[8] M. Fliess, “Some basic structural properties of general-
ized linear system,” System and Control Letters, vol. 15,
pp- 391-396, 1990.

[9] S.El Asmi and M. Fliess, “Invertibility of discrete-time
systems,” in [FAC-Symposium, (Bordeaux), Juin 1992.



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Sample value

i i i i
0 2000 4000 6000 8000 10000
Number of iterations

Figure 5: Eye-patterns after equalization

40

T
NLMS

— APA order 2
APA order 3| |

30

20

101

MSE(dB)

(K

B

| m
WLl

i i i i
2000 4000 6000 8000 10000
Number Of Iterations

Figure 6: MSE Curves

[10] P. M. Cohn, Difference algebra. New York: Inter-
science, 1965.

[11] S. El Asmi and M.Mboup, “A difference algebraic ap-
proach to the equalization of nonlinear multi-user chan-
nels,” submit to AAEC.

[12] J. Johnson, “Kéhler differentials and differential alge-
bra,” vol. 192, pp. 201-208, 1974.

[13] A.B. Levin, “Characteristic polynomials of filtered dif-
ference modules and of extensions of difference fields,”
Russian Math. Surveys, vol. 33, pp. 165-166, 1978.

[14] H.Arfa, S. El Asmi, and S.Belghith, “On the existence
of nonlinear equalizer,” /2th IEEE ICECS 2005.



