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ABSTRACT
The cross-layer design of future communication systems jointly op-
timizes multiple network layers with the goal of boosting the sys-
tem wide performance. This trend brings together the physical and
the medium access layers. For the joint optimization of these two
lowest layers, it is necessary to understand and relate their terms
and concepts. In this paper, we study the interplay between four
terms, namely channel state information from link-level, scheduling
and user distribution from system level, and different performance
measures from both levels. The envisaged scenario is the cellular
downlink transmission.

The average sum rate describes the long-term performance
from a system perspective. The optimal scheduling policy aswell
as the impact of the user distribution can be clearly characterized
as a function of the channel state information (CSI). In contrast, the
short-term system performance which is described by the outage
sum rate, shows a varying behavior in terms of the optimal schedul-
ing policy and as a function of the user distribution.

The analysis is performed by employing Majorization theoryfor
comparing different user distributions. Three different CSI scenar-
ios, namely the uninformed base, the perfectly informed base, and
the base with covariance knowledge are studied. Finally, the exten-
sion to two less well known performance measures, the maximum
throughput and the delay-limited sum rate is addressed.

1. INTRODUCTION

It was recently argued in [1] that the optimization of scheduling
schemes in future communication systems requires so-called cross-
layer design. This lead to the development of scheduling algorithms
which take link layer as well as physical layer parameters into ac-
count [2]. E.g. in [3], the optimal power allocation and schedul-
ing algorithm were derived for stabilizing a number of queues for
fading channel which fulfill the Markovian assumption. The con-
nection between the stability region and the ergodic capacity region
in multiple antenna multiuser multiple access channels is studied in
great detail in [4] from a geometric point of view.

In [5] it was shown that the optimum strategy for maximizing
the sum capacity with perfect channel state information (CSI) of a
cellular single-input single-output (SISO) multiple access channel
(MAC) is to allow only the best user to transmit at each time slot.
The result in [5] has induced the notion of multiuser diversity, i.e.
the achievable capacity of the system increases with the number of
users. In addition to this, the result in [5] has led to the develop-
ment of opportunistic downlink scheduling algorithms [6] for the
broadcast channel (BC). In [7], the average sum rate of the SISO
MAC with successive interference cancellation (SIC) undera sum
transmit power constraints was studied for different typesof CSI.
Recently, the downlink case was analyzed in [8]. It turned out that
the optimalschedulingdepends strongly on theCSIat the transmit-
ter.

The average sum rate describes the long-term system through-
put. This performance measure can be used by the system operator
to optimize his overall throughput. The short-term system through-
put is measured by the outage sum rate and its corresponding out-
age probability [9]. It describes the probability that an outage oc-

curs during the next transmission block. The properties of the out-
age probability with respect to the optimal transmit strategy and
the channel statistics (e.g. the user distribution) are different to the
average sum rate [10]. There are two furtherperformance mea-
sures, namely the delay limited sum rate [11, 12] and the maximum
throughput [13, 14], that describe the guaranteed performance and
the goodput of the system.

Recently, the scaling laws of wireless networks were analyzed
under simplified assumptions, e.g. the fading variances of the par-
ticipating users are equal (e.g. all users are located on a unit circle
around the base), or for SNR approaching infinity. In [7, 8], differ-
ent user distributionsare compared using Majorization theory and
their impact on the average sum rate was characterized. For per-
fect and long-term CSI, the sum rate was shown to be Schur-convex
with respect to the user distribution and for an uninformed base sta-
tion, the sum rate is Schur-concave. Also, the asymptotic sum rate
loss between the best case and the worst case user distribution, was
derived.

In this paper, we shed light on the interplay between these four
terms: CSI, scheduling, performance measure, and the user dis-
tribution. With respect to the four performance measures average
sum rate, outage sum rate, maximum throughput and delay limited
sum rate, our contributions are the following: We derive theoptimal
transmit and scheduling strategies as a function of the available CSI,
namely for perfect, covariance, and no CSI. We analyze the impact
of the user distribution on the performance for these different types
of CSI and compare different scenarios in terms of performance.

The paper is organized as follows. In the next section 2, the sig-
nal and channel model, the performance measures that will beused,
and the measure for the user distribution are introduced. Insection
3, the main results are collected and illustrated. The results are or-
dered according to their performance measure. Finally, in section 4,
the paper is concluded.

2. PRELIMINARIES

2.1 Signal and channel model

In the signal model, there areK mobile users who are going to re-
ceive data from one base station. The single-antenna quasi-static
block flat-fading channelsh1, ...,hK between the mobiles and the
base are modeled as constant for a block of coherence lengthT and
from block to block as zero-mean independent complex Gaussian
distributed (CN(0,ck)). The variance isci = E

(

h∗i hi
)

for 1≤ i ≤K.
The additive zero-mean white Gaussian noisenk(t) at the each re-
ceiver is independent identically distributed (iid) and has variance
σ2

n . Furthermore, we assume that the sum transmit power is con-
strained to beP. The SNR is given byρ = P

σ2
n
. The received signal

at mobilek at timet is

yk(t) = hk

K

∑
l=1

xl (t)+nk(t)

We omit the time index for convenience. The statistics of thefad-
ing channel coefficientshi are completely characterized byci . The



transmit power directly corresponds to the variance of the trans-
mit signals pi = E

(

x∗i xi
)

for 1 ≤ i ≤ K. The l1-norm of the
power allocation vectorp = [p1, ..., pK ] is constrained to be one
||p||= ∑K

k=1 pk = P= 1. For 1≤ k≤ K definewk by ||hk||
2 = ckwk,

i.e. wk are iid standard exponential distributed random variables.
We assume that the receivers have perfect CSI. Further on, wecol-
lect the channel states in a vectorh = [h1, ...,hK ].

2.2 Performance measures

Consider the instantaneous sum rate with scheduling policyp(h)

C(α) = C(h,SNR) = log

(

1+SNR
K

∑
k=1

pk(h)||hk||
2

)

(1)

The instantaneous sum rate depends on the deterministic SNRand
on the channel which is a random variable. That means the instan-
taneous sum rate is also a random variable (indicated byα). In the
block fading model, the channel is constant for the coherence time
T. It is assumed that the coherence timeT is large enough to code
over many blocks in order to achieve almost the mutual informa-
tion. Then the mutual information in (1) has its usual meaning as
the instantaneous capacity [9].

Since the scheduling policy depends on the channel state, it
could also vary randomly from fading block to fading block. As
a result, the instantaneous capacity itself is a random variable and
has a probability density function (pdf)pC(α). The average of the
random variable

E[C(α)] =

∫ ∞

0
α pC(α)dα

is the average sum rate. For single user systems with perfectCSI
it is called ergodic capacity [15]. In multiuser systems with perfect
CSI we can call it ergodic sum capacity and it describes the overall
performance of the system in average. For finer analysis, thecumu-
lative distribution function (cdf) ofC is important. It is the outage
probability of the channel, i.e.

Pr[C(α) < R] =
∫ R

0
pC(α)dα.

The outage probability gives the probability that a certainsum rate
Rcannot be achieved for a channel state. The system is in an outage
means we cannot guarantee to successfully deliver any information
at the sum rateRduring this channel state.

The feasible delay can be exploited either by increasing the
length of one codeword or by introducing some kind of automatic
repeat request (ARQ). If the block length of the codeword is in-
creased, the outage probability for this codeword is reduced. Here,
following [13], we consider the ’Maximum Zero-Outage Through-
put’. The receiver requests a retransmission as long as outages oc-
cur until the codeword is successfully decoded. Therefore,the com-
plete information is reliable transmitted. The maximum throughput
for this simple retransmission scheme is given by

T(SNR) = max
R≥0

R(1−Pr[C(h,SNR) ≤ R]) . (2)

In [13] the quantity in (2) is called ’Maximum Zero-Outage
Throughput’ (compare to [14]).

For the delay-constraint analysis, the ergodic capacity aswell
as the outage probability and the maximum throughput are notsuit-
able. Both approaches do not guarantee the successful transmission
of information in a finite number of blocks. Therefore, we restrict
the delay to one fading block and fix the outage probability tosome
ε, i.e. Pr[C(α) < R] = ε. Then we solve this forR. In order to avoid
outages at all, we setε = 0 and obtain the zero-outage sum rate, or
the delay-limited sum rateR∗ with

Pr[C(α) < R∗] = 0.

(a) Symmetric scenario (b) One mobile moves to the base
and another to the cell edge. The
sum of their fading variances stays
constant.

(c) All but one mobile is at the cell
edge

Figure 1: Fair comparison of user distributions

From an information theoretic point of view, the notion of delay-
limited sum rate and outage sum rate is somewhat problematic,
since the code that achieves capacity requires a long block length,
but a block fading channel model is assumed. However, follow-
ing the arguments in [16], the outage probability predicts surpris-
ingly well the error probability of actual codes for practical values
of block length [17].

2.3 Measure for user distributions

In order to guarantee a fair comparison between different user dis-
tributions, we constrain the sum variance to be equal to the number
of users, i.e. ∑K

k=1 ck = K. In figure 1, the implications of this
constraint are shown. Starting from the symmetric scenarioc1 =
c2 = ... = cK = 1, one mobile moves towards the base while another
moves to the cell edge. The other extreme scenario occurs when all
but one user have very small fading variancesck. Under the nor-
malization above, this leads to the variancesc2 = c3 = ... = cK = 0
andc1 = K.

Without loss of generality, we order the users in a decreasing
way according to their fading variances, i.e.c1 ≥ c2 ≥ ... ≥ cK .
The constraint regarding the sum of the fading variances verifies
that we compare scenarios in which the channel carries the same
average sum power. We need the following definitions [18]:

Definition 1. For two vectorsx,y ∈ Rn one says that the vectorx
majorizes the vectory and writesx ≻ y if ∑m

k=1xk ≥ ∑m
k=1 yk for

m= 1, ...,n−1 and∑n
k=1 xk = ∑n

k=1 yk. 1

The next definition describes a functionΦ which is applied to the
vectorsx andy with x≻ y:

Definition 2. A real-valued functionΦ defined onA ⊂ Rn is said
to be Schur-convex onA if fromx≻y onA followsΦ(x)≥Φ(y).
Similarly,Φ is said to be Schur-concave onA if from x≻ y onA

followsΦ(x) ≤ Φ(y).

1Note that sometimes majorization is defined by the sum of thesmallest
m components [19]



The definition of Schur-convex and Schur-concave corresponds
with our understanding of less and more spread out. The most
spread out vector has equal entries, while the less spread out vec-
tor has only one entry which is equal toK in our case. It is worth
mentioning that majorization induces only a partial order on vectors
with more than two components. This is due to the fact that vectors
with more than two components cannot be totally ordered. At least
the extreme cases can be used for comparison with any other vector.

3. MAIN RESULTS

3.1 Average sum rate analysis

The next three lemmata yield the average sum capacity and average
sum rate expressions for the three CSI scenarios considered. The
proofs can be found in [8].

Lemma 1. The sum rate with perfect CSI at the base station is
achieved by TDMA. The optimal power allocation is to transmit into
direction of the best user l with||hl ||

2 > ||hk||
2 for all 1≤ k≤K and

l 6= k. The ergodic sum capacity is then given by

CpCSI(ρ,c) = E

(

log
[

1+ρ max
(

||h1||
2, ..., ||hK ||

2
)])

. (3)

Lemma 2. The optimal transmit strategy to achieve the average
sum capacity with long-term CSI is TDMA. Only the user with high-
est channel variance ck is allowed to transmit. The achievable av-
erage sum capacity is given by

CcCSI(ρ,c) = E log(1+ρc1w1) (4)

Lemma 3. For no CSI at the base, the most robust transmit strategy
against worst case user distribution is equal power allocation and
the ergodic sum rate2 is given by

CnoCSI(ρ,c) = E log

(

1+ρ
K

∑
k=1

ckwk

)

. (5)

Next, let us characterize the impact of the spread of the fading
variances on the ergodic sum capacity for the cases with perfect,
covariance and on the ergodic sum rate with no CSI at the base.

Theorem 1. Assume perfect CSI at the mobiles. For perfect CSI at
the base, the ergodic sum capacity in (3) is a Schur-convex function
w.r.t. the fading variance vector c. For a base which knows the
fading variances, the ergodic sum capacity in (4) is a Schur-convex
function w.r.t. the fading variance vector c. For an uninformed base
station, the ergodic sum rate in (5) is a Schur-concave function w.r.t.
the fading variance vector c.

The proof can be found in [8].
For illustration the ergodic sum rate comparison is shown in

figure (2) for 10 dB SNR. In the interesting rangec1 > c2, i.e.
c1 = [1..2], the three curves show the predicted behavior. The(+)
curve with perfect CSI increases with increasing correlation (Schur-
convex). The(0) curve with long-term CSI increases with increas-
ing correlation (Schur-convex) and the(�) curve without CSI de-
creases with increasing correlation (Schur-concave). Theminimax
- gap can be observed at the pointc= 1. It is the difference between
the curve for long-term and no CSI. The gap increases with increas-
ing SNR. The gap is the price to pay for the robustness againstworst
case user distribution.

2Since the optimal transmit strategy for no CSI is motivated by a com-
pound channel approach, we cannot talk about the sum capacity. Instead we
use the term sum rate.
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Figure 2: Average sum rate of two user SISO MAC for different
types of CSI (perfect+, long-term◦ and without�) over fading
variance of user one at 10dB SNR

3.2 Outage sum rate analysis

The optimization problem with respect to outage sum rate is given
by

min
pk

Pr

[

K

∑
k=1

pkckwk ≤ z

]

s.t.
K

∑
k=1

pk ≤ P, pk ≥ 0 (6)

with z= 2R−1
ρ . It turns out that the optimal scheduling policy de-

pends on the sum rateR and SNRρ.

Theorem 2. For an uninformed base station, K equally distributed
users, and fixed sum rate R, then there are K−1 SNR valuesρ1 <
ρ2 < ... < ρnT−1, such that for allρ ∈ (ρl ,ρl+1) only one optimal
scheduling policy exists. The optimal policy given by

p1 = ... = pl+1 =
1

l +1
and pl+2 = ... = pK = 0. (7)

For ρ = ρl exist two optimal power allocation. These are to equally
allocate over l or l+ 1 users. For all SNR values greater thanρ
given by

ρ = 2R−1

equal power allocation across over all users is optimal. Allocate
power to a single user (TDMA) is optimal if the SNR is smaller than
or equal to

ρ̂ =
2(2R−1)

−2Lw(−1,−1/2exp(−1/2))−1
. (8)

Lw is the Lambert W function3. The Lambert W-function, also
called the omega function, is the inverse function of f(W) =
Wexp(W) [20].

Due to space constraints, the proof is omitted. It is based onthe
results for outage probability minimization in multiple antenna sys-
tems [21].

If the users are not equally distributed and the informationis not
available at the base station, it can be shown by a compound channel
approach that equal power allocation across all users is optimal.
Further on, the impact of the user distribution on the outagesum
rate is characterized in the following theorem.

3The first parameter describes the branch whereas the second is the actual
argument.



Theorem 3. Assume that the base station is uninformed and the
user distribution is according toc. For fixed transmission rate R
and for SNRρ < ρ = 2R−1

2 , the sum outage probability is a Schur-
concave function of the user distribution c1, ...,cK , i.e. a less equal
distribution of users decreases the sum outage probability. For SNR
ρ > ρ = 2R−1, the sum outage probability is a Schur-convex func-
tion of the user distribution c1, ...,cK , i.e. a less equal distribution
of users increases the sum outage probability.

Next, we proceed directly to the perfectly informed base station.

Theorem 4. With perfect CSI at the base, the optimal scheduling is
TDMA and the outage probability is given by

Pr
[

max[||h1||
2, ..., ||hK||

2 ≤ z
]

. (9)

For fixed sum rate R and SNR

ρ ≤ ξ̂ =
2R−1

(LW(−2exp(−2))+2)K
(10)

the sum outage probability is Schur-concave with respect toc and
for SNR

ρ ≥ ξ̄ =
2R−1

(LW(−2exp(−2))+2) min
1≤k≤K

ck
(11)

the sum outage probability is Schur-convex.

Proof. Due to the space constraints, we give here only the sketch of
the proof. In order to verify Schur’s condition, note that the outage
probability can be written as

PpCSI
out (c) =

K

∏
k=1

(1−exp(−z/ck))

which is obviously a symmetric function4 with respect toc. The
difference of the first derivatives ofPpCSI

out (c) with respect toc1 and
c2 is given by

∆(c) =
K

∏
k=3

(1−e−z/ck)e−z/c1−z/c2
1

c2
1c2

2

·
[

(1−e−z/c1ez/c1c2
1− (1−e−z/c2ez/c2c2

2

]

.

The sign of ∆(c) depends on the sign of the difference in the
second line. The monotony properties of the function(1 −
exp(−z/c))exp(z/c)c2 lead to the inequalities in (11) and (10).

In figure (3), the impact of the user distribution on the outage
sum probability for perfect CSI and no CSI is shown. Of course,
the uninformed base has higher sum outage probability than the per-
fectly informed base. For both surfaces, there are three ranges for
z. For smallz, the function is Schur-convex with respect toc. Then
there is an area for intermediatez in which the function has local
maxima and minima and finally for highz the function is Schur-
concave as predicted.

For the intermediate case with long-term CSI, the optimal
scheduling policy cannot be given in closed form. The correspond-
ing optimization problem, i.e. the minimization of (6) withknowl-
edge ofc1, ...,cK is a nonconvex optimization problem. Therefore,
only necessary conditions were stated in [21]. We omit the analysis
of this case but include it in the illustrations. In figure (4)and figure
(5), the sum outage probability of the two user SISO MAC for no
CSI, long-term CSI, and perfect CSI at the base is shown over the
fading variance of user onec1 for z = 0.02 andz = 1. From the
figures (4) and (5) the chameleonic behavior of the sum outagerate
can be observed that is predicted in Theorem 3 and 4.

4A function is called symmetric if the argument vector can be arbitrarily
permuted without changing the value of the function.

Figure 3: Outage probability for sum rate of two user SISO MAC
for no (upper curve) and perfect (lower curve) CSI at the baseover
fading variance of user onec1 and overz= 2R−1
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Figure 4: Outage probability for sum rate of two user SISO MAC
for no, covariance, and perfect CSI at the base over fading variance
of user onec1 andz= 0.02

3.3 Further performance metrics

In this section, we briefly point out the extension to other perfor-
mance measures. The maximum throughput is closely related to the
outage probability and it is defined as

RMZT = argmax
R>0

R· (1−Prout(R)) (12)

with outage probability Prout(R). Even in the simplest setting the
optimization problem in (12) leads to a complicated solution con-
taining again the Lambert-W function [14]. Table 1 shows themax-
imum throughput for equally distributed usersc = 1 for perfect CSI
and no CSI. The multiuser diversity that stems from the fact that the
best user is exclusively scheduled can clearly be observed.At this
point, we leave the maximum throughput for future research.

The delay-limited sum rateR0 is defined by

Pr

[

p(h) max
1≤k≤K

||hk||
2 ≤ z

]

= 0. (13)
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Figure 5: Outage probability for sum rate of two user SISO MAC
for no, covariance, and perfect CSI at the base over fading variance
of user onec1 andz= 1

CSI\ M 1 2 3 5 10 20
pCSI 0.264 0.523 0.753 1.132 1.785 2.5265
noCSI 0.264 0.417 0.521 0.664 0.861 1.0521

Table 1: Scaling of maximum throughput with perfect and no CSI
at the base at SNR 0 dB.

The delay-limited sum rateR0 is given by

R0 = log

(

1+
ρ
β

)

with β = E

[

1
max1≤k≤K ||hk||2

]

. The expectation as a function of the

user distributionc is simplified to

β (c) =
∫ ∞

0

1
t2

K

∏
k=1

(

1−exp

(

−
t
ck

))

dt.

Again, we omit further analysis at this point. The properties ofβ (c)
are still to be investigated.

4. CONCLUSION

The connection between CSI, scheduling, different performance
measures, and the user distribution was studied. Dependingon the
CSI and the applied performance measure, the optimal scheduling
policy and the impact of the user distribution were derived.In or-
der to compare different user distributions, a Majorization theory
framework was used.

For the average sum rate, the optimal scheduling policy is
TDMA if perfect and long-term CSI is available at the transmitter.
If no CSI is available the most robust policy against the worst case
user distribution is equal power allocation. The impact of the user
distribution matched the intuition, i.e. for perfect and long-term
CSI, the average sum rate is Schur-convex while it is Schur-concave
for no CSI.

In contrast, the outage sum rate behaves differently and it turns
out that the optimal scheduling policy as well as the impact of the
user distribution depends on the working point. For no CSI and
high outage probability, TDMA is the optimal scheduling policy
- for smaller outage probabilities, more users are simultaneously
active until equal power allocation is optimal. The same held for
the impact of the user distribution for equal power allocation. For
perfect CSI, a similar chameleonic behavior was observed.

Finally, open problems with respect to the maximum through-
put and the delay-limited sum rate were motivated and brieflydis-
cussed. The extension to the multiple antenna case are currently
studied.
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