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ABSTRACT 
Face verification is a difficult classification problem due to 
the fact that the appearance of a face can be altered by 
many extraneous factors, including head pose, illumination 
conditions, etc. A face verification system is likely to pro-
duce erroneous, unreliable decisions if there is a mismatch 
between the image acquisition conditions during the system 
training and the testing phases. We propose to detect and 
discard unreliable decisions based on the evidence originat-
ing from the classifier scores- and signal domains. We pre-
sent a method of combining the reliability evidence, nested 
in a probabilistic framework that allows high level of flexi-
bility in adding new evidence. Finally, we demonstrate on a 
standard evaluation database (Banca) how the proposed 
methodology helps in discarding unreliable decisions in a 
face verification system. 

1. INTRODUCTION 

Appearance-based face verification from two-dimensional 
images is a difficult classification problem due to fact that 
the intra-class variability is frequently greater than the sepa-
ration between the class of genuine claims and the class of 
impostors. The appearance of an individual’s face can be 
altered by a wide range of factors, ranging from pose, facial 
expression, and illumination variations, to the physi-
cal/optical characteristics and settings of the capture device. 
Numerous authors attempted dealing with the common ad-
versities in the capture conditions that reduce the class sepa-
rability. For instance, photometric normalization methods 
devised to cope with adverse illumination problems have 
been studied in great detail [6],[8],[10]. A lot of attention has 
been also paid to the problem of variable head pose [15]. 
Proposed methods help reduce the recognition errors to a 
greater or smaller extent. However, invariably they do not 
eliminate them. 
Therefore there is a need for the estimation of decision un-
certainty in the process of identity verification. The goal of 
the reliability estimation is to find out to what extent a veri-
fication decision can be trusted. This problem has recently 
received considerable attention and has been studied in the 
context of various biometric modalities [2],[3],[9],[14], in-
cluding face verification [2],[3],[9]. The decision certainty 
estimate is frequently referred to as confidence [2],[12] or 
reliability [4],[5],[9],[14]. In accordance with the probabilis-

tic formulation of decision reliability proposed in [14], a set 
of auxiliary information (evidence) is needed in order to 
arrive at an estimate of reliability. In [14], the classification 
scores and a single signal level quality measure (Signal to 
Noise Ratio) are used as evidence in a Bayesian network-
based reliability estimator. In a similar fashion, a set of three 
signal-level quality measures is used to estimate the decision 
reliability in a face verification task [9]. 

In this paper we build on and extend the ideas presented 
in [9] and [14], and apply them in a face verification sce-
nario. Specifically the contributions of this paper are as fol-
lows: 
• Instead of using a Bayesian network wrap-up, we apply a 

simpler and more transparent Gaussian Mixture Model 
(GMM) approach for reliability estimation. 

• We use score-derived and signal level quality measures 
together, concatenated into one evidence vector instead of 
separating classifier scores from quality measures in evi-
dence modeling. We analyze how adding new evidence 
impacts the system performance. 

• We interpret the verification process with reliability 
measures as two parallel classification problems: reli-
able/unreliable and accept/reject. The methodology bears 
resemblance to the Error/Reject tradeoff [4], but in our 
work we use separate sets of features for class separation 
and for reliability estimation. Unlike in [14] we do not at-
tempt to correct decisions deemed unreliable since we do 
not have any grounds to perform such a correction. 

• We analyze the influence of the reliability thresholding on 
relative accuracy gain of the classifier rather then setting 
it to a preset value of 0.5. In this way we explicitly show 
how collected evidence helps predicting erroneous deci-
sions. At the same time, we present the reliability thresh-
olding as a tradeoff between classifier accuracy and the 
relative volume of decisions labeled as unreliable. 

• We propose a criterion for evaluating the overall per-
formance of reliability estimation in a verification sys-
tem. 

This paper is structured as follows: Section 2 gives the de-
tails of the database and the classifier used, Section 3 pre-
sents the concept of classification reliability. Section 4 
elaborates on the proposed quality measures used as the 
evidence in reliability estimation. Sections 5 and 6 provide a 
description of the proposed method of combining evidence 
for reliability estimation, followed by the experiment de-



scription and the discussion of the findings. Section 7 con-
cludes this paper with a summary of presented results. 

2. DATABASE AND CLASSIFIER DETAILS 

We nested the experiments in a standard testing protocol for 
face verification - the P protocol defined for the Banca data-
base (face part, English) [1]. In our work we used manually 
localized and geometrically normalized face images: the po-
sition of the eye centers are fixed. This constraint allowed us 
to eliminate the influences of imprecise face localization on 
the system errors, and hence to pinpoint the impact of image 
quality variation. 
In our experiments we used a face verification scheme im-
plemented in similar fashion as presented in [5]. Images from 
Banca database (English part) were used to build the world 
model (520 images, 26+10 individuals (g1 or g2 subsets, 
respectively), 384 components in the GMM). Client models 
were built using a recursive adaptation of the Gaussian com-
ponent means from the world model, as described in [13]. 
The adaptation relevance parameter was set to 10, and the 
number of iterations was set to 3. The images used in the 
experiments were cropped, photometrically normalized by 
histogram equalization, and rescaled to the size of 64×80 
pixels.  

3. ESTIMATING DECISION UNCERTAINTY: 
THE CONCEPT OF RELIABILITY 

In a face verification system, but as well in any other bio-
metric authentication system, one can be interested, beside 
the actual classification decision (choice between two 
classes), in the degree of trust one can have that the classi-
fier made a correct decision. This degree of trust is referred 
to as the reliability of the decision. The concept of reliability 
has been introduced already in [4] but its notion is rather 
intuitive than probabilistic. In [5] reliability parameters are 
derived from class posterior probabilities with no account 
for the signal quality. We adopt the probabilistic definition 
of the decision reliability R: 

( EDPR C= ),                               (1) 

where DC denotes a correct classification decision and E 
denotes the supporting evidence [9]. The evidence may con-
sist of information from the domains of classifier scores 
(score domain), features used by the classifier (feature do-
main), and the biometric presentation itself (signal domain). 
Score domain evidence is what is used to estimate the reli-
ability of the classification decision in the absence of any 
lower-level (feature or signal) information. As an example 
of this strategy one may consider the computation of poste-
rior probabilities [2],[4]. However, classification scores may 
not be enough to accurately estimate the classification deci-
sion reliability in the presence of a mismatch between the 
conditions present during the acquisition of the biometric 
presentations (signals) used in the training and testing 
phases. An example how the condition mismatch can cause 
unreliable verification decisions in face verification is 
shown [7]. Reliability estimation is therefore essential in 

systems that may be affected by a condition mismatch. Reli-
ability estimation is a process that is independent and paral-
lel to the choice between an acceptance and rejection of the 
biometric presentation (Figure 1).  

 
Figure 1: Biometric verification system with reliability measures. 

Essentially, the reliability estimation turns unimodal biomet-
ric verification into two two-class classifiers (first reli-
able/unreliable, then accept/reject. Note that the term ‘reject 
‘has been used in [4] to denote discarding of unreliable deci-
sions. We use the term ‘reject’ as a claim rejection, in accor-
dance with the terminology used in biometric verification). 
Following the probabilistic nature of the reliability estima-
tion given by Equation 1, a decision of labeling a classifica-
tion decision as reliable or unreliable depends on a chosen 
reliability threshold TR from the <0,1> range. In this frame-
work, a reliability threshold of zero is equivalent to consid-
ering all decisions as reliable. 
Decisions labeled as unreliable, depending on the architec-
ture and purpose of the system, may be discarded and a new 
presentation may be requested [14], or the system may as-
sume the ‘safe state’ [5], which in the case of biometric veri-
fication might be a rejection. 

4. QUALITY MEASURES AS EVIDENCE FOR 
RELIABILITY ESTIMATION 

It is difficult to define quantitatively the quality of a face 
image since there is no clear answer as to what features are 
essential for a successful face recognition. Given a cropped 
and geometrically normalized face image, a typical face veri-
fication system consists of the image preprocessing, feature 
extraction and classification stages (Figure 2). At each of 
those stages a quality assessment can be performed. We are 
interested in a relative quality measurement, taken in respect 
to the reference quality of the images used during system 
training. Such relative quality measures can be therefore 
treated as mismatch estimators. 

 
Figure 2: Stages of a face verification system with quality assess-

ment 
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As Figure 2 shows, the information from low-level stage 
(signal level) flows up and impacts higher-level stage proc-
essing, including the decision-making stage. At the lowest, 
signal level, the exact impact of the image quality mismatch 
on the final decision is difficult to predict, but the quality 
degradation itself can be addressed directly. At the score 
level, the impact of the scores on the decisions is evident, 
but the sources of the impact are hard to trace. Hence the 
quality measures at each of the levels can be viewed as 
sources of complementary information about the verification 
process. 

In this paper we discuss the use of signal- and score-level 
quality measures for face verification, since the use of those 
measures is universal for any classifier that allows a direct 
access to the classification scores (before thresholding). The 
use of feature-level quality measures is classifier-specific and 
therefore out of the direct scope of this paper. 

 
4.1 Score-level: absolute distance between the log-

likelihood ratio and the decision threshold 
The distance between the decision threshold and the actual 
value of the log-likelihood ratio (score) is a measure of how 
insensitive the decision is to the departure from an optimal 
threshold value. The actual sign of the distance, while of 
crucial importance for the verification decision, is immate-
rial in the reliability estimation. We define the quality meas-
ure QM1: 

DWC XLXLQM Θ−−= )|()|(1 λλ ,      (2) 

where ΘD is the classification threshold optimized on the 
development set [10], λC is a probabilistic client model and 
λW is the world model, a model that represents a generic, cli-
ent-independent distribution of features [10] 
 
4.2 Score-level: Sum of log-likelihoods 
The goal of the likelihood ratio-based verification is to find if 
the feature vector is better represented by λC or by λW. Log-
likelihood ratio does not help detecting a situation when nei-
ther of the models represents the data adequately (in the 
presence of a condition mismatch). We propose to compute a 
measure of the match of the input image with either of the 
two models, or both simultaneously. For given feature set X 
originating from the image I we define the quality measure 
QM2: 

)|()|(2 WC XLXLQM λλ += .             (3) 
Since L(X|λC) and L(X|λW) are expressed in the log-domain, 
Equation 3 is mathematically equivalent to a multiplication 
of likelihoods. The model λC should represent a subset of 
faces modeled by λW since a face of a particular individual is 
an instance of the generic class of faces. Therefore very low 
values of QM2 correspond to images that are well accounted 
for by neither L(X|λC), nor L(X|λW). 
 
4.3 Signal-level: Correlation with an average face tem-

plate 
The goal of the relative quality measurement is to determine 
to what degree the quality of the testing image departs from 

that of the training images, which can be achieved by creat-
ing an average face template. An average face template is 
built out of all the face images whose quality is considered as 
reference. We have built an average face template using PCA 
reconstruction, in similar fashion as described in [16]. Spe-
cifically, we used the first eight averaged eigenfaces to build 
the template. Two average face templates built of images 
from the Banca database are found in Figure 3. 
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Figure 3: Average face templates AVF built using training images 

defined in the Banca P protocol, for the datasets g1 and g2. 

For the experiments presented in this paper we have created 
two average face templates from the training images pre-
scribed by the P protocol (clients from the groups g1 and g2). 
It is noteworthy that the average face templates created from 
the images of two disjoint sets of individuals are strikingly 
similar. It is also apparent that high-resolution details are lost, 
while low-frequency features, such as head pose and illumi-
nation, are preserved. 
Therefore, in order to obtain a measure QM3 of similarity of 
low-frequency face images, we propose to calculate the Pear-
son’s cross-correlation coefficient between the face image I, 
whose quality is under assessment, and the respective aver-
age face template AVF: 

( IAVFcorrcoeffQM ,3 )=                      (4) 
 

4.4 Signal-level: Image sharpness estimation 
The cross-correlation with an average image gives an esti-
mate of the quality deterioration in the low-frequency fea-
tures. At the same time that measure ignores any quality dete-
rioration in the upper range of spatial frequencies. The ab-
sence of high-frequency image details can be described as the 
loss of image sharpness. In the case of the Banca database, 
the images collected in the degraded conditions suffer from a 
significant loss of sharpness. In order to estimate the sharp-
ness of an image I of x×y pixels, we compute QM4, the mean 
of intensity differences between adjacent pixels, taken in 
both the vertical and horizontal directions: 
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5. COMBINING EVIDENCE AND ERROR 
PREDICTION 

In order to adhere to the P evaluation protocol defined for the 
Banca database, we have built a model of the quality meas-
ures using the development set, and applied it to predict unre-
liable classifier decisions on the testing set. For each dataset 



(g1 and g2), we have constructed two concurrent probabilis-
tic models of the quality measure distributions: one for the 
correct, and one for the erroneous classifier decisions on the 
development dataset. We refer to those models as λDC and 
λDF, respectively. The models are built as follows: for each 
testing image I from the development set we construct a vec-
tor of n quality measurements VQM: 

( nQM QMQMQMV ,,, 21 K= )                      (6) 
The vectors are separated into those for which the classifier 
decision was correct (DC), and erroneous (DF). We build 
GMM-based models of the distribution of VQM|DC and 
VQM|DF (λDC and λDF):  

{ } ( )
{ } ( )FQMDFDFDFDF

CQMDCDCDCDC

DVp

DVp

≡=

≡=

ασµλ

ασµλ

,,

,,
,           (7) 

where µ,σ and α are the parameter vectors of the mixture of 
Gaussians. In our work we used the Expectation-
Maximization algorithm to train the models. We assumed the 
statistical conditional independence of QM1, QM2 and QM3, 
and therefore chose to build the models with diagonal covari-
ance matrices. We used 12 Gaussian components per mix-
ture. 
Consequently, we used the models trained for the dataset g1 
to estimate the reliability of classifier decisions obtained us-
ing the dataset g2, and vice-versa. For each testing image we 
computed conditional log-likelihoods L(VQM |λDC) and L(VQM 
|λDF). The decision reliability estimate assuming equal prior 
probabilities of encountering a reliable and unreliable deci-
sion, following Equation 1 and the Bayes’ rule, is then given 
by: 

( ) ( )
( ) ( )DFQMDCQM

DCQM
QMC VLVL

VL
VDPR

λλ
λ

+
== .    (8) 

6. EXPERIMENTAL RESULTS 

We have conducted a set of experiments in which we have 
computed the reliability estimates using Equation 8 for all 
test presentations from group g1 and g2, using different 
combinations of evidence: E1 = {QM1}, E2 = {QM1, QM2},  
E3 = {QM1, QM2,QM3}, E4 = {QM1, QM2,QM3, QM4}. 
After having estimated the reliability of each decision, the 
obtained value was compared with the reliability threshold TR 
which represents how much we are willing to trust the classi-
fier. If the estimated reliability falls below the preset thresh-
old, the decision is classified as unreliable and discarded. 
In order to evaluate the prediction accuracy of proposed 
models we have checked what the accuracy of the classifier 
was after the decisions labeled as unreliable had been dis-
carded. We have been changing the reliability decision 
threshold TR ∈〈0,0.95〉 in 0.05 increments and computing the 
accuracy of the classifier after having discarded unreliable 
decisions. The situation when TR=0 corresponds to a system 
without any reliability estimators: all decisions are equally 
and fully trusted. 
In order to better evaluate the performance gain the results 
are presented in relative terms: accuracy gain is expressed as 
the percentage of the accuracy of the classifier without reli-

ability measures (or TR=0). The relative gain of accuracy AD 
is plotted against the reliability threshold TR in Figure 4. 
Forcing higher classification accuracy comes at a cost of 
having to discard a number of unreliable decisions [4], there-
fore the accuracy gain cannot be used alone as the perform-
ance evaluator. In general, it is desirable to make as many 
reliable decisions as possible, at highest possible accuracy. 
We hence present the number of remaining, reliable decisions 
ND as the function of TR (Figure 5). ND is also expressed in 
relative terms as the percentage of the total count of test deci-
sions taken (2730 decisions for g1 and 2730 decisions for 
g2). 
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Figure 4: Relative accuracy gain AD
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Figure 5: Relative count of reliable decisions ND
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Figure 6: Combined performance estimate PMD

When optimizing a verification system with reliability meas-
ures we wish to maximize both the accuracy gain and the 
number of remaining, reliable decisions after reliability-
thresholding. This can be achieved by maximizing the prod-
uct PMD=(AD·ND). The obtained values of PMD can be inter-
preted as an overall performance measure for given reliabil-
ity threshold TR . This measure is shown in Figure 6.

6.1 Discussion of the results 
Experimental results presented in Figures 4, 5 and 6 demon-
strate that proposed method of combining evidence for reli-
ability estimation allows for error prediction in the scenario 
of a face verification system. All curves that represent rela-



tive accuracy gain A in Figure 4 are monotonically growing 
with the reliability threshold T , which proves that achieved 
accuracy gain is not happening by chance. This result means 
that the more certainty in decision making is desired, the 
more accurate the classifier indeed is, after the decisions 
deemed unreliable have been discarded. At the same time, 
the relative amount of discarded decisions increases mono-
tonically with T . The proposed performance measure 

D 

R

R PMD 
is a formalization of a trade-off between desired reliability of 
the decision made, and the amount of the decisions dis-
carded. The graphs shown in Figure 6 allow for an easy 
comparison between reliability estimation using different 
pieces of evidence, and can as well be used to compare dif-
ferent reliability estimators. Also, graphs presented in Fig-
ures 4, 5 and 6 make it possible to adjust the value of the 
reliability threshold to fit the performance requirements of a 
particular application. 
Results presented above also show that a careful choice of 
evidence is important for achieving desired system proper-
ties. While all evidence combinations do bring a gain in 
classification accuracy, using only QM1 as evidence offers 
best accuracy gains. At the same time, however, the amount 
of decisions labeled as unreliable grows considerably. Add-
ing QM2 to the evidence vector slightly reduces the accuracy 
gain for the highest values of TR, while increasing the rela-
tive accuracy gain for the remaining values of TR and sig-
nificantly decreasing the number of discarded decisions for 
TR>0.6. Adding the signal quality measures QM3 and QM4 
increases the number of remaining decisions ND but does not 
bring further accuracy improvement. 
Figure 6 shows that the performance measure PMD yields 
maximal values for the reliability threshold close to 0.5. This 
finding agrees with an intuitive understanding of the concept 
of reliability, according to which R<0.5 could be attributed to 
decisions taken by random. 

7. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a method of combining evi-
dence for reliability estimation in a face verification system. 
We have demonstrated that proposed method allows for an 
easy concatenation of evidence originating from different 
domains (signal, score). We analyzed how different evidence 
combinations impact the error prediction in a reference face 
verification scenario (Banca). Finally, we have proposed a 
combined performance measure of reliability estimation. 
In ongoing research we are extending the proposed frame-
work to multiple classifier and multimodal biometric verifi-
cation, in particular in order to address the problem of dis-
carded biometric presentations labeled as unreliable. 
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