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ABSTRACT
In this paper, we address the problem of the estimation of polyno-
mial phase signals (PPS) in ”ǫ-contaminated” impulsive noise us-
ing Kalman filtering technique. We consider an original estimation
method based on the exact non linear state space representation of
the signal by using the unscented Kalman filter (UKF) instead of
the classical approach which consists in the linearization of the
system of equations and then applying the extended kalman filter
(EKF). The observation noise’s probability density function is as-
sumed to be a sum of two-component Gaussians weighted by the
probability of appearance of the impulsive and gaussian noises in
the observations. We propose to use two unscented Kalman fil-
ters operating in parallel (PUKF) as an alternative to the classical
methods which generally handle the impulsive noise by using ei-
ther clipping or freezing procedures. Simulation results show that
the PUKF is less sensitive to impulsive noise and gives better es-
timation of signal parameters compared to the recently proposed
algorithms.

1. INTRODUCTION

Polynomial phase signals arise in many natural phenomena like
seismic and bat echolocation signals, but are mainly known in
engineering applications such as in radar, sonar and time-varying
channels in telecommunication. The estimation of polynomial phase
signals is a well known problem in signal processing and has re-
ceived considerable interest in literature. Most of the proposed
methods for the estimation of the parameters of PPS assume that
the signal is affected by additive Gaussian noise. These methods
rely on maximum likelihood principle (ML), LMS/RLS estima-
tors, and time-frequency representations [1]. A widely used ap-
proach to estimate the signal parameters is the Kalman filter [2]
which is the optimal tracking algorithm when the signal models are
assumed linear and both state and observation noises are additive
Gaussian [3]. When these assumptions do not hold, that is when
one has to tackle non linear models, then the Extended Kalman
Filter (EKF) [4] is used by considering a local linearization using
first order Taylor expansion of the non-linear equations. Many al-
gorithms based on the EKF with various configurations have been
proposed. For exemple, the authors in [5] proposed a state space
model obtained by incorporating spatial information consisting of
the corrupted signal and its delayed version using two sensors,
then the PPS parameters were estimated using two EKFs in cas-
cade. Still, in many situations the observation noise is non Gaus-
sian. In [6], the authors considered the estimation of chirp signals
in additive/multiplicative non-Gaussian noise using ML and LSE
estimators. Recently, we proposed an algorithm based on paral-
lel EKFs (PEKF) for the estimation of chirp signals corrupted by

ǫ-contaminated noise [7]. In this paper, we consider the estima-
tion of the parameters of PPS corrupted by an additive noise based
on a state-space representation using two unscented Kalman filters
(UKF) operating in parallel. Without loss of generality, we con-
sider in our approach, the exact non linear state-space model for
mono-component PPS derived in [3] as it can be easily extended
two multi-component PPS, however, we assume the additive noise
is impulsive with a non Gaussian distribution to obtain a non lin-
ear/ non Gaussian state space model. The non Gaussian nature of
the noise is motivated by the fact that many natural phenomena or
man-made applications [8] such as atmospheric disturbances af-
fecting HF communication are characterized by spikes with large
amplitudes. These spikes significantly degrades the performance
of most frequency tracking based algorithms in which noise is as-
sumed Gaussian. As stated, we consider a practical model for the
pdf of the impulsive noise is the sum of two weighted Gaussian
density functions. One way to use Kalman filtering in impul-
sive environment is by either clipping the observation signal or
by changing or freezing the Kalman gain estimation with respect
to a defined threshold [9]. In order to overcome the limitations due
to these techniques, we propose to use parallel unscented Kalman
filtering, hence avoiding both thresholding and linearisation. The
key idea of our proposed algorithm consists in replacing the EKF
filters in [7] by two parallel UKFs so that each UKF is tuned on one
Gaussian component and their estimates are weighted to produce
the final state estimate.
This paper is organized as follows. In sections 2 and 3, we briefly
present the models of the PPS and non Gaussian noise. Then, we
introduce in section 4 the exact non linear and non Gaussian state
space modelisation of PPS corrupted by impulsive noise. In sec-
tion 5, we describe in detail the PUKF algorithm for the estimation
of the parameters of the PPS. Section 6 provides simulation re-
sults and comparison with respect to the parallel extended Kalman
(PEKF). Finally, we give some concluding remarks and perspec-
tive work in section 7.

2. THE POLYNOMIAL PHASE SIGNAL MODEL

The general expression of a polynomial phase signal of orderM
is given by

z(k) = A(k) exp {jφ(k)} = A(k) exp

(
j

MX
i=0

aik
i

)
+ v(k)

(1)
whereA is the amplitude of the signal, theai’s (i = 0, . . . , M) are
the phase coefficients; assumed real and unknown. In the sequel,
the additive noisev(k) is assumed complex non Gaussian with
known parameters.
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In this paper, we will consider the following signal modelization

y(k) = ℜ{z(k)} = A(k)cos(φ(k)) + n(k) (2)

Where the additive noisen(k) = ℜ{v(k)} is real non Gaussian
with known parameters as expressed in next section.
The instantaneous frequency (IF) is defined as

fi(k) =
1

2π

dφ(k)

dk
=

1

2π

MX
i=1

i ai ki−1. (3)

3. NON GAUSSIAN NOISE : MIDDLETON MODEL

There exists many physical processes generating interference con-
taining noise components that are impulsive in nature (e.g., at-
mospheric noise in radio links; and radar reflections from ocean
waves, and reflections from large, flat surfaces including buildings
and vehicles). The amplitude distributions of such returns are not
Gaussian; this produces large-amplitude outliers in the observa-
tions. Impulsive noise profoundly degrades the performance of
standard algorithms based on second order statistics, thus produc-
ing poor results.
The probability density function (pdf) of the noisen(k) is given
by the sum of two weighted Gaussians with variancesσ2

1 andσ2

2

with (σ2

2 >> σ2

1). Typically the ratio(σ2

2/σ2

1) is between 100 to
500 [10].

p(n(k)) = (1 − ǫ)N (0, σ2

1) + ǫN (0, σ2

2) (4)

where the parameterǫ corresponds to the probability of appear-
ance of the impulsive noise. Figure 1 shows the pdf of the noise
with respect toǫ.
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Fig. 1. The pdf of the noise for different values ofǫ

4. NON LINEAR STATE SPACE REPRESENTATIONS OF
PPS

We consider the discrete signaly(k) given by equation (2) to model
by a polynomial phase signal of orderM which is affected by an

additive noisen(k). In order to obtain the exact the state space
representation, We define the following state vector

x(k) =
�

A(k) φ(k) ∆φ(k) ∆2φ(k) . . . ∆Mφ(k)
�T

.
(5)

where

∆φ(k) =
1

2
(φ(k + 1) − φ(k − 1)) (6)

and

∆ℓφ(k) =
1

2
(∆ℓ−1φ(k + 1) − ∆ℓ−1φ(k − 1)) (7)

for ℓ = 2...M , and the observation equation is given by

y(k) = A(k) cos(φ(k)) + n(k) (8)

which can be rewritten as

y(k) = x1(k) cos(x2(k)) + n(k) (9)

Now, assuming that the amplitude of the signal follows a random
walk model driven by a Gaussian noisew with varianceσ2

w as
given below

A(k) = A(k − 1) + w(k) (10)

Hence, the state space model associated with the PPS can written
as a linear state equation and a non-linear observation equation

x(k + 1) = Fx(k) + Gw(k)
y(k) = h(x(k)) + n(k)

(11)

where

F =

26666664 1 0 0 . . . 0
0 1 1/1! . . . 1/M !
...

. . .
. . . . . .

...
...

. . .
. . . 1 1/1!

0 . . . . . . 0 1

37777775 , G =

26666664 1
0
...
...
0

37777775 (12)

The nonlinear functionh(x(k)) is

h(x(k)) = x1(k) cos(x2(k)) (13)

5. ROBUST ESTIMATION BASED ON THE PARALLEL
UKF ALGORITHM

Based on the formalism of [11], the author in [12] proposed a net-
work of Kalman filters (NKF) in the case where the the observation
noise is Gaussian while the state noise is non Gaussian. A modi-
fied version of this algorithm is proposed here, it is based on the
computation of the a posteriori pdf of the state

p(x(k)|Y k) =
p(x(k)|Y k−1)p(y(k)|x(k))R

p(x(k)|Y k−1)p(y(k)|x(k))dx(k)
(14)

whereY k−1 = [y(k − 1), y(k − 2), . . . y(0)]
The likelihood of the observationp(y(k)|x(k)) is given by

p(y(k)|x(k)) = (1 − ǫ)N (y(k) − H(x(k)), σ2

1)+

ǫN (y(k) − H(x(k)), σ2

2) (15)
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The main idea is to approximate the densitiesp(x(k)|Y k) and
p(x(k)|Y k−1) by a weighted sums of Gaussian density functions

p(x(k)|Y k) =

ξX
i=1

αi,kN (x(k) − x̂i(k), Pi(k)) (16)

and

p(x(k)|Y k−1) =

ξ
′X

i=1

α
′

i,kN (x(k) − x̂
′

i(k), P
′

i (k)) (17)

The predicted pdfp(x(k+1)|Y k) for the next iteration is obtained
using

p(x(k +1)|Y k) =

Z
p(x(k +1)|x(k))p(x(k)|Y k)dx(k) (18)

Since the noisew(k) is assumed Gaussian, we have

p(x(k + 1)|x(k)) = N (x(k + 1) − Fx(k), GGT σ2

w) (19)

Following the mathematical development in ([12], see Appendix),
we proposed the two parallel EKF algorithm for chirp signal esti-
mation [7]. It is clear that in order to obtain a better estimate of
the parameters, the EKF filters can be replaced by the UKF which
do not need any linearisation of the state space equations of the
model. The UKF uses the unscented transformation (UT) which
allows the calculation of the statistics of a random variable under-
going a non linear transformation [13] [14].
Consider a random variablex of dimensionL with meanx and
covariancePx, thenx is propagated through a non linear function,
y = f(x). In order to compute the statistics ofy, we form a set
of sigma points according to :

X0 = x

Xi = x +

�q
(L + κ)Px

�
i

, i = 1 . . . L

Xi = x −

�q
(L + κ)Px

�
i−L

, i = L + 1 . . . 2L (20)

The sigma points are then propagated through the functionf , as
Yi = f(Xi), which yields to the mean and covariance ofy

y =
2LX
i=0

WiYi, Py =
2LX
i=0

Wi (Yi − y) (Yi − y)T (21)

The weights are computed by

W0 =
κ

(κ + L)
, Wi =

1

2 (κ + L)
, i = 1 . . . 2L (22)

whereκ is a scaling parameter and is set such thatκ + L = 3

[13].

�q
(L + κ)Px

�
i

is the ith column of the matrix square

root. For more details on the theoretical aspects of the UT and the
UKF, the reader can refer to [14], [13].

Hence, We obtain a system composed of two UKF filters where
each filter is tuned on one Gaussian component of the noise char-
acterized by (4).
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Fig. 2. Amplitude estimation

Table 1: Summary of the PUKF algorithm

Given the initial conditionsbx0 = E [x0]

x0 =
� bxT

0 0 0
�T

P0 =

24 P0 0 0
0 Pw 0
0 0 Pn

35
WhereP0 is the initial state covariance matrix, andPw, Pn are
the process noise and the measurement noise covariance matrices
respectively. Then, one computes the sigma points as given in
equation (20).

Compute fork : 1, 2, 3...

Prediction step
Xi,j(k|k−1) = FXi,j(k−1|k−1) i = 0, . . . , 2L and j = 1, 2bxj(k|k − 1) =

P
2L

i=0
WiXi,j(k|k − 1)ex(k|k − 1) = Xi,j(k|k − 1) − bxj(k|k − 1)bPj(k|k − 1) =

P
2L

i=0
Wiex(k|k − 1)ex(k|k − 1)T

Yi,j(k|k − 1) = h(Xi,j(k|k − 1))byj(k|k − 1) =
P

2L

i=0
WiYi,j(k|k − 1)

Filtering step
ζ2

j (k|k − 1) =
P

2L

i=0
Wi (Yi,j(k|k − 1) − byj(k|k − 1))2 + σ2

j

Pxy(k|k − 1) =
P

2L

i=0
Wiex(k|k − 1)ey(k|k − 1)ex(k|k − 1) = Xi,j(k|k − 1) − bxj(k|k − 1)ey(k|k − 1) = Yi,j(k|k − 1) − byj(k|k − 1)

ej(k|k − 1) = y(k) − byj(k|k − 1)
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bxj(k|k) = bxj(k|k − 1) + Kj(k)ej(k|k − 1)bPj(k|k) = bPj(k|k − 1) − Kj(k)ζ2

j (k|k − 1)KT
j (k)

Kj(k) = Pxy(k)/ζ2

j (k|k − 1)

MMSE state estimation
βj(k) = N (ej(k|k − 1), ζ2

j (k|k − 1))

αj(k) =
λjβj(k)

2P
j=1

λjβj(k)

with λ1 = 1 − ǫ, λ2 = ǫbxMMSE(k) =
P

2

j=1
αj(k)bxj(k|k)bPMMSE(k) =

P
2

j=1
αj(k)bPj(k|k)+(bxj(k|k)−bxMMSE(k))(bxj(k|k)−bxMMSE(k))T

Finally, we estimate the parameters of the signal given by the
vectorθ =

�
A(k) a1 a2 . . . aM

�T
from the state es-

timates using the following relation [5]

θ̂(k) = AF
−k

x̂MMSE(k) (23)

where the matrixA is a diagonal :

A = diag
�

1 1 1/1! . . . 1/M !
�

(24)

6. SIMULATION RESULTS

In this section, we give some simulation results for the estimation
of PPS in non Gaussian noise based on the PUKF. We consider
a signal PPS of order 2 of 1000 samples and sampled at a period
equals 1. The true values of the signal parameters are as follows
: a2 = 1.25 × 10−3, a1 = 0.1, anda0 = π

2
. The state noise

w(k) is zero mean Gaussian white noise withσ2

w = 10−2. The
non Gaussian noisen(k) with pdf given by(4), has varianceσ2

1 =
0.25, and the ratioσ2

2/σ2

1 = 500. The initialization of the UKF is
done in the same way as the EKF in [7]. In order to assess the gain
in performance, we compare the MSE of the PUKF with the PEKF
in [7]. We observe in figures 3 to 6 that the PUKF is more robust
and gives better estimates of the chirp parameters for whole range
of the SNR which is given between -5dB and 10dB. The SNR in
our case is defined as

SNR = 10 log
10

�
A2

(1 − ǫ)σ2

1
+ ǫσ2

2

�
(25)

7. CONCLUSION

We have presented an original approach based on the unscented
Kalman filter for estimating the parameters of polynomial phase
signals described by non linear state space model where the obser-
vation noise is non Gaussian. The estimation procedure is carried
out by using two parallel UKF filters without resorting to threshold
computation or linearisation as compared to other algorithms in lit-
erature. Through simulation results we showed the PUKF yields a
significant improvement of the performance of both estimation and
robustness. On the other hand, this algorithm allows the extension
to multicomponent PPS signals and variable amplitude high order
PPS. Furthermore, work on computing the Cramer-Rao bound for
this case is currently under consideration.
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