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ABSTRACT

In this paper, we generalize the point source-based conven-
tional beamformer (CBF) to localization of multiple dis-
tributed sources that appear in sensor array processing. A
distributed source is commonly parameterized by its mean
angle and spatial spread. The generalized CBF uses the
principal eigenvector of the parameterized signal covariance
matrix as its optimal weight vector, which is also shown to be
a matched filter. The desired parameter estimates are taken
as the peaks of the generalized 2-dimensional beamforming
spectrum. Further, the performance of the algorithm is com-
pared numerically to a generalized Capon estimator [1]. Fi-
nally, an asymptotic performance analysis of the proposed
algorithm is provided and numerically verified.

1. INTRODUCTION

Spatially distributed sources appear in many applications,
e.g., sonar, radar, seismology, and wireless communications,
to only mention a few. In radio wave propagation the exis-
tence of distributed sources has been reported in measure-
ment campaigns such as, e.g., [1].

In wireless communications, it is typically local scatter-
ing around the transmitter that makes the transmitted signal
to appear having a spatial extension as seen from the ele-
vated base station antenna array. If the signal arrives uncor-
related from several directions, the signal covariance matrix
is not rank-one. This leads to that point source-based algo-
rithms deteriorate in performance. This has resulted in nu-
merous publications of new algorithms that can handle full-
rank models, e.g., [2, 3, 4, 5, 6], again to only mention a few.
Capon’s beamformer [7] is a well known point source based
algorithm for direction finding which has been generalized to
handle distributed sources in [2]. The resulting generalized
Capon algorithm was found to outperform the DISPARE
[4] and root-MUSIC-based [5] algorithms. In this paper we
generalize the conventional beamformer (or Bartlett’s beam-
former) to also handle distributed sources. The performance
of the proposed algorithm is numerically compared to gen-
eralized Capon [2], and we provide an asymptotic analysis
which is numerically verified.

2. SIGNAL MODELING

In array processing the signals are assumed to be narrow-
band, which in the presence of p sources yields the following
received baseband signal

x(t) =

p
∑

i=1

si(t)hi + n(t), (1)
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where x(t) is the K×1 received signal vector (snapshot), si(t)
and hi(t) are the ith source signal and K×1 channel response
vector, respectively. Finally, n(t) is a K×1 white noise vector
with covariance matrix Rn = E[n(t)nH(t)] = σ2

nIK .
In the point source assumption, the channel response vec-

tor for a standard uniform linear array (ULA) is modeled as

hi = a(θi) =
[

1, ejπ sin θi , . . . , ej(K−1)π sin θi

]T

, (2)

where θi is the direction of arrival (DOA) of the ith source.
A spatially distributed source is commonly described by

two parameters, namely its mean angle (DOA) θi and spatial
spread (standard deviation) σθi

. The channel vector of a
distributed source can be written as

hi = hi(t; ηi) =

∫

θ∈Θi

γi(θ, t; ηi)a(θ) dθ, (3)

where ηi = [θi, σθi
]T is the location parameter vector,

γi(θ, t; ηi) represents the underlying spatial amplitude den-
sity profile, and Θi is the angular support of the ith source,
respectively. In this work we consider incoherently dis-
tributed (ID) sources [2], although, the proposed algorithm
works perfectly well for coherently distributed (CD) sources,
and it is shown in [8] that the proposed algorithm is (un-
der certain conditions) asymptotically efficient and coincides
with Maximum Likelihood for CD sources. Nonetheless, in
the ID case signals arriving from different directions are as-
sumed to be uncorrelated and we have for the ith source

E
[

γi(θ, t; ηi)γ
∗

i (θ′, t; ηi)
]

= σ2
γi

pi(θ; ηi)δ(θ − θ′), (4)

where pi(θ; ηi) is the spatial power density function, σγi
is

the channel gain, and δ(·) is Dirac’s delta-function. Through-
out this work, the power density is assumed to be known and
it has the same shape but different parameter values for dif-
ferent sources. We also include the channel gain σγi

in the

source power, i.e., σ2
si

, σ2
γi
|si(t)|2, where si(t) is considered

being constant modulus and deterministic.

3. CONVENTIONAL BEAMFORMING

In beamforming applications, the DOA of a single deter-
ministic point source is found by directing a spatial filter
(beamformer) towards the signal of interest. There are sev-
eral ways of choosing an optimal beamformer (weight vector
wopt) and the solution depends on the design criterion. Two
common beamformers are the conventional (Bartlett) beam-
former (CBF) and the Capon beamformer [7], where the for-
mer attempts to maximize the expected output power of the
spatial filter (which in white noise is equivalent to maximiz-
ing the output signal-to-noise ratio (SNR))

max
w s.t. w

H
w=1

E
[

w
H
x(t)xH(t)w

]

. (5)



The maximum is attained when w is chosen parallel to a(θ),
i.e.,

wopt =
a(θ)

√

aH(θ)a(θ)
. (6)

By inserting the optimal weight vector into the expres-
sion for the output power of the spatial filter, the DOA esti-
mate is simply found as the peak of the 1-D power azimuth
spectrum (PAS)

f(θ) ,
aH(θ)Rxa(θ)

aH(θ)a(θ)
. (7)

The DOAs of multiple, say p, point sources are taken as the
p largest peaks of the PAS.

4. GENERALIZED BEAMFORMING

The performance of the conventional beamformer for dis-
tributed sources was analyzed in [9], where the nominal DOA
estimate was taken as the peak of (7). In general, the per-
formance of the conventional peak-finding algorithm is poor
and the center of mass of the PAS is a better estimate of the
nominal angle of a single distributed source [6].

Here, we reformulate the conventional beamforming
problem by taking into account that the signal has a known
spatial distribution. Hence, we turn the point source based
and non-parametric CBF into a parametric beamforming
method, which enables us to find all our parameter estimates.

The expected beamformer output power is given by

w
H
Rxw = σ2

sw
H
Rhw + σ2

nw
H
w, (8)

and is maximized w.r.t. w s.t. wHw = 1. The maximizing
weight vector wopt is then given by the principal eigenvector
of the, generally full-rank, channel vector covariance matrix
Rh = E[hhH ], [10]. The principal eigenvector is defined
as the unit norm eigenvector corresponding to the largest
eigenvalue λmax of Rh. The resulting beamformer is also
optimal in the sense that it maximizes the output SNR, i.e.,
it is a matched filter.

Hence, we can formulate the algorithm as finding the
largest peak of the generalized 2-D power spectrum f(η,Rx)

η̂ = arg max
η

f(η,Rx), η = [θ, σθ]
T (9)

where f(η,Rx) , wHRxw. Here, Rx contains the true
parameters η0, and w = w(η) is the principal eigenvector
of the matrix Rh(η) which is parameterized in the unknown
parameters η. Since λmin ≤ xHRhx ≤ λmax for any unit
norm vector x [10], the maximum value of f(η,Rx) equals
σ2

sλmax + σ2
n, and is attained by the principal eigenvector

x = w. In general λmax is unique, and the maximum is
readily attained by η̂ = η0 when the true covariance matrix
is used in (9), which makes the estimator consistent in the
sense given below.

In practise we do not have access to the true covariance
matrix Rx, so we resort to replacing it by the sample co-
variance matrix which is a sufficient statistic and is defined
as

R̂x =
1

N

N
∑

t=1

x(t)xH(t). (10)

It is easily verified that the criterion function f(η, R̂x) con-
verges uniformly (with increasing numbers of snapshots N)
to its limit function f(η,Rx), since

sup
η

∣

∣

∣
f(η, R̂x) − f(η,Rx)

∣

∣

∣
= sup

η

∣

∣

∣
w

H(R̂x − Rx)w
∣

∣

∣

≤
∥

∥

∥
R̂x − Rx

∥

∥

∥
→ 0, w.p.1 as N → ∞.

Hence, the maximum of f(η, R̂x) tends to that of f(η,Rx),
and the algorithm yields consistent estimates.

As in the point source case, we can identify p distributed
sources from the p largest peaks of the generalized 2-D spec-
trum. In the case of multiple sources, p > 1, the estimates
will be asymptotically biased due to spectral leakage from
closely spaced sources.

Finally, it is also worth noting that in the point source
case the channel vector covariance matrix is given by
Rh(θ) = a(θ)aH(θ), which has the principal normalized
eigenvector w = a(θ)/‖a(θ)‖. Thus the generalized 2-
D spectrum degenerates to the conventional 1-D spectrum
given by (7).

5. NUMERICAL EXAMPLES

In this section we compare the numerical performance of the
Generalized conventional beamformer (G-CBF) to that of
the generalized Capon (G-Capon) beamformer [2]. In [2] the
generalized Capon method was found to outperform the well
known DISPARE [4] and root-MUSIC-based [5] algorithms.
The Cramér-Rao Lower Bound (CRLB) is also included in
the figures.

All estimates are averaged over 2000 independent runs,
and the noise is spatio-temporally white with a circular sym-
metric complex Gaussian distribution.

Example 1:

In the first example we locate a single source with a Gaus-
sian distribution and parameter values θ0 = 0◦ and σθ = 3◦

impinging on a standard uniform linear array (ULA) with
K = 10 sensors. The SNR is defined as σ2

s/σ2
n and the sam-

ple covariance matrix is estimated using N = 500 snapshots.
In this scenario, G-CBF shows better performance than G-
Capon.

Fig. 1 displays the RMSE of the parameter estimates.
We observe that the RMSE of the nominal angle estimates
attained by the G-CBF is insensitive to the SNR, which is an
observation that is consistent with point source estimation
using CBF. For low SNR values, the spread estimate of G-
CBF improves with increased SNR. For high SNR values,
there appears to be a remaining bias (the algorithm is only
consistent as N → ∞). The G-Capon spread estimate shows
a performance loss for increased SNR, which is likely due to
a bias.

Fig. 2 shows the RMSE versus number of sensors. As it
is disappointing, it is also interesting to see that the RMSE
of the G-CBF spread estimate deteriorates as the number
of sensors grows large, and there appears to be an optimal
choice (around K = 10 sensors) w.r.t. the number of sen-
sors. We will return to this observation in Section 6. The
number of sensors has little effect on the G-CBF nominal
angle RMSE, and it is only slightly better than the RMSE
of the conventional peak-finding algorithm [9], which is in-
cluded in this figure. There will always be little difference in
the nominal angle estimates between the conventional beam-
former and its generalized version when the the distributed
source can be “seen” as a point source by the array. This
is the case when the array beamwidth is large (few sensors)
compared to the spread parameter. Hence, it is the relation
between the array resolution and the spread parameter that
controls how well a distributed source is described by a point
source. In this example, the estimates based on G-Capon im-
proves with increasing number of sensors, since we have also
increased the number of snapshots according to N = 20K.
The SNR in this example was 20 dB.

Example 2:

The second example involves locating two Gaussian dis-
tributed sources; one with parameter values θ0 = 0◦, σθ0

=
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Figure 1: RMSE of θ̂0 and σ̂θ for different SNRs. Gaussian
distribution with θ0 = 0◦, σθ = 3◦, K = 10, and N = 500.
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Figure 2: RMSE of θ̂0 and σ̂θ versus number of sensors. The
figure also includes the angle estimate based on the conven-
tional beamformer [9]. Gaussian distribution with θ0 = 0◦,
σθ = 3◦, N = 20K, and SNR = 20 dB.

3◦ and a second with values θ1 that are varied from 10◦ to
40◦, σθ1

= 2◦. A standard ULA with K = 20 sensors is used
and the SNR is 20 dB per source, i.e., the total received
SNR is 23 dB. We see from Fig. 3 that G-CBF captures the
nominal angles quite well, while it suffers from spectral leak-
age when it comes to estimating the spreads of two closely
spaced sources.

6. PERFORMANCE ANALYSIS

To simplify the analysis we apply a change of variables
and use the concept of spatial frequency and correspond-
ing spread, which are defined as ω = 2π∆ sin θ and σω =
2π∆σθ cos θ, respectively, where ∆ denotes the element sep-
aration in wavelengths. Thus, our transformed parameter
vector is ψ = [ω, σω]T . It is well known that the channel
covariance matrix Rh(ψ) can be diagonalized as [4]

Rh(ψ) = D(ω)B(σω)DH(ω), (11)

where D(ω) = diag
(

1, ejω, . . . , ej(K−1)ω
)

and B(σω) is a

K ×K Hermitian matrix that depends only on the shape of
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Figure 3: Average RMSE of {θ̂0, θ̂1} and {σ̂θ0
, σ̂θ1

} ver-
sus source separation. Gaussian distributions with {θ0 =
0◦, σθ0

= 3◦}, {θ1 = 10◦ . . . 40◦, σθ1
= 2◦}, K = 20,

SNR = 20 dB per source, and N = 500.

the angular distribution and is generally of full rank. Closed-
form expressions for uniform and Gaussian shapes can be
found in, e.g., [11]. For a Gaussian distribution that is sym-
metric around ω0 we have

[B(σω)]kℓ = e−((k−ℓ)σω)2/2. (12)

It can be shown that Rh(ψ) and B(σω) share their eigen-
values and that their respective eigenvectors are related ac-
cording to

wk(ψ) = D(ω)vk(σω), k = 1, . . . , K, (13)

where wk and vk denote the kth eigenvector of Rh(ψ) and
B(σω), respectively. Since the matrix B(σω) is Hermitian
and positive definite, the eigenvalues become real-valued and
positive. We also assume that the eigenvalues are simple
and sorted in a decreasing order λ1 > · · · > λK > 0, which
provides us with a unique (up to a complex scalar) set of
orthogonal eigenvectors that are sorted as column vectors
into the eigenmatrix V = [v1, . . . ,vK ].

Let f(ψ, R̂x) = wH(ψ)R̂xw(ψ) denote the crite-
rion function using the sample covariance matrix, and
f(ψ,Rx) = wH(ψ)Rxw(ψ) its limit function (as snapshots
N → ∞). Applying a standard first order Taylor expansion
(neglecting the second and higher order terms) around the
true value ψ0 and equating the gradient to zero yields [12]

ψ̃ , ψ̂ − ψ0 ≈ −H
−1∇f(ψ0, R̂x), (14)

where H−1 ,
(

∇2f(ψ0,Rx)
)

−1
is the inverse asymptotic

Hessian matrix and ∇f(ψ0, R̂x) is the random gradient,
both evaluated at ψ = ψ0. Hence, the covariance matrix

of the asymptotic distribution of ψ̃ can be expressed as

E
[

ψ̃ψ̃
T
]

≈ H
−1E

[

∇f(ψ0, R̂x)(∇f(ψ0, R̂x))T
]

H
−1 (15)

To compute the symmetric matrix H, we need the second
order partial derivatives of f(ψ,Rx) w.r.t. ω and σω, which
involves finding the first and second order partial derivatives
of the principal eigenvector w1(ψ), since

[H]ij =
∂2f(ψ,Rx)

∂ψi∂ψj

= 2Re

{

w
H
1 Rx

∂2w1

∂ψi∂ψj
+

∂wH
1

∂ψi
Rx

∂w1

∂ψj

}

, (16)



where i, j = 1, 2, ψ1 = ω, and ψ2 = σω. From (13) it follows
that the partial derivatives of w1 simply can be expressed
in the derivatives of D(ω) and v1(σω). Equipped with the
previous assumption of simple eigenvalues, the eigenvectors
form a orthonormal basis of the whole space C

K . There-
fore, we can express the first derivative of any eigenvector
as a linear combination of the eigenvectors. For the whole
eigenmatrix this yields

V
′(σω) = V(σω)C(σω), (17)

for some coefficient matrix C. By taking the derivative
w.r.t. σω of the eigensystem BV = VΛ, where Λ =
diag(λ1, . . . , λK) has derivatives λ′

k = vH
k B′(σω)vk, and re-

placing the eigenmatrix derivative by (17), it can be shown
that the off-diagonal entries of the coefficient matrix C are
given by

[C]kℓ =
vH

k B′(σω)vℓ

λℓ − λk
, k 6= ℓ, (18)

where the derivative of B(σω) is found from (12). The diago-
nal entries, which represent the component of each eigenvec-
tor derivative along the eigenvector itself, can be chosen by
introducing some additional normalization. The eigenvec-
tors have unit norm, therefore, by differentiating the inner
product vH

k vk = 1, it is readily found that Re{ckk} = 0,
k = 1, . . . , K. The imaginary part can be found by intro-
ducing an additional constraint, such as, e.g., the one that
MATLABr uses in its SVD function where it forces all eigen-
vectors to have a real-valued first element. To use a less
pragmatic approach, we instead use the fact that an eigen-
vector multiplied by an arbitrary complex scalar also is an
eigenvector that has the same corresponding eigenvalue. We
can preferably let the complex scalars have unit norm to pre-
serve the unit norm of the eigenvectors. Thus without any
loss of generality, we can always choose a new phase rotated
orthonormal basis of eigenvectors whose derivative of each
eigenvector has no component along the eigenvector itself,
i.e., ckk = 0, k = 1, . . . , K. The existence of such a phase
rotated basis can be shown but the proof is here omitted due
to the limited space. This approach is valid as long as the
eigenvectors, as here, are functions of one variable.

Once the first derivatives {v′

k(σω)}K
k=1 are found it is

straightforward to find the second derivative of the principal
eigenvector v′′

1 (σω) by differentiating the eigensystem twice
w.r.t. σω. Once we have the first and second order deriva-
tives of vk, the partial derivatives of w1 follow from (13),
which inserted into (16) gives the elements of the asymp-
totic Hessian matrix.

The correlation matrix of the random gradient vector in

(15) is found by differentiating f(ψ, R̂x) w.r.t. ω and σω

in the same fashion as described above. Once the gradient
vector is found, a first order perturbation of the gradient
vector is performed. By canceling terms that equate to zero
and omitting second and higher order terms, the (i, j)th entry
of gradient covariance matrix becomes

E
[

∇f(ψ0, R̂x)(∇f(ψ0, R̂x))T
]

ij

= 2Re
{

E
[

w
H
1 R̃x

∂w1

∂ψi
w

H
1 R̃x

∂w1

∂ψj

+ w
H
1 R̃x

∂w1

∂ψi

∂wH
1

∂ψj
R̃xw1

]}

, (19)

where R̃x is the zero mean perturbation matrix, i.e., R̃x =

R̂x − Rx, and is of order in probability 1/
√

N .

Since NR̂x ∼ CWK(Rx, N), where CWK(Rx, N) de-
notes a complex central Wishart distribution with N degrees

of freedom, we can invoke known expectations of complex
Wishart forms. From, e.g., [13] we have

E
[

y
H
1 R̃xy2y

H
3 R̃xy4

]

=
1

N

(

y
H
1 Rxy4

) (

y
H
3 Rxy2

)

,

where the yi’s are deterministic vectors. This will yield a
closed-form expression for the covariance of the asymptotic
distribution. We formulate the final result in the following
theorem.

Theorem: Assume x(t) ∼ N (0,Rx(ψ0)) is temporally
white and its eigenvalues are single, then the asymptotic dis-
tribution of the parameters obtained by inserting the sample
covariance matrix into the G-CBF algorithm (9) is given by

√
N

(

ψ̂ − ψ0

)

∼ AsN
(

0,Rψ̃

)

, (20)

where

Rψ̃ = H
−1

ΦH
−1, (21)

[Φ]ij = 2Re
{(

w
H
1 Rx

∂w1

∂ψj

)(

w
H
1 Rx

∂w1

∂ψi

)

+
(

w
H
1 Rxw1

)( ∂wH
1

∂ψj
Rx

∂w1

∂ψi

)}

, (22)

[H]ij = 2Re
{

w
H
1 Rx

∂2w1

∂ψiψj
+

∂wH
1

∂ψi
Rx

∂w1

∂ψj

}

. (23)

Proof: A detailed sketch of the proof has already been
covered in this section. The missing details can be found in
[8].

The asymptotic result in the above theorem holds for
the case of single sources. It is easily extended to multiple
sources and modeling errors, such as making an erroneous
assumption on the true angular distribution, into account.
This is easily seen since the case of multiple sources only
enter the true covariance matrix Rx(ψ0), and the derived
asymptotic distribution is a function of this covariance ma-
trix. The case of a model mismatch in the angular distribu-
tion is covered by choosing the appropriate B(σω) matrix. In
the mentioned extensions there will, although, be a asymp-
totic bias present which needs to be taken into account, see
[8].

6.1 Validation using Simulated Data

In this section, all estimates are averaged over 2000 indepen-
dent runs, and the noise is spatio-temporally white with a
circular symmetric complex Gaussian distribution.

Example 3:

The purpose of this example is to validate the theoretical
expressions for mean and covariance of the asymptotic error
distribution. The source has a Gaussian distribution with
parameters ω0 = 0 rad and σω = 0.1645 rad. The array is a
10-sensor standard ULA and the SNR is 20dB. The sample
covariance matrix is estimated from 500 snapshots and the
estimates are averaged over 2000 independent runs. Fig. 4
shows good match between the analytical expressions and
the simulated RMSE.

Example 4:

We now return to the earlier and interesting observation that
there is an optimal choice of number of sensors that minimize
the spread MSE. Table 1 contains the number of antennas
that minimize both the analytical and simulated MSE of the
spread estimate. Also here the analytical results agree well
with simulated results. The optimal choice of number of an-
tennas has a strong dependence on the spatial spread, and
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Figure 4: Simulated and analytical RMSE of ω̂0 and σ̂ω

versus snapshots and SNR. Note the two x-axes. Gaussian
distribution with ω0 = 0 rad, σω = 0.1645 rad, K = 10,
SNR = 20 dB (for the bottom x-axis), and N = 500 (for the
top x-axis).

σθ [deg.] 1 2 3 4 5 6 7 8 9 10

Kopt ana. 19 11 8 6 5 4 4 4 3 3
Kopt sim. 20 10 7 7 5 4 4 4 3 3

Table 1: Analytical (ana.) and simulated (sim.) optimal
number of antennas for different angular spreads. Gaussian
distribution with θ0 = 0◦, SNR = 20 dB, and N = 500.

both numerical and analytical results indicate that the opti-
mal array should have a Rayleigh beamwidth (2π/K in elec-
tric angle) approximately equal to the total spatial extension
of the source. There is a intuitive explanation to this, which
is that the G-CBF makes the best (in terms of maximizing
the beamformers’ output SNR) rank-one approximation of
the distributed source by choosing the principal eigenvec-
tor as its optimal weight vector. As long as the Rayleigh
beamwidth is equal to or larger than the sources’ spatial
extension, a rank-one approximation serves as a good ap-
proximation, and an increase in the number of antennas will
only give better performance. When the number of anten-
nas is increased beyond this limit, the array will experience
a source with a larger spatial spread, and the rank-one ap-
proximation is no longer a good approximation.

7. CONCLUSIONS

In this paper a generalization of the conventional point
source-based beamformer was introduced. The generalized
beamformer works as a matched filter, and is able to estimate
the parameters of multiple spatially distributed sources by
locating the largest peaks of the generalized 2-D spectrum.
Its performance is compared numerically to a generalized
Capon estimator [2] and it shows competitive performance
for localization of a single distributed source. Also a per-
formance analysis is provided and the algorithm’s interest-
ing “feature” of having an optimal choice w.r.t. the num-
ber of antennas is investigated. It turns out that the opti-
mal array that minimizes the MSE is the one that yields a
Rayleigh beamwidth approximately equal to the total spatial
extension of the source. The intuitive explanation for this
is that the G-CBF serves as the best (in terms of maximiz-
ing the output SNR) rank-one approximation of the source,
and when the number of sensors is increased until the array

beamwidth becomes less than the source’s spatial extension,
the rank-one approximation becomes a poor approximation.
This in fact provides an insight to how large the spread val-
ues need to be to actually render a source that is experienced
as being distributed by the array.

The proposed G-CBF algorithm has a high computa-
tional complexity since it for each parameter value in the
optimization routine needs to compute a SVD, although for
coherently distributed (CD) sources, there is no need to com-
pute the SVD. In fact, the G-CBF algorithm is under certain
conditions asymptotically efficient and coincides with Max-
imum Likelihood for single CD sources, see [8]. Unlike the
generalized CBF, the generalized Capon estimator is adap-
tive (data-dependent). Hence, its analysis takes more elabo-
rate measures and see [8] for a detailed discussion and results
regarding this case.
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