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ABSTRACT

Tree-structured Markov random fields have been re-
cently proposed in order to model complex images and
to allow for their fast and accurate segmentation. By
modeling the image as a tree of regions and subre-
gions, the original K-ary segmentation problem can be
recast as a sequence of reduced-dimensionality steps,
thus reducing computational complexity and allowing
for higher spatial adaptivity. Up to now, only binary
tree structures have been considered, which simplifies
matters but also introduces an unnecessary constraint.
Here we use a more flexible structure, where each node
of the tree is allowed to have a different number of chil-
dren, and also propose a simple technique to estimate
such a structure based on the mean shift procedure. Ex-
periments on synthetic images prove the structure esti-
mation procedure to be quite effective, and the ensuing
segmentation to be more accurate than in the binary
case.

1. INTRODUCTION

Segmentation is a low level task that aims at partition-
ing an image into different homogeneous regions, accord-
ing to various properties like color, texture, shape, mo-
tion, etc. It is useful for many high-level applications in
such diverse fields as remote-sensing, medical imaging,
video coding, image restoration, and so on. The task is
often complicated (e.g., in remote sensing applications)
by the presence of strong noise components combined
to the signal, which calls for the use of sophisticated
statistical techniques. Bayesian segmentation based on
Markov random field (MRF) image modeling [1, 2] has
emerged in recent years as one of the most promising ap-
proaches to this problem, guaranteeing a good accuracy
at the cost of a significant complexity.

To reduce such a complexity, the class of Tree-
Structured MRF (TS-MRF) models has been recently
proposed [3, 4]. The main advantage derived from the
use of such models is given by their recursive definition,
which leads to a recursive formulation and solution of
the segmentation problem. The original K-class seg-
mentation is decomposed into a sequence of reduced-
dimensionality steps, whose aim is to subdivide a large
region in two or more component regions, leading to a
hierarchical tree-structured representation of the image.
Fach step turns out to be relatively simple and manage-
able, and the overall complexity is significantly reduced
with respect to a single K-dimensional step.

In previous works, the proposed techniques used
only fixed-dimensionality tree structures (typically bi-

nary trees), in order to avoid difficult modeling prob-
lems. Such a rigid constraint, however, can sometimes
lead to the inappropriate modeling of arbitrarily struc-
tured data, as already recognized in [4], where a split-
and-merge procedure was proposed to make up for such
problems. For this reason, we consider here a more gen-
eral model, where each node of the tree is allowed to have
an arbitrary number of children, that is, each region
can be split in two or more subregions. Of course, with
such a general model, the problem arises of estimating
the tree-structure that better fit the inherent structure
of the data (we are considering a strictly unsupervised
problem). Therefore, we propose a variation to the un-
supervised segmentation algorithm of [4] by providing
the dynamic dimensionality selection for MRF's located
at each node of the tree. This is obtained by means of
the Mean-Shift analysis [5] applied to each region in the
spectral domain, which allow us to discover the most rel-
evant modes of the underlying probability distribution
and estimate the number of local sub-regions.

The next Section will provide the necessary back-
ground on TS-MRF segmentation and the mean-shift
procedure, Section 3 will outline the proposed segmen-
tation algorithm, and Section 4 will report some exper-
imental results on synthetic images and draw conclu-
sions.

2. BACKGROUND
2.1 Tree-Structured MRF Segmentation

Image segmentation can be easily formulated as a MAP
estimation problem. Suppose each pixel of the im-
age S belongs to one of K different classes, and let
zs € {1,...,K} indicate the class of pixel s. Then
x = {xs,s € S} is the segmentation of the image S
in K classes. Of course, x is unknown, and must be
recovered from the data y = {ys,s € S}. Modeling all
quantities as random variable/fields (capital letters), we
accept as our segmentation T the most likely realization
of X given the observed data, namely,

z = argmaxp(zly) = argmaxp(y|z)p(z) (1)

It can be convenient to model the classes as a Markov
random field!, that is a reasonably simple and general
model which keeps into account the spatial dependencies
in the image through the conditional probability that

IWe will not go into detail on MRF’s, assuming the reader
is already familiar with this topic, and referring to the literature

(e-g., [2])-
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a pixel belong to a given class given the classes of its
neighbors. As a result, X has Gibbs distribution

pla) = 5 exp[3 Vilw,0) )

ceC

where Z is a normalizing constant, and the V.(-,0)’s are
potential functions, defined on suitable cliques ¢ of the
image, and depending on some hyperparameters 6.

Observed data Y, instead, are usually modeled as
multivariate Gaussian, spatially independent given the
class, and characterized for each class k by their mean
w and covariance matrix .

Given this model, the segmentation problem
amounts to maximizing the function p(y|z)p(x) over z,
where all the quantities K, ug, X and 0 are in general
unknown and must be estimated themselves from the
data. Due to the inherent complexity of this problem,
in practical applications one must resort to heuristics
that reduce the search complexity, and accept subopti-
mal solutions.

To drastically reduce the search complexity, in [3, 4]
we have introduced a tree-structured MRF model, where
the full segmentation is obtained through a sequence of
binary segmentations. More precisely, the whole image
is associated to the root node ¢t = 1 of a tree T', and is
segmented in two regions using a binary MRF model.
The two new regions, associated with the children of
the root, t = 2 and t = 3, can be likewise segmented
by means of newly defined local binary MRF, and the
growth of the tree continues until a suitable stopping
condition is met. Therefore, each node t of the tree
is associated with a region of the image S?, a field of
observed data Y* with realization ¢, a binary MRF X*
with realization 2!, and a set of parameters {p’, $*, 6 }.
The leaves of the tree partition the image in K disjoint
regions, namely provide the desired segmentation.

In [3] it is shown that the growth of the tree can
be based exclusively on local decisions, taken on the
basis of the node split gain defined as the likelihood
ratio between the two hypotheses of splitting the region
in two or leaving it unaltered.

The use of binary fields only, together with the lo-
cality of the splitting (the segmentation of a region does
not depend on other regions) leads to a significant re-
duction of the computational complexity with respect
to the case where a flat K-class MRF is used. However,
it also introduces some additional constraint which tend
to impair the segmentation performance, which is why
we turn here to more general models, in which the di-
mensionality of each node’s MRF must be estimated in
advance.

2.2 Mean-Shift Procedure

The Mean Shift procedure [5] is typically used to de-
tect the local maxima (modes) of a probability density
function in a given feature space, and applies to many
vision tasks, such as discontinuity preserving smoothing
and image segmentation. It is based on the Parzen Win-
dow Kernel Density Estimator: such a technique states
that, given a d-dimensional feature space and a set of n
data points (s, -, 8, ), the p.d.f. p(s) can be estimated

as:
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where k(s), called kernel profile function, is related
to a kernel function K(s) by the relation K(s) =
ck,ak(||s]|?), ck.a is a normalization constant, and h is
the “bandwidth” parameter. Applying the gradient op-
erator to both members of (3) yields:
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and g(s) = —k/(s) is the profile of a new kernel function
G(s).

The function my, ;(s) is called mean shift: it is pos-
sible to prove that, for each point s, this vector always
points towards the direction of the maximum increase
in the density. Such “alignment” allows the mean shift
to define a path leading from a starting kernel center s
to a stationary point of the p.d.f., that corresponds to a
mode of the density. Hence, it is possible to define the
mean shift procedure as the iterative execution of three
steps, once a starting kernel center s is fixed:

1. computation of mean shift vector my, ¢(s),
2. translation of kernel G(s) by my, ¢ (s),
3. update of kernel center s = s + my, g (s).

This procedure is guaranteed to converge at a nearby
local maximum of the density. Clearly, to detect all sig-
nificant modes, it must be executed multiple times, each
time with a different initialization, in order to cover most
of the feature space with kernels. A typical choice is to
initialize the procedure with a randomly selected subset
of the available data points, whose dimension is chosen
as a compromise between computational effort and de-
sired precision. Another important issue is the selection
of kernel shape: our choice is the use of multivariate
normal kernel, defined as

Kvls) = (2n) e (—5ls1) . ()

But the most critical issue when applying this mode
detection procedure is the selection of the bandwidth
parameter h. Such a parameter is related to the reso-
lution of modes: a large value for h typically leads to
estimating a smoother density, and hence to detecting
less modes; on the other hand, using a small bandwidth,
the density estimate will suffer from too much variabil-
ity, and too many modes can be detected.
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3. PROPOSED SEGMENTATION
ALGORITHM

We implement a recursive segmentation algorithm. The
whole image, associated with the root of the tree, is ini-
tially split in an arbitrary number of regions, not neces-
sarily two. Each of these regions is then split in its turn,
again in two or more subregions, and this continues re-
cursively until a stopping criterion is satisfied. To each
node t, a local Potts MRF with K, labels is associated,
and the local segmentation is obtained by maximizing
the posterior probability, by means of any suitable tech-
nique.

The main innovation proposed here with respect to
the algorithm described in [4] is the use of generic rather
than binary splits. This allows one to avoid impor-
tant segmentation inaccuracies; for example, if a re-
gion presents three equally significant classes, and we
attempt to subdivide it in just two sub-regions (follow-
ing a fixed binary approach) the split will very likely
generate a false contour.

The key problem becomes the automatic selection of
the number of classes, and we estimate it as the number
of dominant modes in the p.d.f. of the current region,
as provided by the mean shift procedure. Although this
approach makes certainly sense, in principle, it is clear
that, in the empirical multivariate p.d.f.’s we deal with,
the mean shift procedure can find anything from a single
mode to a large number of modes, depending on the crit-
ical bandwidth parameter h which governs mode resolu-

tion. We therefore decided to set h = Ai/d, with A; the
largest eigenvalue associated with the data. This way,
when there is a large spread in the region’s data, indicat-
ing two or more clearly distinguishable classes, a large
bandwidth is used so as to overlook finer distinction and
avoid a proliferation of modes. On the contrary, when
the data are more homogeneous, the bandwidth reduces
automatically and allows one to distinguish classes that
are more similar to one another. As stopping conditions,
we accept both the obvious case of a single mode found,
and that of a large number of modes because too com-
plex structures are typically unreliable, meaning that
the corresponding region is likely non-structured at all.
In addition, the tree growth stops when the split gain
[4] is smaller than 1.

Another important innovation concerns the split ini-
tialization. In MRF-based segmentation, in fact, it is
necessary to provide an initial split of each region in or-
der to apply map optimization procedures. In the orig-
inal algorithm [4] this was obtained by using a simple
clustering algorithm, the GLA [6], applied on the whole
region, but now the mode estimation procedure provides
such pre-classification, for a suitable sample set, as a
by-product with no need for further processing and in-
creased reliability. Starting from this pre-classification,
we estimate the mean and covariance for the subregions
and compute the full initial split using the maximum
likelihood technique.

The proposed TS-MRF-based unsupervised algo-
rithm can be summarized as follows:

1. Initialize the tree.
2. For each newly created leaf:

(a) Compute the largest eigenvalue and hence the

Figure 1: test image (a), ground truth (b), segmentation
with TS-MRF/B (c), with TS-MRF /K (d).

bandwidth parameter h;

(b) Execute the mean-shift mode detection proce-
dure on the current region to obtain the dimen-
sionality K for the current node, and to initialize
the splitting procedure;

(¢) T K; =1or K; > Kpax set this node as terminal,
otherwise complete the test split on the current
region and evaluate the associated split gain.

3. If all leaves are set as terminal, then exit. Else find
the non-terminal leaf with the largest split gain. If
this value is smaller than 1 exit, otherwise validate
the split and go to step 2.

4. EXPERIMENTAL RESULTS

Our experiments are carried out, for the time being, on
a synthetic test image so as to measure objectively the
performance of the new segmentation algorithm as op-
posed to the reference algorithm based on purely binary
splits.

The three-band synthetic image, shown in Fig.1(a),
has been obtained by projecting the ground truth of
Fig.1(b) on the data space, adding white noise, and fi-
nally performing a light spatial filtering. The reference
algorithm, referred to as TS-MRF/B from now on, gen-
erates the tree structure shown in Fig.2 and the segmen-
tation map of Fig.1(c), while the new algorithm, called
TS-MRF/K, generates the tree structure of Fig.3 and
the segmentation map of Fig.1(d).

It is clear that TS-MRF /B has a hard time fitting the
intrinsic (non-binary) structure of the data. Whenever
a ternary split is needed (for example in the root node)
the algorithm must simulate it by means of a sequence
of two binary splits. Sometimes, this has no detrimental
effect, like in the root, where the dark-blue, light-blue
and orange macroregions are correctly singled out, but



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

DB. B. LB. C. G. 0. R. Br. Total

D.Blue | 49083 | 2749 51832
Blue 2467 | 44573 47040
L.Blue 20922 6 20928
Cyan 8 29944 | 20361 50313
Green 14866 | 11383 | 5472 31721
Orange 6 13129 | 1436 6574 21145
Red 2 14987 | 6863 | 21852
Brown 5 17308 | 17313
Total | 51550 | 47322 | 35802 | 41327 | 25839 | 13136 | 16423 | 30745 | 262144

Figure 2: Confusion matrix for TS-MRF/B.

DB. B. LB. C. G. O. R. Br. Tota

D.Blue | 48928 | 2632 51560
Blue 2622 | 44690 47312
L.Blue 32512 | 9337 7 41926
Cyan 6 26883 372 27261
Green 3278 5107 | 25390 33775
Orange 6 11429 3032 14461
Red 1 14844 | 3338 | 18183
Brown 1706 | 1579 | 24375 | 27666
Total | 51550 | 47322 | 35802 | 41327 | 25839 | 13136 | 16423 | 30745 | 262144

Figure 3: Confusion matrix for TS-MRF/K.

in at least one instance, the split of the light-blue re-
gions, this leads to a grossly inaccurate segmentation, as
also testified by the confusion matrix? reported in Fig.1.
From another point of view, this inaccuracy can be seen
as the detection of a false contour. A further split of the
cyan region using TS-MRF/B succeeds in revealing the
correct missing contour, but the overall result will be an
obvious oversplitting of the macroregion.

On the contrary, the proposed TS-MRF /K provides
the correct (or a correct) tree structure for the test im-
age, with a first ternary split at the root node that sin-
gles out the correct macroregions, each of which is then
split in two or three regions, following their actual com-
position. As a consequence, the segmentation map is
usually accurate, but for some random sparse errors, as
obvious from the analysis of the corresponding confu-
sion matrix of Fig.2. Major improvements have been
obtained on the light-blue macroregion, due to the di-
rect ternary split, and on the orange one. For the latter
case, we observed in particular that the new split ini-
tialization method leads to a more accurate contour de-
tection, thus pointing out a limit of the old GLA-based
algorithm.

Some interesting results concern also the total num-
ber of classes detected by the two algorithms. Using
TS-MRF/B the segmentation process does not stop un-
til the maximum number of classes is reached, while
with TS-MRF/K, it stops automatically after 9 classes
are detected, with only one elementary region oversplit,
thus resulting, for the case, in a drastic reduction of
oversegmentation phenomena.

5. CONCLUSIONS

In this work we proposed a modification to the un-
supervised TS-MRF segmentation algorithm, aimed at
extending hierarchical data modeling from only binary

2A confusion matriz is a table that allows comparison between
a predicted class membership and an actual one. Each element
of the matrix in position (4,j) represents the number of pixels
belonging to class i actually classified as belonging to class j.
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Figure 4: 8-class binary tree structure.
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Figure 5: 8-class K-ary tree structure.

trees to any generic tree structure. The mean shift pro-
cedure has been used to select the dimensionality of each
node of the tree. Some experimental results have been
obtained on synthetic data, showing that the new tech-
nique can perform better in the presence of arbitrarily
structured data and can also address several drawbacks
of the existing T'S-MRF algorithm.
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