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ABSTRACT

The cross-layer design of future communication systems#yap-
timizes multiple network layers with the goal of boosting ys-
tem wide performance. This trend brings together the physicd
the medium access layers. For the joint optimization of@hes
lowest layers, it is necessary to understand and relate tieems
and concepts. In this paper, we study the interplay between f
terms, namely channel state information from link-levetesluling
and user distribution from system level, and different genfance
measures from both levels. The envisaged scenario is théacel
downlink transmission.

curs during the next transmission block. The propertiehefdut-
age probability with respect to the optimal transmit sggtand
the channel statistics (e.g. the user distribution) afewint to the
average sum rate [10]. There are two furtiperformance mea-
sures namely the delay limited sum rate [11, 12] and the maximum
throughput [13, 14], that describe the guaranteed perfoceand
the goodput of the system.

Recently, the scaling laws of wireless networks were aralyz
under simplified assumptions, e.g. the fading variancekepar-
ticipating users are equal (e.g. all users are located orit @itrle
around the base), or for SNR approaching infinity. In [7, &fed

The average sum rate describes the long-term performanc@ntuser distributionsare compared using Majorization theory and

from a system perspective. The optimal scheduling polioyeds
as the impact of the user distribution can be clearly chazdeed
as a function of the channel state information (CSI). In castt the
short-term system performance which is described by thageut
sum rate, shows a varying behavior in terms of the optimatdcoh
ing policy and as a function of the user distribution.

The analysis is performed by employing Majorization thdory
comparing different user distributions. Three differer@IGcenar-
ios, namely the uninformed base, the perfectly informee,basd
the base with covariance knowledge are studied. Finallyekten-

their impact on the average sum rate was characterized. dfer p
fect and long-term CSlI, the sum rate was shown to be Schwegon
with respect to the user distribution and for an uninformasbsta-
tion, the sum rate is Schur-concave. Also, the asymptotit iaie
loss between the best case and the worst case user disinibwas
derived.

In this paper, we shed light on the interplay between thege fo
terms: CSl, scheduling, performance measure, and the iser d
tribution. With respect to the four performance measuresame
sum rate, outage sum rate, maximum throughput and delatetimi

sion to two less well known performance measures, the maximusSum rate, our contributions are the following: We derivedhgmal

throughput and the delay-limited sum rate is addressed.

1. INTRODUCTION

It was recently argued in [1] that the optimization of scHady
schemes in future communication systems requires sodozitess-
layer design. This lead to the development of schedulingralgns
which take link layer as well as physical layer parametets at-
count [2]. E.g. in [3], the optimal power allocation and sthie
ing algorithm were derived for stabilizing a number of quefer
fading channel which fulfill the Markovian assumption. Thane
nection between the stability region and the ergodic caypaegion
in multiple antenna multiuser multiple access channeltidied in
great detail in [4] from a geometric point of view.

In [5] it was shown that the optimum strategy for maximizing
the sum capacity with perfect channel state informationlYGta
cellular single-input single-output (SISO) multiple assehannel
(MAQC) is to allow only the best user to transmit at each tint.sl
The result in [5] has induced the notion of multiuser divistsie.
the achievable capacity of the system increases with théoauof
users. In addition to this, the result in [5] has led to theetigy-
ment of opportunistic downlink scheduling algorithms [6} the
broadcast channel (BC). In [7], the average sum rate of t&©SI
MAC with successive interference cancellation (SIC) uralsum
transmit power constraints was studied for different type€SlI.
Recently, the downlink case was analyzed in [8]. It turnetitbat
the optimalschedulingdepends strongly on tH@Sl at the transmit-
ter.

The average sum rate describes the long-term system through
put. This performance measure can be used by the systentapera

to optimize his overall throughput. The short-term systarough-

transmit and scheduling strategies as a function of thézdnlaiCSl,
namely for perfect, covariance, and no CSI. We analyze tipadatn
of the user distribution on the performance for these diffietypes
of CSl and compare different scenarios in terms of perfogaan
The paper is organized as follows. In the next section 2,ithe s

nal and channel model, the performance measures that wilids,
and the measure for the user distribution are introducededtion
3, the main results are collected and illustrated. The tesué or-
dered according to their performance measure. Finalledtien 4,
the paper is concluded.

2. PRELIMINARIES
2.1 Signal and channel model

In the signal model, there ake mobile users who are going to re-
ceive data from one base station. The single-antenna gqteti-
block flat-fading channelfy,...,hx between the mobiles and the
base are modeled as constant for a block of coherence I&raytid

from block to block as zero-mean independent complex Ganssi
distributed (CNO, c)). The variance is; = E (h¢hj) for 1 <i <K.

The additive zero-mean white Gaussian noigg) at the each re-
ceiver is independent identically distributed (iid) and hariance

o?. Furthermore, we assume that the sum transmit power is con-
strained to bé. The SNR is given by = F,. The received signal

o}
at mobilek at timet is

K
Y(t) = hklz % (t) +nk(t)
S

put is measured by the outage sum rate and its correspondtng o We omit the time index for convenience. The statistics offtte

age probability [9]. It describes the probability that ariame oc-

ing channel coefficiently; are completely characterized by The



transmit power directly corresponds to the variance of thas-
mit signals pj = E (x"%) for 1 <i < K. The Iy-norm of the
power allocation vectop = [py, ..., pk] is constrained to be one
IIpl|= 3K ; pk=P=1. For 1< k < K definewy by ||h||? = cwy,

i.e. wy are iid standard exponential distributed random variables

We assume that the receivers have perfect CSI. Further ooplwe
lect the channel states in a vector= |hy, ..., hg].

2.2 Performance measures
Consider the instantaneous sum rate with scheduling pplity

C(a) =C(h,SNR) = log <1+SNR % pk(h)|hk|2> @
k=1

The instantaneous sum rate depends on the deterministic @NR
on the channel which is a random variable. That means tharninst
taneous sum rate is also a random variable (indicated)byn the
block fading model, the channel is constant for the cohereince
T. Itis assumed that the coherence tifnés large enough to code
over many blocks in order to achieve almost the mutual inferm
tion. Then the mutual information in (1) has its usual megras
the instantaneous capacity [9].

Since the scheduling policy depends on the channel state,

could also vary randomly from fading block to fading blocks A
a result, the instantaneous capacity itself is a randonabiriand
has a probability density function (pdfz(a). The average of the
random variable

ElC(@)] = |

A apc(a)da

is the average sum rate. For single user systems with peZfgict
it is called ergodic capacity [15]. In multiuser systemshngerfect
CSI we can call it ergodic sum capacity and it describes tleeadv
performance of the system in average. For finer analysisuime-
lative distribution function (cdf) o€ is important. It is the outage
probability of the channel, i.e.

R
PriC(a) <R] :/0 pc(a)da.

The outage probability gives the probability that a cergim rate
R cannot be achieved for a channel state. The system is in ag®ut
means we cannot guarantee to successfully deliver anyniafiton

at the sum rat® during this channel state.

(a) Symmetric scenario

(b) One mobile moves to the base
and another to the cell edge. The
sum of their fading variances stays
constant.

it (c) All but one mobile is at the cell
edge

Figure 1: Fair comparison of user distributions

From an information theoretic point of view, the notion ofale
limited sum rate and outage sum rate is somewhat problematic
since the code that achieves capacity requires a long béwakh,

but a block fading channel model is assumed. However, follow
ing the arguments in [16], the outage probability predicipes-
ingly well the error probability of actual codes for praeticvalues

of block length [17].

2.3 Measure for user distributions

In order to guarantee a fair comparison between differeet dis-
tributions, we constrain the sum variance to be equal to tinetxer

of users, i.e. ZL(:le = K. In figure 1, the implications of this
constraint are shown. Starting from the symmetric scemarie

C2 =...=Ck = 1, one mobile moves towards the base while another

The feasible delay can be exploited either by increasing thenoves to the cell edge. The other extreme scenario occuns &the

length of one codeword or by introducing some kind of autéecnat
repeat request (ARQ). If the block length of the codewordhis i
creased, the outage probability for this codeword is reduttere,
following [13], we consider the '"Maximum Zero-Outage Thgbu
put’. The receiver requests a retransmission as long agesitac-
cur until the codeword is successfully decoded. Theretbeegcom-
plete information is reliable transmitted. The maximunotighput
for this simple retransmission scheme is given by

T(SNR) = maxR(1—Pr[C(h,SNR) < R)). @)

In [13] the quantity in (2) is called 'Maximum Zero-Outage
Throughput’ (compare to [14]).

For the delay-constraint analysis, the ergodic capacityels
as the outage probability and the maximum throughput arsuitt
able. Both approaches do not guarantee the successfuhismisn
of information in a finite number of blocks. Therefore, wetries
the delay to one fading block and fix the outage probabilitydme
€,i.e. PfC(a) < R] = €. Then we solve this foR. In order to avoid

but one user have very small fading variancgs Under the nor-
malization above, this leads to the variancgs=c3=...=cx =0
andc; =K.

Without loss of generality, we order the users in a decrgasin
way according to their fading variances, i.e; > ¢, > ... > ck.
The constraint regarding the sum of the fading variancesie®r
that we compare scenarios in which the channel carries the sa
average sum power. We need the following definitions [18]:

Definition 1. For two vectorsx,y € R" one says that the vecter
majorizes the vectoy and writesx -y if ' ;x> YR, i for

m=1..n-landyp ;X =3 ;Y- !

The next definition describes a functignwhich is applied to the
vectorsx andy with x > y:

Definition 2. A real-valued functionb defined onez ¢ R" is said
to be Schur-convex o' if fromx > y on.</ follows®(x) > ®(y).
Similarly, @ is said to be Schur-concave o# if from x > y on .o/

outages at all, we set= 0 and obtain the zero-outage sum rate, orfollows ®(x) < ®(y).

the delay-limited sum rat&* with

PriC(a) < R']=0.

INote that sometimes majorization is defined by the sum o$thallest
m components [19]



The definition of Schur-convex and Schur-concave corredpon
with our understanding of less and more spread out. The most

spread out vector has equal entries, while the less spreaceou
tor has only one entry which is equal Koin our case. It is worth
mentioning that majorization induces only a partial orderectors
with more than two components. This is due to the fact thatovec
with more than two components cannot be totally orderedeast
the extreme cases can be used for comparison with any ottierve

3. MAIN RESULTS

3.1 Average sum rate analysis

The next three lemmata yield the average sum capacity amdgeve
sum rate expressions for the three CSI scenarios considéiteel
proofs can be found in [8].

Lemma 1. The sum rate with perfect CSI at the base station is

achieved by TDMA. The optimal power allocation is to trartsnto
direction of the best user | witfh ||2 > ||hy||? for all 1 < k< K and
| £ k. The ergodic sum capacity is then given by

Cocsi(p.©) =E (log [1+pmax([Ihul ... Il ) [ ). @)

Lemma 2. The optimal transmit strategy to achieve the average

sum capacity with long-term CSl is TDMA. Only the user withhi

est channel varianceyds allowed to transmit. The achievable av-

erage sum capacity is given by

Cecsi(p,c) = Elog(1+ pcywi) (4)

SNR = 10dB, K=2
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Figure 2: Average sum rate of two user SISO MAC for different
types of CSI (perfect-, long-termo and withoutd) over fading
variance of user one at 10dB SNR

3.2 Outage sum rate analysis

The optimization problem with respect to outage sum ratevisng
by

(6)

K
minPr { z PrCiWy <
K=1

K
z S.t. <Ppc>0
i ] kglpk, Pk >

with z= %. It turns out that the optimal scheduling policy de-

Lemma 3. For no CSl at the base, the most robust transmit strategyP€nds on the sum raiand SNRp.

against worst case user distribution is equal power allgmat@and
the ergodic sum rafeis given by

K
Crocsi(p;c) = Elog <1+P > Cka> : (5)
=

Next, let us characterize the impact of the spread of theéadi
variances on the ergodic sum capacity for the cases witlegterf
covariance and on the ergodic sum rate with no CSl at the base.

Theorem 1. Assume perfect CSI at the mobiles. For perfect CSI at

the base, the ergodic sum capacity in (3) is a Schur-convextifin

Theorem 2. For an uninformed base station, K equally distributed
users, and fixed sum rate R, then there are KSNR valuep; <

P2 < ... < Pn;—1, such that for allo € (o, 011) only one optimal
scheduling policy exists. The optimal policy given by

and p=..=p=0 (7)

Pr=..=p+1= 171

For p = p; exist two optimal power allocation. These are to equally
allocate over | or I4-1 users. For all SNR values greater than
given by

p=2R-1

w.rt. the fading variance vector c¢. For a base which knowe th equal power allocation across over all users is optimal. oddte

fading variances, the ergodic sum capacity in (4) is a Saduanvex
function w.r.t. the fading variance vector c. For an uninfard base
station, the ergodic sum rate in (5) is a Schur-concave fanat.r.t.
the fading variance vector c.

The proof can be found in [8].

power to a single user (TDMA) is optimal if the SNR is smahent
or equal to

2(2R—1)
—2%4(—1,-1/2exp-1/2)) -1

p= ®)

For illustration the ergodic sum rate comparison is shown in%, is the Lambert W functidh The Lambert W-function, also

figure (2) for 10 dB SNR. In the interesting range > ¢y, i.e.
¢, = [1..2], the three curves show the predicted behavior. (Fhe
curve with perfect CSl increases with increasing correta(schur-

called the omega function, is the inverse function ¢W§ =
Wexp(W) [20].

convex). Theg(0) curve with long-term CSl increases with increas- Due to space constraints, the proof is omitted. It is basethen

ing correlation (Schur-convex) and tligl) curve without CSI de-
creases with increasing correlation (Schur-concave). rilimémax

- gap can be observed at the paint 1. It is the difference between
the curve for long-term and no CSI. The gap increases witleas:
ing SNR. The gap is the price to pay for the robustness agaorst
case user distribution.

2Since the optimal transmit strategy for no CSI is motivatgcatzom-
pound channel approach, we cannot talk about the sum caplasitead we
use the term sum rate.

results for outage probability minimization in multipletanna sys-
tems [21].

If the users are not equally distributed and the informaiorot
available at the base station, it can be shown by a compotartheh
approach that equal power allocation across all users isnapt
Further on, the impact of the user distribution on the outsga
rate is characterized in the following theorem.

3The first parameter describes the branch whereas the sexitwedsictual
argument.



Theorem 3. Assume that the base station is uninformed and the
user distribution is according te. For fixed transmission rate R
and for SNRp < p = Lz’l the sum outage probability is a Schur-
concave function of the user distribution, c., ck, i.e. a less equal
distribution of users decreases the sum outage probabHiiy SNR

p > P = 2R—1, the sum outage probability is a Schur-convex func-
tion of the user distribution¢...,ck, i.e. a less equal distribution
of users increases the sum outage probability.
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Next, we proceed directly to the perfectly informed basgata
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Theorem 4. With perfect CSI at the base, the optimal scheduling is
TDMA and the outage probability is given by

sum outage probability
(=]
N

Pr [max | ... | |17 < 2] (©)
For fixed sum rate R and SNR

R-1
(LAn(—2exp—2))+2)K
the sum outage probability is Schur-concave with respectaad

£
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for SNR Figure 3: Outage probability for sum rate of two user SISO MAC
_ oR_1 for no (upper curve) and perfect (lower curve) CSI at the lwvee
p=&= : (11)  fading variance of user org and overz= 21
Ln(—2exp(—2))+2) min 9 e
(Zw(~2exp(~2) +2) min, o b
the sum outage probability is Schur-convex. @-1)p=2=002
Proof. Due to the space constraints, we give here only the sketch of ——perfectcsl ‘
the proof. In order to verify Schur’s condition, note that thutage —enocs
covariance knowledge

probability can be written as

K

P (c) = [ (1—exp(—2/c))

k=1

which is obviously a symmetric functibrwith respect toc. The

difference of the first derivatives Gﬁ’l%s'(c) with respect ta; and

Cy is given by

sum outage probability

K
1 ; ; i i
Ale) = l_L(l_ e /Mg ?/a7/C 5 1 12 14 16 18 2
k= C1C2 Fading variance user [
Ja-engng - 1-eeelod).

Figure 4: Outage probability for sum rate of two user SISO MAC
for no, covariance, and perfect CSI at the base over fadirignee
of user onec; andz = 0.02

The sign of A(c) depends on the sign of the difference in the
second line. The monotony properties of the functidn—

exp(—z/c)) exp(z/c)c? lead to the inequalities in (11) and (10).

In figure (3), the impact of the user distribution on the oetag
sum probability for perfect CSI and no CSl is shown. Of course 3.3 Further performance metrics
the uninformed base has higher sum outage probability traper-
fectly informed base. For both surfaces, there are thregesafor  In this section, we briefly point out the extension to otherfqure
z For smallz, the function is Schur-convex with respecticThen ~ mance measures. The maximum throughput is closely relatie t
there is an area for intermediatén which the function has local outage probability and it is defined as
maxima and minima and finally for highthe function is Schur-
concave as predicted. — (11—

For the intermediate case with long-term CSI, the optimal Ruzr arg@%xR (1= Plou(R)) (12)
scheduling policy cannot be given in closed form. The cqoes-

ing optimization problem, i.e. the minimization of (6) wikmowl-  with outage probability Rit(R). Even in the simplest setting the
edge ofcy, ..., ck is a nonconvex optimization problem. Therefore, optimization problem in (12) leads to a complicated sohution-
only necessary conditions were stated in [21]. We omit tyas  taining again the Lambert-W function [14]. Table 1 showsrthee-
of this case but include it in the illustrations. In figure &4)d figure  imum throughput for equally distributed users- 1 for perfect CSI
(5), the sum outage probability of the two user SISO MAC for noand no CSI. The multiuser diversity that stems from the faat the
CSI, long-term CSlI, and perfect CSI at the base is shown der t pest user is exclusively scheduled can clearly be obserethis

fading variance of user ong for z=0.02 andz=1. From the  point, we leave the maximum throughput for future research.
figures (4) and (5) the chameleonic behavior of the sum outtge The delay-limited sum ratBy is defined by
can be observed that is predicted in Theorem 3 and 4.

4A function is called symmetric if the argument vector can Hatearily 2
permuted without changing the value of the function. Pr|p(h) lTka<XK [[h/|* < z| =0. (13)
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