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ABSTRACT value of the received signal parameter (the signal strength infor-

The problem of using a multiple-node indoor wireless network ad"ation in dBm is used in our expenmentt&n(t), is biased by

a distributed sensor network for detecting physical intrusion is ad&n UnknownBmp, resulting in the biased parametkyin(t), which
dressed. The challenges for achieving high system performance dfeassumed to be betweégiy andlyax. The biasBmn comes
analyzed. A high-precision adaptive estimator and a high-precisiofOm Some measurement inaccuracy due to non-calibrated or non-
signal level change estimator are derived. Based on the low confifandardized transmitted and received signal properties, such as the
putational complexity of the estimators, a low-cost and robust sysdétermination of the IEEE 802.11 transmit power and Received
tem architecture is proposed. Experiments show that the proposexignal Strength Index (RSSI) value. Due to the bias, in general,
system performs significantly better than the published prototypémn(t) #Inm(t), even if the channel is reciprocal. Then(t) is fur-

multimodal wireless network system. ther disturbed by a zero-mean, white Gaussian najggt) with
varianceo?(t), resulting in a noisy and biased signal parameter
1. INTRODUCTION valuexmn(t). Then,xmn(t) is passed through a quantizer to pro-

duce a quantizer inde¥mn(t), as the observation. The quantizer

In WLAN environments, moving objects/humans can cause signifis assumed to havé® levels. We denote the decision regions by
icant variations in the received signal strength and the RMS delax(o) <a(1)<...<a(2b) in which a(0)=Iy N and a(2b)=||v|Ax

spread. This has been shown in previous experiments [1]. By de; ; ; 4 ;
tecting this kind of variations in an indoor WLAN environment, wePand the qubantlz_er maps the input valudo the quantizer index
Y&{O,l,...,Z —1} if a(y)<x<a(y+1).

can detect physical intruders when the environment is supposed h . -
" In [2], the proposed detection procedure consists of a training
have no human activities. ; : : ; .
A prototype multimodal wireless network was proposed in [2] phase and a detection phase. If there is no intrusion, the signal
P ) meters are assumed to be constant, suchin{hét)=Imn and

. - : - I paral
It has multiple nodes, which are access points or stations at fixe _ ; - )
positions. It has two modes of operation: the communication modean(t)*gn' During the training phaséymy anda, are estimated by

and the surveillance mode. In the communication mode, the netiSing a large numbeT(=10°) of observations. In the detection

work functions as a traditional WLAN. In the surveillance mode, Ph@se, the system carries out a cyclic scanning of the environment.

the network functions as a distributed sensor network for detectingt the end of each cycle, the parameteys are re-estimated based

physical intrusion into the indoor environment in the following way: 2" @ Small numberT(=N;=50), whereN; is the number of obser-

the nodes transmit one by one in a round robin fashion while the re2tions during one scanning cycle for each pair of transmitter and

of the nodes receive the transmitted signal, and the received signgiceiver nodes) of observations. This leads to the estimate of the

at each node is processed to extract some relevant characteristid@n9€Almn of eachlmn. The parametersy, are assumed to be

of the propagation environment. Then, the obtained information a¢nchanged, since even if there is an intruder, he will not impact the

the nodes is combined and processed by the fusion center to decif8iS€ parametersn. At the end of each cycle, the system decides

whether there is an physical intruder in the environment or not. ~ Whether there is an intruder in the indoor environment or not. This
The prototype multimodal network was shown to have promis-IS done by detecting Whether. there are significant Changﬁﬁ In

ing intrusion detection capabilities [2]. However, given the modelthe Parameterén, (Hypothesis7#1) or not (Hypothesisig). In

of the received signal, the challenges for achieving high system pef!iS way, the problem is formed as a composite hypothesis testing
formance has not been analyzed. Moreover, the problem of adapti¥oPlem [3]. _ _
parameter estimation has not been addressed, which is importantin In the training phase, for each nodefrom its observations of
order to avoid system performance degradation caused by slow sife other nodes, we need to estimate the parametgend 1n=
nal drift. In this paper, we analyze the challenges for such a systeffiy p, ..., In-1n, Int1.n, .-, I,\Ln]T related to it. Given the observations
to achieve high performance. A high-precision adaptive estimatoy (which containsT observations of every other node), the log-
with Kalman filter is derived in Section 4, and a high-precision sig-jikelinood function of the parameters is given by [2]:

h

nal level change estimator is derived in Section 5. Based on the N T

derivation, we propose a low-cost and robust system architecture .. _ :
in Section 6. VF\)/e zemonstrate the performanceyof our system by INP(y=1;ln, 0n) = W;t;m':(lm‘”’amlm’”(t)) (1)
simulations and experiments. mn
where the vectoi = {imn(t)|[1 <t < T,1<m<N,m#n}is an
2. BACKGROUND observed realization gf, and
Here we firsy describe the signal moqlel_ used in both [2] and this F(l,0,j) = 1 /a(Hl)e‘%zﬁdv‘ )
paper. Consider such a network consistingNafiodes. The model o V2o Ja(j)

of received signal parameters of interest, for example the receive . oo . ~
signal strength at the receiver noddérom the transmitter nodm I('jq [2], the maximum likelihood (ML) estimates &hn andon, Imn

(m#n) at some discrete timeis shown in Figure 1. The true anddy, were obtained by lettin '”P(glzmi;l”"j”>:0(lSmSN,myén)
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(A) RSSI observations (transmitted by node 3 and received by node 2)
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Figure 1: The received signal model
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and 2P =Ent) 0, and solving these equations. Two estimators ' " observaton number

(B) estimates of the 132
T T

were derived in [2] to solve these equations. An iterative ML es-
timator was obtained by solving them with Newton’s method. An
approximate ML estimator was obtained by direct calculation, when
regarding the effect of the quantizer as the additive white noise.

In the detection phase, as mentioned earlier and as shown in
Fig.1, the signal parameter changlls,n were estimated by re-
estimatinglmn at the end of each scanning cycle. A generalized
likelihood ratio test (GLRT) detector was given in [2] to solve this
composite hypothesis testing problem. letienote the decision
threshold, then the system decid#$ if
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(C) estimates of the o2
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estimates of standard deviation estimates of mean value (dBm)
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> gn>Iny ® N .
n=1 Figure 2: RSSI observations and window-wise iterative ML esti-
whereg, is given by mates of the signal parameters
N T Fimn+Al mn;: On,imn(t)) o < 0.7q, otherwise the biases of the estimafeand & are large
On = Z Z'n F(f o (t)’) : (4)  [4]. When the quantizer in Fig.1 is uniform with quantization step
= mn; =N, fmn sizeq, the approximate ML estimator proposed in [2] for estimating

Imn becomes the formula of the Sheppard’s corrections for estimat-
3. PROBLEM ANALYSIS ing the mean value. Therefore, the approximate ML estimator will

The prototype multimodal wireless network presented in [2] wad10t perform well in our application due to the rough quantization.
shown by experiments to have promising capabilities of physical in- It Pecomes more difficult to analyze the performance of the it-
trusion detection. To make such a system become high-performang&ative ML estimator in [2], which is due to the non-linear charac-
and robust, more research is needed. The challenges for achieviffgiStic of the ML estimator and the effect of the quantizer. Figure
high performance of intrusion detection are analyzed in Section 3.2 S10Ws that the iterative ML estimator works well even whgiis
The problem of adaptive parameter estimation is described in Se@S Small s aroun@35q.

tion 3.2. Our solutions to these problems are given in the following We can see that in (1), many components of the observation
sections. ectori={imn(t)} are identical because of the rough quantization.

o ) Assume that in th@ observations of the node pair from to n,
3.1 Challenges for Achieving Optimal System Performance there aréim, different valuesiy, (k), (1 <k < Tmn), and each item

In [2], the composite hypothesis testing problem is solved by Fherfnn(k) appeard\mn (k) times specifically, such th{{zﬂl Nmn(K) =
GLRT detector (3). The performance of the GLRT detector reliest "Then the log-likelihood function (1) can be written as
on the precision of the ML estimates of the signal paraméjgss N Ton
on andAlmn [3]. Therefore, in order to achieve the optimal detec- s _ v
tion performrEm]ce in the GLRT detector, it is necessafy to find good InP(y=iiIn, on) ZkZle’“(k) INF (Imn, 0. imn(k)- (5)
estimators for the parametéfgn, on andAlmn. ) mn )
The task of estimating the signal paramele{ﬁ, On andAlmn Equation (5) shows that the ML estimates of the paraméigrand
is not trivial, because the observatidpg(t) are very rough quan-  On rely on the values 6fmp andNmn(k), wherel < k < Tmp.
tization of the received signal. Here we illustrate this problem by ~ The iterative ML estimator will encounter a “lack of informa-
experimental data. We let a multimodal wireless network with 3tion” problem originating from very rough quantization. In order
nodes scan the environment cycle by cycle as described in Sectid@ Simplify the discussion, we first consider a network containing
2. The experiment was done at a corner of the IT University ofonly 2 nodes, namel) = 2. Then, the ML estimates ¢§; andoy
Copenhagen for around 100 minutes, when there was no human dteed to be estimated from (t), (1 <t < T). In the extreme case
tivities at the experimental site. We divide the observations intdf the “lack of information” when all the observations are identical,
windows and let each window contalh= 10° observations (each N@mMelyi21(t) equals to some quantizer indgxorall 1<t <T,
window contains 20 cycles, and each path Kas: 50 observations qbwously the iterative ML estlmz_:\tor will gene_rate_the estimates
in every cycle). Then we use the iterative ML estimator given in [2]01 — 0 andlz1 can be any value in the range(j),a(j+1)). We
to estimate the signal parametérs, I3, and g, from the obser-  Will not consider this extreme case in this paper, because its proba-
vationsiy »(t) andiz(t) (1 <t < T) in each of the windows. One bility is ignorable whenT is nottoo small. _
RSSI observation sequence (transmitted by node 3 and observed by The other case of the “lack of information” phenomenon is
node 2) is shown in Figure 2(A), the window-wise estimaigs ~ When only two neighbouring quantization indicpsind j + 1 ap-
are shown in 2(B), and the window-wise estimaflesare shown in  P€ar in the observationis(t), (1 <t <T), as shown in Figure 3.
Figure 2(C). As we can see, there are only three different RSS| valVhen this happens, (5) becomes
ues (quantizer indices) observed during the time, which is becau _s. _ ; i
the received signal is very roughly quantized, sincedfiés much i PEyN b lnl’ lonl): Nza(@)InF (|2,1"i171, J)1+|N2'£1(2) In F(|.271,1017 H'é)
smaller than the quantization step sigén these experimental data, ~ — 2.( ) n (Izvl’al’J_)Jr(T_ 2.1(1) n (|2~1701’J+_ ). (6)
the estimates ofi, were in the rang¢0.3q,0.4q), whereq = 1. By regardingF (l3,1,01,j) andF(l21,01, + 1) as variables, the
Usually when the quantization errors are regarded as whit&haximization of the log-likelihood function in Equation (5) is the
noise and uniformly distributed ii—q/2,q/2), the well-known  maximization of (6) with the following constraints:
Sheppard’s corrections can be used to estimate the mean and vari- 0<F(ly1,00,j) <1
ance of the signal before quantization [4]. If the input signal to the =21 1’1_ =
quantizer is Gaussian distributdt i1, 2), this noise model of the 0<F(l21,01,j+1) <1
guantization error is suitable & > 0.7q, but it is not suitable if 0<F(lz1,01,])+F(l21,01,j+1) <1
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The solution to this fundamental optimization problems is,

100

F(z21,01,j)) = N21(1)/T 50 50
F(lo1,01,j+1) 1-N21(1)/T.

However, as shown in Figure 3, this is satisfied onlgif— 0 and Figure 4: histogram of the estimates of the parameters

I51 — a(j+1), which is the decision boundary between the indices ; ; i i
j and j+1. Unfortunately, this solution is not reasonable, becaus Since the hypothesis decision is made only at the end of every

. = ; &ycle, we only need to adapt the estimates of the parameters at most
gl is the standard deviation of the thermal noise and should nev%)r/]Ce every cil/cle. To reduge the computational Igad, we choose to
e zero.

N ider th | h K . adapt the estimates once every multiple (94, cycles. This is
h 2°W %OnS'Aerr;[ e genek:a “faske va efn a networ hcontalns MOTiitable due to the slow drift of the signal parameters, because a
than 2 nodes. At the node the *lack of information” phenomenon o 4qen change is regarded as the happening of physical intrusion.
happens when there are only two neighbouring quantizer indic

€es ; ; :
appearing in every observations pan(t), (1 < t < T), then the Note that if we combine the observations of evéycycles

ML estimat il & 0. Thi be derived .~ to form an observation window with siZB=Nsx N;, we can use
estimator will generat@ — 0. 1hiS can be derived very SIMI- - yhe jterative ML estimator in [2] to estimate the parameters within
larly to the steps above. The reason for this phenomenon is that

d th b inf tion to infer th hich YfRe window. In this way, when the system runs, we can get a se-
0 no avfe enohug in (r)]rma lon 1o in e‘lr'h e pabfag.‘lmfy hI'C he duence of estimates for each parameter. Such estimation sequences
originates from the rough quantization. The probability of this phe-ye shown in Figure 2(B) and 2(C). By appropriate modelling the

nomenon is small whefi is large as in the training phase & ,10?) estimation sequences, we propose an adaptive estimator in this sec-
[2]. However, this probability is not small whénis small as inthe  {jon.

detection phasel(= N. = 50). For example, as shown in Figure 3, ; ; :
it £(1., j)+F (1.0, j+1) — 0.995 then the probability of this phe- Here we br!efly demonstrate that the (_:omputatlonal complex
nomenon i©.995", and it is around 0.007 whéh = 10°, however ity of the lterative ML est!mqtor can be hlghly rgduced. In .(5)’
it is around 0.778 ;Nheﬂ]' — 50, ' by letting the partial dlﬁg(vegli\_/lesé >of the log-likelihood function
This “lack of information” phenomenon does not originate in €qual to zero, namely—3 ===t = 0(1<m<N,m# n) and
the iterative ML estimator, it is the problem of not having enough in- sinP(y=i;1,,0,) '
formation to estimate the parameters, which is caused by the rough  don

100

0 0
-60.6 -60.55 -60.5 -60.45 -604 -60.35 03 035 04 045

=0, we getN equations

quantization. Since the performance of the GLRT detector relie T X(Imn, Gn,imn(K))=X(Imn, on,imn(k)+1)
on parameter estimation precision, to achieve optimal performancil(lmsnvo“):szan(k/ F (Imn, Ons ifn(K)) =0
in the GLRT detector, this problem must be solved satisfyingly. In k=1 e hmn Ko
other words, when the “lack of information” phenomenon happens, N Tmn y
a good estimator should still be able to get good estimates of the f2(In,Gn) =) > Nmn(K)@(Imn, On,imn(k))=0, (8)
parameters. Our solution to this is given in Section 4 and 5. k=1

—(a(j)-1?
3.2 Need for Adaptive Estimation of The Parameters whereX(l,0,j)=e 27, and

Over a long time period, the signal parametgys(t) andon(t) tend w(l,0,j) = @(j)—DHX({,0,j)—(a(j+1)—HX(,0,j+1)
to drift slowly to significantly different levels due to changes in the T F(,0,j)

environment or in the sensor node hardware. A clear example of the,ations (7) and (8) can be solved by Newton's method, which is
observed slowly drifting RSS! is shown in Figure 2. shown in [2]. However, the computational complexity is no more

__Since the performance of the GLRT detector relies on the eSino sy with the window sizd, but becomes constariEn can be
timation precision of the parameters, it is necessary to adapt t garded as a small constant around 3 as shown in Figure 2(A)).

estimates to the moderately drifting signal parameters to avoid sys- Due to the non-linearity of the ML estimator and the effect

tem performance degradation. Switching between the training and the quantizer, it is not possible to give the distributionﬂqﬁ

detection phases to handle the drift is not a good solution, becau?é ~ i ;
the detection functionality is off during the training phase. andan in closed form. However, when the likelihood function sat-

In order to achieve a good intrusion detection performance an{g:gz rtgzsre?nuI?é{%a(ﬁongg'ﬁg;gﬁhgrmﬁﬁ?ﬁf; Ogr;hn?e?:rr?/gﬁ;ss
avoid false alarm, we derive an adaptive estimator with Kalman fil- ymp Y P

ter in Section 4 to solve this problem. [6]. Therefore, here tht}n,n and &y, can be approximated as Gaus-
sian distributed wherT is large. We illustrate this by an exam-
4. ADAPTIVE ESTIMATOR WITH KALMAN FILTER ple. We simulate a 2-node system with parametgps= —60.5,

We let the detection procedure consist of the training and detectio N A .
phases as proposed in [2]. The detection carries out a cyclic scat-2: 2.1 01, G2 are shown in Figure 4. As we can see, these esti-
ning of the environment. However, in the detection phase, as lon{'a{€s are approximately Gaussian distributed. _
as the hypothesis#; has not been decided yet, the observations ~From the above discussion, it is clear that in each observation
in the past scanning cycles are used to adapt the estimates of tiéndow, the estimation errofg n—Imn andén—on can be regarded
parameters. This differs from the prototype system in [2]. as zero-mean Gaussian noise (for convenience, here \ygqleind

ﬁl =—-60.7, 01 =0.35, 0, =0.37 and T = 103. The histogram of
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on denote the true values within the window). When the signalobtaiped from thg adaptive estimator. The differencg between the
parameters drift slowly, the estimation sequence of each parametgglution |y, obtained from (11) and the latels}, obtained from

can be regarded as a slowly drifting signal disturbed by an AWGNthe adaptive estimator is the estimate\bh,n within the cycle.
Therefore, the Kalman filter is the optimal solution to filter these, _ 1he signal level change estimator proposed here has the follow-

estimation sequences for improving the estimation precision. B)"{i'g advantages. First, it is unbiased and has a good performance,

. e ~ . nceoy, is already known with high precision. Second, even in the
regarding these random variathign anddy as independent of each  «aci of information” case with only two different quantization in-

other, we get the following simple state-space model: dices appearing, it can still produce a correct ML estimatk,af
x(k) = x(k—=1)+u(k) 9) which is also because tha, is already known with high precis.ion.
N = K K 10 We resort to the GLRT detector (3) to solve this composite hy-
vk = xK)+v(k) (10) pothesis testing problem. Because all the parameligrs, Almn
~ A ~ P . and oy, are estimated with high precision, the performance of the
wherex(K)=[l1n,....In—1n:In+1n, -, INn, On] ' is the signal vector, GLRT detector is guaranteed
y(K) is the observation vector. The excitation noise vealt) and '
the observation noise vecto(k) are both zero-mean AWGN.

The variance of each cogr)dinatem(fk) andv (k) are appropri- 6. LOW-COST AND ROBUST SYSTEM ARCHITECTURE
ately chosen with respect to the window sizethe latest adapted The prototype multimodal wireless network proposed in [2] needs
On, and the effect of the quantizer. Fbrobservations of a random 3 powerful computer to work as the fusion center, whose task is to
variable following the distributiol(l, 0?), the Cramer-Rao Lower  estimate the signal parameters in the training phase, and to estimate
Bound (CRLB) forl is O'Z/T, and the CRLB foro is 62/2T [5]. changes of the signal parameters at the end of each scanning cycle in
For estimator (7), (8), the data are quantized Gaussian. Thereforthe detection phase, and then use the GLRT detector for composite
taking the quantization effect into consideration, we take the doubl8ypothesis testing. However, this solution is not very cost-effective
of these CRLBs as the variances of the corresponding observatiahie to the cost the of fusion center. Moreover, it is not very robust,
noisev (k). Namely, we let the variance of each coordinate () since when this system is deployed in private homes, the fusion
corresponding tén, be equal t®62/T, and we let the variance of center is usually a personal computer which is under the threat of
the last dimension of (k) be equal t(ﬁz/T virus, network attacks, system fallu_re, etc. 'I_'hese constraints limit

inall d to handle th n“l .k £ inf tion” phe- the deployment of such kind of multimodal wireless network.

Finally, we need to handle the -ack of information’ phe The computational task of the parameter estimation and change
nomenon. Even iT" is set sufficiently large by choosing alam¥e,  getection can be done in a highly distributed manner. In Section
the phenomenon may still happen with a small probability. In this4, an adaptive signal parameter estimator is derived. Through the
case, we will have trouble to use (7) and (8) for estimation. But wederivation, it is clear that for the nodg by using this estimator
can solve this problem satisfyingly as follows. Since we have got @nd only based on its own observations, nodan estimate all the
high-precision estimate af,, by the above adaptive estimator with Signal parameter§lmn} and o, related to it. Moreover, by using
Kalman filter, if the “lack of information” phenomenon happens in (€ signal level change estimator derived in Section 5, modn
the current observation window, we can &f be equal to the last estimate all the signal level changi@imn} in every scanning cycle

- . o from its own observations, and then calculgte
adapted estimate, and we only need to estimatéy{havithin the We propose to let the nodes of the network elect one node out

current observation window. In this instance, (7) becomes of them as the fusion center. At the end of each scanning cycle, the
Tmn i’ _ i’ lected fusion center sums up the logarithm of the local likelihood
X(Imns On, i (K)—X(Imn, On, i a(K)+1 elec p g
falmn)=) Nmn(K) (I, on r;’nl( ) (_r/n’n kn mn(K) ):O, ratios reported from all nodes, and then compare the summation
k=1 (Imn, On, in(K)) with In y for the composite hypothesis testing. Note that the detector

] (11) s centralized even though the estimator is decentralized.
The unknownimp in (11) can be solved by Newton's method. In  gych a system architecture is low-cost, since it eliminates the
this way, the estimation sequence of each parameter can continygaed of a powerful computer as the dedicated fusion center. More-
and the adaptive estimator can work continuously. _over, it is robust, since whenever there is a failure at the current
Note that if the intruder want to move slowly to avoid detection fsjon center, a new node can be elected as the fusion center and

by letting the adaptive estimator adapt to the changes caused Bie system can work with reduced number of nodes. Of course, the

him, he must be very slow, for example less than 1cm/s. decision thresholg needs to be adjusted in this instance. This sys-
tem architecture requires that the sensor nodes are capable of the
5. SIGNAL LEVEL CHANGE ESTIMATOR AND GLRT computational task, which can be easily satisfied, because the ML
DETECTOR estimator of (7) and (8) has very low computational complexity and

At the end of each scanning cycle, the signal level chadggs, the Kalman filter has a very simple structure.
need to be estimated for hypothesis testing. However, in Section
3, we have analyzed that both the approximate ML estimator and 7. EXPERIMENTAL RESULTS

thekite[;_slgive ML esftimato'(/lpl_ropqsed in _[2]be_1re nc? t su(i;alr)]le for th-isThe performance of the derived adaptive ML estimator with Kalman
task. e approximate estimator is biased, and the iterativ g : : > i
ML estimator cannot handle the “lack of information” phenomenon%lter is illustrated by simulations. In order to illustrate the drift of

due to the small . However, this phenomenon happens with a highSI9nal parameters, we use a slope fagi@i, which defines the
probability becaus® is a small number during each scanning cycle.Sp_eid. of Chgng\?v'n“:”(t)l' A urélforrg quantizer r‘}"”th step $'ﬁe
The main drawback of the iterative ML estimator is that it tries = t'S glse - 6855'(;%“ atle a_ 28 7edséyste|m t_atsgtgr(tjémt pa-
to estimate both thiy, , andoy from a small number of observations lram_e e5r2.41.§§f o ;no lzégf o ;no’zlgl‘;i 0 3r151,
(T =Nc). However, our basic assumption is that the intruder will 31~ > m, lz3=—/0. m, l32=—/% m, 0%* S
only cause variations in the signal parametgrs, but not in the ~ 02=0.37, 03=0.39, p12=p21=0.0, p13=p31=0.4x107", pp 3=
noise parameteo,. It is not necessary to estimate them both in p372:70.8x10‘6. The results are shown in Figure 5, in which the
every scanning cycle, because a high-precision estimatgy bhs  average mean squared error (MSE) for the signal param@tgrs
already been obtained by the adaptive estimator. Instead, at the eadd the noise parametelrs, } are depicted as a function of the win-
of each scanning cycle, to estimate the possible chafiggg we  dow sizeT. We can see that for the estimation of the noise parame-
only need to estimate the parametiys given the observations of ters, the adaptive ML estimator with Kalman filter performs around
that cycle. We use (11) to estimdign within the current scanning one order of magnitude better than the iterative ML estimator given
cycle, in which we leto, be equal to the latest adapted estimatein [2], no matter the window siz& since the noise parameter is
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Figure 5: The simulation results Figure 7: Performance comparison by experiments

not drifting in the simulation. For the estimation of the signal pa-for experiment B, both detectors performed very well and their dif-
rameterdm n, the largefT, the better performance the iterative ML ference is not visible. The reason was that door B was very close
estimator will have. Whefi is not too large, the adaptive estimator to hode 3 and small changes at door B can produce significant sig-
with Kalman filter performs around one order of magnitude betteal strength changes at node 3, which were around 0.5 dB in the
than the iterative ML estimator. However, due to the parameter driféxperiment B. In the more challenging experiment cases A and C,
introduced in the simulation, whef is too large T = 10%), the  the largest signal strength changes, namely the lafggst of all
delay effect of large window is not ignorable (the signal dynamicgPaths, were only around 0.2 dB. Therefore, the detection perfor-
within the window is no more suitable to be approximated as conMance in experiment A and C was not good when the estimator and
stant, since the amount of changes within the windmws x T, be- detector in [2] were applied. However, the system performance was
comes significant). In this case, the adaptive estimator with KalmaHProved significantly when the adaptive estimator and the change
filter performs even worse due to the delay effect of the Kalma etector derived in this paper were applied. In expenmentsAand C,
filter. theP; were reduced by nearly one order of magnitude at almost any
We can also see from Figure 5 that the window size 103 probability of false alarm, for example wh& =0.9 andPy=0.95.
(which lasts for around 10 seconds) is appropriate in this simula-
tion, since significant improvements are achieved with respect to 8. CONCLUSIONS

the estimation performance, and the delay effect is not significant.\ve addressed the problem of using a multiple-node indoor wireless
The performance of this system with the derived estimators angletwork as a distributed sensor network for detecting physical in-
the GLRT detector was investigated by a set of experiments. The eXryders into the indoor environment. We analyzed the challenges
periment site was chosen at one corner of the underground floor gy achieving high performance of intrusion detection. We derived
IT University of Copenhagen. Figure 6 shows the site map. Threg high-precision adaptive parameter estimator with Kalman filter
laptops equipped with ZyAIR B-100 802.11b cards were used af, Section 4, and we derived a high-precision signal level change
network nodes. The node positions and the directions of the WLANsstimator in Section 5. Experiments show that the detection per-
cards are shown by the numbered triangles. One frame was tranggrmance of the derived system is significantly better than the pub-
mitted per 2.5 ms. All the room walls were concrete and 25 cmjghed prototype multimodal wireless network system.
thick. Three plastic laminated wooden doors A, B and C were cho-  Gijyen the low computational complexity of the estimators, we
sen for experiments. Specifically, they were either closed or openegioposed a low-cost and robust system architecture, which elim-
(30°) in order to produce small changes in the environment. The denated the main constraints on deploying such kind of multimodal
cision hypotheses were7g: the chosen door was closed, ai:  \yireless network. The intrusion detection performance demonstrate
the chosen door was opened. We compared the performance of thigt this novel application is promising, and the low-cost and robust

new system, which uses the adaptive estimator with Kalman filtegystem architecture make it possible for wide deployment.
and the GLRT detector, with the prototype system presented in [2].

To calculate the average probability of false alaPp)( 1.8x 10°
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