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ABSTRACT

The problem of using a multiple-node indoor wireless network as
a distributed sensor network for detecting physical intrusion is ad-
dressed. The challenges for achieving high system performance are
analyzed. A high-precision adaptive estimator and a high-precision
signal level change estimator are derived. Based on the low com-
putational complexity of the estimators, a low-cost and robust sys-
tem architecture is proposed. Experiments show that the proposed
system performs significantly better than the published prototype
multimodal wireless network system.

1. INTRODUCTION

In WLAN environments, moving objects/humans can cause signif-
icant variations in the received signal strength and the RMS delay
spread. This has been shown in previous experiments [1]. By de-
tecting this kind of variations in an indoor WLAN environment, we
can detect physical intruders when the environment is supposed to
have no human activities.

A prototype multimodal wireless network was proposed in [2].
It has multiple nodes, which are access points or stations at fixed
positions. It has two modes of operation: the communication mode
and the surveillance mode. In the communication mode, the net-
work functions as a traditional WLAN. In the surveillance mode,
the network functions as a distributed sensor network for detecting
physical intrusion into the indoor environment in the following way:
the nodes transmit one by one in a round robin fashion while the rest
of the nodes receive the transmitted signal, and the received signal
at each node is processed to extract some relevant characteristics
of the propagation environment. Then, the obtained information at
the nodes is combined and processed by the fusion center to decide
whether there is an physical intruder in the environment or not.

The prototype multimodal network was shown to have promis-
ing intrusion detection capabilities [2]. However, given the model
of the received signal, the challenges for achieving high system per-
formance has not been analyzed. Moreover, the problem of adaptive
parameter estimation has not been addressed, which is important in
order to avoid system performance degradation caused by slow sig-
nal drift. In this paper, we analyze the challenges for such a system
to achieve high performance. A high-precision adaptive estimator
with Kalman filter is derived in Section 4, and a high-precision sig-
nal level change estimator is derived in Section 5. Based on the
derivation, we propose a low-cost and robust system architecture
in Section 6. We demonstrate the performance of our system by
simulations and experiments.

2. BACKGROUND

Here we first describe the signal model used in both [2] and this
paper. Consider such a network consisting ofN nodes. The model
of received signal parameters of interest, for example the received
signal strength at the receiver noden from the transmitter nodem
(m6=n) at some discrete timet is shown in Figure 1. The true

value of the received signal parameter (the signal strength infor-
mation in dBm is used in our experiments),l0m,n(t), is biased by
an unknownBm,n, resulting in the biased parameter,lm,n(t), which
is assumed to be betweenlMIN and lMAX. The biasBm,n comes
from some measurement inaccuracy due to non-calibrated or non-
standardized transmitted and received signal properties, such as the
determination of the IEEE 802.11 transmit power and Received
Signal Strength Index (RSSI) value. Due to the bias, in general,
lm,n(t) 6= ln,m(t), even if the channel is reciprocal. Thelm,n(t) is fur-
ther disturbed by a zero-mean, white Gaussian noisezm,n(t) with
varianceσ2

n (t), resulting in a noisy and biased signal parameter
valuexm,n(t). Then,xm,n(t) is passed through a quantizer to pro-
duce a quantizer index,ym,n(t), as the observation. The quantizer
is assumed to have2b levels. We denote the decision regions by
a(0)<a(1)<...<a(2b), in which a(0)= lMIN and a(2b)= lMAX,
and the quantizer maps the input valuex to the quantizer index
y∈{0,1,...,2b−1} if a(y)<x≤a(y+1).

In [2], the proposed detection procedure consists of a training
phase and a detection phase. If there is no intrusion, the signal
parameters are assumed to be constant, such thatlm,n(t)=lm,n and
σn(t)=σn. During the training phase,lm,n andσn are estimated by
using a large number (T=103) of observations. In the detection
phase, the system carries out a cyclic scanning of the environment.
At the end of each cycle, the parameterslm,n are re-estimated based
on a small number (T=Nc=50), whereNc is the number of obser-
vations during one scanning cycle for each pair of transmitter and
receiver nodes) of observations. This leads to the estimate of the
change∆lm,n of eachlm,n. The parametersσn are assumed to be
unchanged, since even if there is an intruder, he will not impact the
noise parametersσn. At the end of each cycle, the system decides
whether there is an intruder in the indoor environment or not. This
is done by detecting whether there are significant changes∆lm,n in
the parameterslm,n (HypothesisH1) or not (HypothesisH0). In
this way, the problem is formed as a composite hypothesis testing
problem [3].

In the training phase, for each noden, from its observations of
the other nodes, we need to estimate the parametersσn and ln=
[ l1,n, ..., ln−1,n, ln+1,n, ..., lN,n]T related to it. Given the observations
y (which containsT observations of every other node), the log-
likelihood function of the parameters is given by [2]:

lnP(y=i; ln,σn)=
N

∑
m=1
m6=n

T

∑
t=1

lnF(lm,n,σn, im,n(t)) (1)

where the vectori= {im,n(t)|1≤ t ≤ T,1≤ m≤ N,m 6= n} is an
observed realization ofy, and

F(l ,σ , j) =
1√
2πσ

∫ a( j+1)

a( j)
e−

(ν−l)2

2σ2 dν . (2)

In [2], the maximum likelihood (ML) estimates oflm,n andσn, l̂m,n

andσ̂n, were obtained by letting∂ lnP(y=i;ln,σn)
∂ lm,n

=0 (1≤m≤N,m6=n)
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Figure 1: The received signal model

and ∂ lnP(y=i;ln,σn)
∂σn

=0, and solving these equations. Two estimators
were derived in [2] to solve these equations. An iterative ML es-
timator was obtained by solving them with Newton’s method. An
approximate ML estimator was obtained by direct calculation, when
regarding the effect of the quantizer as the additive white noise.

In the detection phase, as mentioned earlier and as shown in
Fig.1, the signal parameter changes∆̂lm,n were estimated by re-
estimatinglm,n at the end of each scanning cycle. A generalized
likelihood ratio test (GLRT) detector was given in [2] to solve this
composite hypothesis testing problem. Letγ denote the decision
threshold, then the system decidesH1 if

N

∑
n=1

gn > lnγ (3)

wheregn is given by

gn =
N

∑
m=1
m6=n

T

∑
t=1

ln
F(l̂m,n + ∆̂lm,n, σ̂n, im,n(t))

F(l̂m,n, σ̂n, im,n(t))
. (4)

3. PROBLEM ANALYSIS

The prototype multimodal wireless network presented in [2] was
shown by experiments to have promising capabilities of physical in-
trusion detection. To make such a system become high-performance
and robust, more research is needed. The challenges for achieving
high performance of intrusion detection are analyzed in Section 3.1.
The problem of adaptive parameter estimation is described in Sec-
tion 3.2. Our solutions to these problems are given in the following
sections.

3.1 Challenges for Achieving Optimal System Performance

In [2], the composite hypothesis testing problem is solved by the
GLRT detector (3). The performance of the GLRT detector relies
on the precision of the ML estimates of the signal parameterslm,n,
σn and∆lm,n [3]. Therefore, in order to achieve the optimal detec-
tion performance in the GLRT detector, it is necessary to find good
estimators for the parameterslm,n, σn and∆lm,n.

The task of estimating the signal parameterslm,n, σn and∆lm,n
is not trivial, because the observationsim,n(t) are very rough quan-
tization of the received signal. Here we illustrate this problem by
experimental data. We let a multimodal wireless network with 3
nodes scan the environment cycle by cycle as described in Section
2. The experiment was done at a corner of the IT University of
Copenhagen for around 100 minutes, when there was no human ac-
tivities at the experimental site. We divide the observations into
windows and let each window containT = 103 observations (each
window contains 20 cycles, and each path hasNc=50observations
in every cycle). Then we use the iterative ML estimator given in [2]
to estimate the signal parametersl1,2, l3,2 andσ2 from the obser-
vationsi1,2(t) andi3,2(t) (1≤ t ≤ T) in each of the windows. One
RSSI observation sequence (transmitted by node 3 and observed by
node 2) is shown in Figure 2(A), the window-wise estimatesl̂3,2
are shown in 2(B), and the window-wise estimatesσ̂2 are shown in
Figure 2(C). As we can see, there are only three different RSSI val-
ues (quantizer indices) observed during the time, which is because
the received signal is very roughly quantized, since theσn is much
smaller than the quantization step sizeq. In these experimental data,
the estimates ofσ2 were in the range(0.3q,0.4q), whereq = 1.

Usually when the quantization errors are regarded as white
noise and uniformly distributed in(−q/2,q/2), the well-known
Sheppard’s corrections can be used to estimate the mean and vari-
ance of the signal before quantization [4]. If the input signal to the
quantizer is Gaussian distributedN(µ ,σ2), this noise model of the
quantization error is suitable ifσ ≥ 0.7q, but it is not suitable if
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Figure 2: RSSI observations and window-wise iterative ML esti-
mates of the signal parameters

σ < 0.7q, otherwise the biases of the estimatesµ̂ and σ̂ are large
[4]. When the quantizer in Fig.1 is uniform with quantization step
sizeq, the approximate ML estimator proposed in [2] for estimating
lm,n becomes the formula of the Sheppard’s corrections for estimat-
ing the mean value. Therefore, the approximate ML estimator will
not perform well in our application due to the rough quantization.

It becomes more difficult to analyze the performance of the it-
erative ML estimator in [2], which is due to the non-linear charac-
teristic of the ML estimator and the effect of the quantizer. Figure
2 shows that the iterative ML estimator works well even whenσn is
as small as around0.35q.

We can see that in (1), many components of the observation
vectori={im,n(t)} are identical because of the rough quantization.
Assume that in theT observations of the node pair fromm to n,
there areTm,n different values,i′m,n(k),(1≤ k≤Tm,n), and each item

i ′m,n(k) appearsNm,n(k) times specifically, such that∑Tm,n

k=1Nm,n(k) =
T. Then the log-likelihood function (1) can be written as

lnP(y=i; ln,σn)=
N

∑
m=1
m6=n

Tm,n

∑
k=1

Nm,n(k) lnF(lm,n,σn, i
′
m,n(k)). (5)

Equation (5) shows that the ML estimates of the parameterslm,n and
σn rely on the values ofTm,n andNm,n(k), where1≤ k≤ Tm,n.

The iterative ML estimator will encounter a “lack of informa-
tion” problem originating from very rough quantization. In order
to simplify the discussion, we first consider a network containing
only 2 nodes, namelyN = 2. Then, the ML estimates ofl2,1 andσ1
need to be estimated fromi2,1(t),(1≤ t ≤ T). In the extreme case
of the “lack of information” when all the observations are identical,
namelyi2,1(t) equals to some quantizer indexj for all 1≤ t ≤ T,
obviously the iterative ML estimator will generate the estimates
σ̂1 → 0 and l̂2,1 can be any value in the range(a( j),a( j+1)). We
will not consider this extreme case in this paper, because its proba-
bility is ignorable whenT is not too small.

The other case of the “lack of information” phenomenon is
when only two neighbouring quantization indicesj and j + 1 ap-
pear in the observationsi2,1(t),(1≤ t ≤ T), as shown in Figure 3.
When this happens, (5) becomes

lnP(y=i; ln,σn)= N2,1(1) lnF(l2,1,σ1, j)+N2,1(2) lnF(l2,1,σ1, j+1)
= N2,1(1) lnF(l2,1,σ1, j)+(T−N2,1(1)) lnF(l2,1,σ1, j+1). (6)

By regardingF(l2,1,σ1, j) andF(l2,1,σ1, j + 1) as variables, the
maximization of the log-likelihood function in Equation (5) is the
maximization of (6) with the following constraints:

0≤ F(l2,1,σ1, j)≤ 1

0≤ F(l2,1,σ1, j +1)≤ 1

0≤ F(l2,1,σ1, j)+F(l2,1,σ1, j +1)≤ 1
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Figure 3: Quantization indices and decision regions, and a Gaussian
distributed signal

The solution to this fundamental optimization problems is,

F(l2,1,σ1, j) = N2,1(1)/T

F(l2,1,σ1, j +1) = 1−N2,1(1)/T.

However, as shown in Figure 3, this is satisfied only ifσ̂1 → 0 and
l̂2,1→ a( j +1), which is the decision boundary between the indices
j and j+1. Unfortunately, this solution is not reasonable, because
σ1 is the standard deviation of the thermal noise and should never
be zero.

Now consider the general case when a network contains more
than 2 nodes. At the noden, the “lack of information” phenomenon
happens when there are only two neighbouring quantizer indices
appearing in every observations pathim,n(t),(1≤ t ≤ T), then the
ML estimator will generateσ̂n → 0. This can be derived very simi-
larly to the steps above. The reason for this phenomenon is that we
do not have enough information to infer the parameterσn, which
originates from the rough quantization. The probability of this phe-
nomenon is small whenT is large as in the training phase (T = 103)
[2]. However, this probability is not small whenT is small as in the
detection phase (T = Nc = 50). For example, as shown in Figure 3,
if F(l ,σ , j)+F(l ,σ , j+1) = 0.995, then the probability of this phe-
nomenon is0.995T , and it is around 0.007 whenT = 103, however
it is around 0.778 whenT = 50.

This “lack of information” phenomenon does not originate in
the iterative ML estimator, it is the problem of not having enough in-
formation to estimate the parameters, which is caused by the rough
quantization. Since the performance of the GLRT detector relies
on parameter estimation precision, to achieve optimal performance
in the GLRT detector, this problem must be solved satisfyingly. In
other words, when the “lack of information” phenomenon happens,
a good estimator should still be able to get good estimates of the
parameters. Our solution to this is given in Section 4 and 5.

3.2 Need for Adaptive Estimation of The Parameters

Over a long time period, the signal parameterslm,n(t) andσn(t) tend
to drift slowly to significantly different levels due to changes in the
environment or in the sensor node hardware. A clear example of the
observed slowly drifting RSSI is shown in Figure 2.

Since the performance of the GLRT detector relies on the es-
timation precision of the parameters, it is necessary to adapt the
estimates to the moderately drifting signal parameters to avoid sys-
tem performance degradation. Switching between the training and
detection phases to handle the drift is not a good solution, because
the detection functionality is off during the training phase.

In order to achieve a good intrusion detection performance and
avoid false alarm, we derive an adaptive estimator with Kalman fil-
ter in Section 4 to solve this problem.

4. ADAPTIVE ESTIMATOR WITH KALMAN FILTER

We let the detection procedure consist of the training and detection
phases as proposed in [2]. The detection carries out a cyclic scan-
ning of the environment. However, in the detection phase, as long
as the hypothesisH1 has not been decided yet, the observations
in the past scanning cycles are used to adapt the estimates of the
parameters. This differs from the prototype system in [2].
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Figure 4: histogram of the estimates of the parameters

Since the hypothesis decision is made only at the end of every
cycle, we only need to adapt the estimates of the parameters at most
once every cycle. To reduce the computational load, we choose to
adapt the estimates once every multiple (say,Ns) cycles. This is
suitable due to the slow drift of the signal parameters, because a
sudden change is regarded as the happening of physical intrusion.

Note that if we combine the observations of everyNs cycles
to form an observation window with sizeT =Ns×Nc, we can use
the iterative ML estimator in [2] to estimate the parameters within
the window. In this way, when the system runs, we can get a se-
quence of estimates for each parameter. Such estimation sequences
are shown in Figure 2(B) and 2(C). By appropriate modelling the
estimation sequences, we propose an adaptive estimator in this sec-
tion.

Here we briefly demonstrate that the computational complex-
ity of the iterative ML estimator can be highly reduced. In (5),
by letting the partial derivatives of the log-likelihood function

equal to zero, namely∂ lnP(y=i;ln,σn)
∂ lm,n

= 0(1≤m≤N,m 6= n) and
∂ lnP(y=i;ln,σn)

∂σn
=0, we getN equations

f1(lm,n,σn)=
Tm,n

∑
k=1

Nm,n(k)
X(lm,n,σn, i ′m,n(k))−X(lm,n,σn, i ′m,n(k)+1)

F(lm,n,σn, i ′m,n(k))
=0

(7)

f2(ln,σn)=
N

∑
m=1
m6=n

Tm,n

∑
k=1

Nm,n(k)ψ(lm,n,σn, i
′
m,n(k))=0, (8)

whereX(l ,σ , j) = e
−(a( j)−l)2

2σ2 , and

ψ(l ,σ , j) =
(a( j)− l)X(l ,σ , j)− (a( j +1)− l)X(l ,σ , j +1)

F(l ,σ , j)
.

Equations (7) and (8) can be solved by Newton’s method, which is
shown in [2]. However, the computational complexity is no more
linear with the window sizeT, but becomes constant (Tm,n can be
regarded as a small constant around 3 as shown in Figure 2(A)).

Due to the non-linearity of the ML estimator and the effect
of the quantizer, it is not possible to give the distribution ofl̂m,n
andσ̂n in closed form. However, when the likelihood function sat-
isfies the regularity conditions, the ML estimates of the parame-
ters are asymptotically Gaussian around the true parameter values
[6]. Therefore, here thêlm,n andσ̂n can be approximated as Gaus-
sian distributed whenT is large. We illustrate this by an exam-
ple. We simulate a 2-node system with parametersl1,2 =−60.5,
l2,1 =−60.7, σ1 =0.35, σ2 =0.37 andT =103. The histogram of
l̂1,2, l̂2,1, σ̂1, σ̂2 are shown in Figure 4. As we can see, these esti-
mates are approximately Gaussian distributed.

From the above discussion, it is clear that in each observation
window, the estimation errorŝlm,n−lm,n andσ̂n−σn can be regarded
as zero-mean Gaussian noise (for convenience, here we letlm,n and
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σn denote the true values within the window). When the signal
parameters drift slowly, the estimation sequence of each parameter
can be regarded as a slowly drifting signal disturbed by an AWGN.
Therefore, the Kalman filter is the optimal solution to filter these
estimation sequences for improving the estimation precision. By
regarding these random variablel̂m,n andσ̂n as independent of each
other, we get the following simple state-space model:

x(k) = x(k−1)+u(k) (9)

y(k) = x(k)+v(k) (10)

wherex(k)=[ l̂1,n, ..., l̂n−1,n, l̂n+1,n, ..., l̂N,n, σ̂n ]T is the signal vector,
y(k) is the observation vector. The excitation noise vectoru(k) and
the observation noise vectorv(k) are both zero-mean AWGN.

The variance of each coordinate ofu(k) andv(k) are appropri-
ately chosen with respect to the window sizeT, the latest adapted
σ̂n, and the effect of the quantizer. ForT observations of a random
variable following the distributionN(l ,σ2), the Cramer-Rao Lower
Bound (CRLB) forl is σ2/T, and the CRLB forσ is σ2/2T [5].
For estimator (7), (8), the data are quantized Gaussian. Therefore,
taking the quantization effect into consideration, we take the double
of these CRLBs as the variances of the corresponding observation
noisev(k). Namely, we let the variance of each coordinate ofv(k)
corresponding tôlm,n be equal to2σ̂2

n/T, and we let the variance of
the last dimension ofv(k) be equal toσ̂2

n/T.
Finally, we need to handle the “lack of information” phe-

nomenon. Even ifT is set sufficiently large by choosing a largeNs,
the phenomenon may still happen with a small probability. In this
case, we will have trouble to use (7) and (8) for estimation. But we
can solve this problem satisfyingly as follows. Since we have got a
high-precision estimate ofσn by the above adaptive estimator with
Kalman filter, if the “lack of information” phenomenon happens in
the current observation window, we can letσn be equal to the last
adapted estimate, and we only need to estimate thelm,n within the
current observation window. In this instance, (7) becomes

f1(lm,n)=
Tm,n

∑
k=1

Nm,n(k)
X(lm,n,σn, i ′m,n(k))−X(lm,n,σn, i ′m,n(k)+1)

F(lm,n,σn, i ′m,n(k))
=0 .

(11)
The unknownlm,n in (11) can be solved by Newton’s method. In
this way, the estimation sequence of each parameter can continue,
and the adaptive estimator can work continuously.

Note that if the intruder want to move slowly to avoid detection
by letting the adaptive estimator adapt to the changes caused by
him, he must be very slow, for example less than 1cm/s.

5. SIGNAL LEVEL CHANGE ESTIMATOR AND GLRT
DETECTOR

At the end of each scanning cycle, the signal level changes∆lm,n
need to be estimated for hypothesis testing. However, in Section
3, we have analyzed that both the approximate ML estimator and
the iterative ML estimator proposed in [2] are not suitable for this
task. The approximate ML estimator is biased, and the iterative
ML estimator cannot handle the “lack of information” phenomenon
due to the smallT. However, this phenomenon happens with a high
probability becauseT is a small number during each scanning cycle.

The main drawback of the iterative ML estimator is that it tries
to estimate both thelm,n andσn from a small number of observations
(T = Nc). However, our basic assumption is that the intruder will
only cause variations in the signal parameterslm,n, but not in the
noise parameterσn. It is not necessary to estimate them both in
every scanning cycle, because a high-precision estimate ofσn has
already been obtained by the adaptive estimator. Instead, at the end
of each scanning cycle, to estimate the possible changes∆lm,n, we
only need to estimate the parameterslm,n given the observations of
that cycle. We use (11) to estimatelm,n within the current scanning
cycle, in which we letσn be equal to the latest adapted estimate

obtained from the adaptive estimator. The difference between the
solution lm,n obtained from (11) and the latestlm,n obtained from
the adaptive estimator is the estimate of∆lm,n within the cycle.

The signal level change estimator proposed here has the follow-
ing advantages. First, it is unbiased and has a good performance,
sinceσn is already known with high precision. Second, even in the
“lack of information” case with only two different quantization in-
dices appearing, it can still produce a correct ML estimate oflm,n,
which is also because thatσn is already known with high precision.

We resort to the GLRT detector (3) to solve this composite hy-
pothesis testing problem. Because all the parameters,lm,n, ∆lm,n
andσn, are estimated with high precision, the performance of the
GLRT detector is guaranteed.

6. LOW-COST AND ROBUST SYSTEM ARCHITECTURE

The prototype multimodal wireless network proposed in [2] needs
a powerful computer to work as the fusion center, whose task is to
estimate the signal parameters in the training phase, and to estimate
changes of the signal parameters at the end of each scanning cycle in
the detection phase, and then use the GLRT detector for composite
hypothesis testing. However, this solution is not very cost-effective
due to the cost the of fusion center. Moreover, it is not very robust,
since when this system is deployed in private homes, the fusion
center is usually a personal computer which is under the threat of
virus, network attacks, system failure, etc. These constraints limit
the deployment of such kind of multimodal wireless network.

The computational task of the parameter estimation and change
detection can be done in a highly distributed manner. In Section
4, an adaptive signal parameter estimator is derived. Through the
derivation, it is clear that for the noden, by using this estimator
and only based on its own observations, noden can estimate all the
signal parameters{lm,n} andσn related to it. Moreover, by using
the signal level change estimator derived in Section 5, noden can
estimate all the signal level changes{∆lm,n} in every scanning cycle
from its own observations, and then calculategn.

We propose to let the nodes of the network elect one node out
of them as the fusion center. At the end of each scanning cycle, the
elected fusion center sums up the logarithm of the local likelihood
ratios reported from all nodes, and then compare the summation
with lnγ for the composite hypothesis testing. Note that the detector
is centralized even though the estimator is decentralized.

Such a system architecture is low-cost, since it eliminates the
need of a powerful computer as the dedicated fusion center. More-
over, it is robust, since whenever there is a failure at the current
fusion center, a new node can be elected as the fusion center and
the system can work with reduced number of nodes. Of course, the
decision thresholdγ needs to be adjusted in this instance. This sys-
tem architecture requires that the sensor nodes are capable of the
computational task, which can be easily satisfied, because the ML
estimator of (7) and (8) has very low computational complexity and
the Kalman filter has a very simple structure.

7. EXPERIMENTAL RESULTS

The performance of the derived adaptive ML estimator with Kalman
filter is illustrated by simulations. In order to illustrate the drift of
signal parameters, we use a slope factorρm,n, which defines the
speed of change inlm,n(t). A uniform quantizer with step size
q= 1 is used. We simulate a 3-node system that start with pa-
rameters:l1,2=−60.5 dBm, l2,1=−60.7 dBm, l1,3=−53.3 dBm,
l3,1=−53.4 dBm, l2,3=−70.1 dBm, l3,2=−70.2 dBm, σ1=0.35,
σ2=0.37, σ3=0.39, ρ1,2=ρ2,1=0.0, ρ1,3=ρ3,1=0.4×10−6, ρ2,3=
ρ3,2=−0.8×10−6. The results are shown in Figure 5, in which the
average mean squared error (MSE) for the signal parameters{lm,n}
and the noise parameters{σn} are depicted as a function of the win-
dow sizeT. We can see that for the estimation of the noise parame-
ters, the adaptive ML estimator with Kalman filter performs around
one order of magnitude better than the iterative ML estimator given
in [2], no matter the window sizeT since the noise parameter is
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Figure 5: The simulation results

not drifting in the simulation. For the estimation of the signal pa-
rameterslm,n, the largerT, the better performance the iterative ML
estimator will have. WhenT is not too large, the adaptive estimator
with Kalman filter performs around one order of magnitude better
than the iterative ML estimator. However, due to the parameter drift
introduced in the simulation, whenT is too large (T = 104), the
delay effect of large window is not ignorable (the signal dynamics
within the window is no more suitable to be approximated as con-
stant, since the amount of changes within the window,ρm,n×T, be-
comes significant). In this case, the adaptive estimator with Kalman
filter performs even worse due to the delay effect of the Kalman
filter.

We can also see from Figure 5 that the window sizeT = 103

(which lasts for around 10 seconds) is appropriate in this simula-
tion, since significant improvements are achieved with respect to
the estimation performance, and the delay effect is not significant.

The performance of this system with the derived estimators and
the GLRT detector was investigated by a set of experiments. The ex-
periment site was chosen at one corner of the underground floor at
IT University of Copenhagen. Figure 6 shows the site map. Three
laptops equipped with ZyAIR B-100 802.11b cards were used as
network nodes. The node positions and the directions of the WLAN
cards are shown by the numbered triangles. One frame was trans-
mitted per 2.5 ms. All the room walls were concrete and 25 cm
thick. Three plastic laminated wooden doors A, B and C were cho-
sen for experiments. Specifically, they were either closed or opened
(30◦) in order to produce small changes in the environment. The de-
cision hypotheses were:H0: the chosen door was closed, andH1:
the chosen door was opened. We compared the performance of this
new system, which uses the adaptive estimator with Kalman filter
and the GLRT detector, with the prototype system presented in [2].
To calculate the average probability of false alarm (Pf ), 1.8×105

scanning cycles were recorded with all the doors closed. To calcu-
late the average probability of detection (Pd) of the door opening
event, in experiment A, B and C, we opened the door A, B and C
specifically and recorded 5000 scanning cycles in each case. Fig-
ure 7 shows the curve of the experimental results. As we can see,
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for experiment B, both detectors performed very well and their dif-
ference is not visible. The reason was that door B was very close
to node 3 and small changes at door B can produce significant sig-
nal strength changes at node 3, which were around 0.5 dB in the
experiment B. In the more challenging experiment cases A and C,
the largest signal strength changes, namely the largest∆lm,n of all
paths, were only around 0.2 dB. Therefore, the detection perfor-
mance in experiment A and C was not good when the estimator and
detector in [2] were applied. However, the system performance was
improved significantly when the adaptive estimator and the change
detector derived in this paper were applied. In experiments A and C,
thePf were reduced by nearly one order of magnitude at almost any
probability of false alarm, for example whenPd=0.9 andPd=0.95.

8. CONCLUSIONS

We addressed the problem of using a multiple-node indoor wireless
network as a distributed sensor network for detecting physical in-
truders into the indoor environment. We analyzed the challenges
for achieving high performance of intrusion detection. We derived
a high-precision adaptive parameter estimator with Kalman filter
in Section 4, and we derived a high-precision signal level change
estimator in Section 5. Experiments show that the detection per-
formance of the derived system is significantly better than the pub-
lished prototype multimodal wireless network system.

Given the low computational complexity of the estimators, we
proposed a low-cost and robust system architecture, which elim-
inated the main constraints on deploying such kind of multimodal
wireless network. The intrusion detection performance demonstrate
that this novel application is promising, and the low-cost and robust
system architecture make it possible for wide deployment.
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