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ABSTRACT

In this paper we consider the problem of multichannel
restoration. Current multichannel least squares restoration
filters utilize the assumption that the signal autocorrelation,
describing the between-channel and within-channel relation-
ship, is separable. We propose a Wiener solution for a multi-
channel restoration scheme, the Adaptive-3D-Wiener filter,
based on a local signal model, without using the assump-
tion of spectral and spatial separability. Moreover, when the
number of channels is superior to 3, the restoration is in
many cases the preprocessing to a given application such as
classification, segmentation or detection, so it seems to be
important to perform a restoration which suits to the appli-
cation in fine. In this aim, the proposed filter is developed to
be used as a preprocessing step for detection in hyperspec-
tral imagery. Tests on real data show that the proposed filter
enables to enhance detection performance in target detection
and anomaly detection applications with two well-known de-
tection algorithms in hyperspectral imagery.

1. INTRODUCTION

The aim of this work is to propose a multidimensional al-
gorithm for the restoration of noisy multicomponent images
in the final objective to improve the performances of target
detection in hyperspectral imagery.

In imagery as in signal processing, there are various noise
sources and it is fundamental to take it into account. With
the emergence of multichannel data, new methods of mul-
timodal processing are necessary, because the use of 2D
method for multimodal data involves individual image plane
restoration without using the related information between
image planes. An example is the restoration of color images
by individual monochrome processing in which each color is
treated separately.

Most of the multimodal restoration methods are based
on the least squares estimation using a statistical modelling
of the noise, which is a generalization of Wiener filtering to
multimodal data. But this generalization is not immediate.
In [1], Hunt and Kubler present a multichannel restoration
scheme based on the assumption that the signal autocorre-
lation, describing the between-channel (or spectral) and the
within-channel (or spatial) relationship, is separable. It is
enables the formulation of a linear transformation to decorre-
late the signal between image channels, generally performed
by a principal component analysis (PCA) [2]. In other words,
this transformation makes the channels orthogonal. It fol-
lows that the multichannel restoration of the transformed
signal is equivalent to the application of the restoration of in-
dividual channel independently, without losing any between-
channel information. This separability hypothesis allows
to generate a family of filters named here ”hybrid filters”.
Each hybrid filter is characterized by a channel decorrela-
ting transformation, which can be for example the Fourier
transformation or the principal component analysis, and by
a classic method of 2D restoration such as stationary wavelet

denoising [3], Lee’s adaptive Wiener filter [4] or filtering in
the Fourier domain (Figure 1). Atkinson and All use the se-
parability hypothesis with the aim of restoring hyperspectral
data in [5] with a hybrid filter composed of the fast Fourier
transform and 2D-wavelet analysis, and in [6] with a hybrid
filter composed of PCA and 2D-wavelet analysis.

However, the separability assumption is questionable be-
cause of the variability and merging of the areas and of the
components of the scene. That is the reason why current re-
searches try to form a filter without using the assumption of
spectral and spatial separability. Solutions were proposed for
color images but the significant number of bands in hyper-
spectral imagery poses a problem for their direct application.
Thus there are few restoration algorithms which seem to be
adapted to the special features of hyperspectral data, except
hybrid filters.

Paradoxically, we can notice that the hyperspectral ima-
gery field is at the present time really increasing. Many
applications open up to it from military to agriculture, in-
cluding the detection of atmospheric pollution. New acqui-
sition systems are set up and of course, new research works
are developed in which the most widespread used are classi-
fication, segmentation and detection. There are two types of
detections. Detection, when the target signature is known,
amounts to identify the presence of mineral or organic com-
pound in a scene from the knowledge of its spectral answer.
When the target spectral signature is unknown, detection
amounts to identify the areas whose spectral answer is sig-
nificantly distant from the environment one and is known as
anomaly detection.

There are many detection algorithms in hyperspectral
imagery [7]. The detection performance depends of course
on the noise level. We propose to reduce the noise in the ima-
ges before performing the detection. This point of view is
not usually adopted in multicomponent detection methods,
and this is the reason why we develop in this paper a new
restoration filter suited to detection application in hyper-
spectral imagery and we compare the detection performance
after a restoration by classic methods and by the proposed
filter.

This paper is organized as follows. In section 2, we
present the multichannel Adaptive-3D-Wiener filter, we
have developed. In section 3, we compare the restoration
results obtained with this filter to those of four other filters
on an hyperspectral image. Then in section 4, we compare
the results obtained for target detection and for anomaly de-
tection on the hyperspectral images restored with different
algorithms. Finally, we give a conclusion on these works with
some perspectives.

2. ADAPTIVE-3D-WIENER FILTERING

We develop a multidimensional algorithm for the restoration
of multichannel images in order to improve the performances
of detection in hyperspectral imagery.
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Figure 1: Hybrid filter scheme

Table 1: MSE of HSI data restored with the five filters real-
ized for 100 noise observations.

Noise level | 20 50 80
DWT 17.02 2214 28.09
PCA-DWT 15.44 16.03 22.32
Lee’sWiener 21.72 23.40 29.88
PC A-Lee' sWiener 8.88 1493 22.82
Adaptive-3D-Wiener | 11.75 17.88  26.63

Let us consider tri-dimensional data with two homoge-
neous dimensions. The third will be named here channel.
These data can be for example color images, multispectral
images, hyperspectral images, multidate images or any set
of images describing an image scene as a function of a given
parameter.

As developed in introduction, the classic bi-dimensional
restoration filters can be applied on each channel, but in
these conditions, the intra-channel information can not be
taken into account. To be able to use the intra-channel in-
formation, we need a tri-dimensional filter.

However, it is important to understand that it is really
difficult to apply the Least Squares (Wiener) solution on
the whole because the data covariance matrix is not block
Toeplitz circulant matrix due to the multiband structure of
the data [8]. That is the essential problem encountered by
the current researches [1, 5, 6, 9, 8]. The development of a
local filter enables us to by-pass this problem.

In hyperspectral imagery, targets have usually very small
spatial feature: only a few tens of pixels at the most. So, a
global noise reduction method might merge the statistical,
spectral and spatial properties of the targets with those of
their environment and as a consequence it might reduce the
probability of a good detection. This remark has already
been formulated by Chandran and All [10] in detection of
mines in acoustic images. They were using a local restora-
tion 2D-filter: the Lee’s adaptive Wiener filter [4]. However,
spectra contain the most crucial information and have to be
preserved as a whole. That is the reason why we have cho-
sen to develop a local-spatial and global-spectral algorithm
based on the same hypotheses as the well-known Lee’s adap-
tive Wiener filter.

2.1 Hypothesis and image formation model
2.1.1 Noise

As it is usually done, we assume that the channel vector
v(ni,n2) represents a zero-mean white Gaussian noise, un-
correlated with the original image. Its covariance matrix
is I'yy = a?,IdL, where Id; is the L-identity matrix. The
degraded image g can be expressed as follows

g(ni,n2) = f(n1,n2) + v(ni, n2), (1)
where f(ni,n2) is one channel vector of the original image

and g(n1,n2) the noisy channel vector observation at pixel
(1, n2).

Figure 2: (a) A 30-panels HYDICE image scene. (b) Ground
truth map of target in Figure 2(a).

2.1.2 Local region

Let us consider a small local region in which the signal pixel-
vector f(n1,n2) is assumed homogeneous (locally stationary).
Within the local region, the signal is modelled by

f(n1,n2) = my + w(ni, na2), (2)

where my is the local mean of f(n1,n2) and w(ni,n2) a zero
mean white noise.

This hypothesis is a multichannel adaptation of the Lee’s
adaptive Wiener filter hypothesis [4].

2.2 Adaptive-3D-Wiener :

The linear minimum mean square error (LMMSE) solution
of Equation (1) (Wiener restoration) is produced by

theory

f= my + ngr_t;gl (g - mg)v (3)

where I'y, and I'gy are the covariance of f and g, and the
variance-covariance matrix of g, respectively. See [11] for
details.

From the degraded image, we can only estimate
Lgg(n1,m2), but as the signal and the noise are uncorrelated

Pgg =Tss + oo,
4
Tig =Ty, )

where I'y s and I'y, are the channel variance-covariance ma-
trices of the multichannel image and noise, respectively. As
the noise is a zero mean

my = g, (5)
so the equation (3) changes to
f:mg—i—H(g—mg), (6)

with the filter )
H= (Fgg — FUU)Fgg . (7)

Due to the local region model hypothesis (Eq. 2), the
I'yq estimate is easy. I'yy and my are updated at each pixel.

2.3 Adaptive-3D-Wiener :

The local hypothesis we have done enables us to apply the
least squares (Wiener) method. We will see in the following
what is to be done to obtain a reliable estimation in these
conditions.

Computation issues
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Figure 3: Channel number 121 for targets 6 and 10: (a)
Original, (b) Noisy(MSE = 50). Restoration with: (c)
Lee’' sWiener, (d) PCA-Lee’sWiener, (e) DWT, (f) PCA-
SWT, and (g) Adaptive-3D-Wiener.

2.8.1 Window Size

Given our objective in fine, in the following tests we have
considered windows with a size of 5 x 5 so that the size of the
targets in the hyperspectral images is in accord with the size
of the window. Moreover, it corresponds to the standard size
used in the Lee’s adaptive Wiener filter for greyscale images
restoration.

We have also compared the following results with those
obtained with windows with a size of 7 X 7, and no notable
difference has been noticed.

2.8.2 Cowvariance matriz estimate

As we have said in the section 2.2, the variance-covariance
matrix estimate I'y, is locally done, on small windows and
thus on a small data sample.

When we process hyperspectral images, the number of
channels (spectra) is important and the number of realiza-
tions does not change. So we come up against Hughes phe-
nomenon, characteristic of parameters estimate in high di-
mensional spaces [12]. T'g4 estimate will not be much reliable.

In addition, the covariance matrix inversion requires its
diagonalisation and so the estimate of its eigenvectors. Each
eigenvalue )\; is characteristic of the energy of signals con-
tained in the vector subspace formed by the associated eigen-
vector. So the eigenvectors with the largest eigenvalues are
associated to the signal subspace and the other ones to the
noise subspace. As the noise is white, its power is the same
in each subspace. So the signal to noise ratio is in inverse
proportion to the eigenvalue. Consequently, the reliability
of the eigenvectors estimate is in inverse proportion to the
associated eigenvalue.

In these conditions, if we consider these two aspects, we
understand easily that it is necessary to limit the signal sub-
space dimension to obtain a correct estimate.

Thus we put forward the hypothesis that the signal sub-
space dimension is small, hypothesis which is justified insofar
as we consider that the signal is made of some targets that we
try to detect, and corresponds to the envisaged application
in fine.

2.3.83 Algorithm complezity

As the covariance matrices are high dimension, and as we
make a lot of diagonalisations, the treatment of an image be-
comes long. To limit this calculation time, we have used the
inverse power method [13] in order to calculate the couples
eigenvectors / eigenvalues. As we have seen in the section
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Figure 4: ROC curves for target detection (AMF) on re-
stored data.

2.3.2, we only calculate a few couples eigenvectors / eigen-
values. So this method will enable to accelerate the process
and to reach a calculation time close to the images capture
time.

3. RESTORATION EXPERIMENTS AND
RESULTS

In order to assess our results objectively, we have chosen two
restoration filters widely used in unimodal imagery. The first
one is the well-known Lee’s adaptive Wiener filter [4]. It fil-
ters an intensity image that has been degraded by white and
additive noise. It uses a pixel-wise adaptive Wiener method
based on statistics estimated from a local neighborhood of
each pixel. This comparison filter was chosen because the
Adaptive-3D-Wiener filter is in a way the multidimensional
version of the Lee'sWiener filter (see section 2.1.2).

The second comparison filter is a soft threshold of Sta-
tionary Wavelet transform [3] (named SWT here). This
filtering has been chosen for the well-known quality of its
results.

If we combine these two unimodal restoration filters with
a principal component analysis, as seen in Figure 1, we
obtain two other hybrid filters of multimodal restoration
(named PCA-Lee'sWiener and PCA-SWT respectively).
Thus we obtain 4 comparison restoration filters.

The performances of methods are visually assessed and
with the Mean Square Error (MSE) defined for a given de-

noised image estimate X (i, j, k) of X(i,, k) by

MSE = m SN N X5 k) = X34 )P, (8)

i=1 j=1 k=1

where M and N are the size of the image, and L the number
of components.

In hyperspectral images, the 3-dimension is the spectral
dimension, and one 3-dimension value represents a spectral
band. A high spatial resolution hyperspectral digital ima-
gery collection experiment (HYDICE) scene considered in
most of research test was used for experiments. The HY-
DICE image shown in Figure 2(a) has a size of 243 x 113
with 10 nm spectral resolution and 1.5 m spatial resolution.
The low signal / high noise bands (bands 1-3 and bands 202-
210) and water vapor absorption bands (bands 101-112 and
bands 137-153) have been removed. It results in a total of
169 bands. There are 30 target panels located on the field,
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Figure 5: Anomaly detection (RX filter): Probability of de-
tection with respect to the noise power, with a probability
of false alarm = 1073,

and they are arranged in a 10 x 3 matrix. Figure 2(b) shows
the ground truth map of 2(a) and provides the precise spa-
tial locations of these 30 panels. The sizes of the panels in
the first, second and third columns are 3m x 3m, 2m X 2m,
and 1m x 1m, respectively.

We add noise to the HSI image, according to the Equa-
tion (1) and we restore it with the five filters. Some visual
results are presented in Figure 3. We show the restoration
results of one channel for the targets number 6 and 10. We
notice on 3-(a), that the two targets can be seen in the three
resolutions. It means that this channel contains some infor-
mations for these two targets. The targets with the lowest
resolution (column 3) are not visible anymore in the noisy
image 3-(b), as well as in the restored images 3-(c)(d)(e)(f),
but they appear after a restoration by the Adaptive-3D-
Wiener3D filter. So that latter has enabled to keep better
the statistical, spectral and spatial properties of the small
targets.

Now if we look at the mean of MSE values for 100 noise
realizations presented in Table 1, we notice that hybrid fil-
ters are again more efficient than the unimodal ones. On
the contrary, the MSE does not seem to be revealing con-
cerning the conservation of small targets because the MSE
of the filtering by Adaptive-3D-Wiener does not give the
best results. It can be explained by the fact that the MSE is
a global criterion and so a good restoration of small target
only has a small influence on it.

In hyperspectral imagery, the restoration is often the first
step of an application. The visual interpretation of an hy-
perspectral image is not relevant because of the high number
of channels. That is the reason why we have chosen to as-
sess the filters within the framework of a target detection
application rather than on a MSE criterion or on a visual
result.

4. IMPROVEMENT OF DETECTION RESULTS
IN HYPERSPECTRAL IMAGERY

With the aim of assessing the restoration performances of the
five precedent filters, we assess the detection results associa-
ted to the different restored images. We perform these tests
for two types of detection: target detection and anomaly de-
tection. The Adaptive Matched Filter (AMF) [7] is the most
popular Constant False Alarm Rate (CFAR) of the hyper-
spectral imaging target detection algorithms, and, the RX
algorithm [7] is the reference in anomaly detection.

@ ) © @

Figure 6: Anomaly detection map with a detection proba-
bility of 0.83 : (a) on the noisy HYDICE image with MSE =
50, (b) after restoration with the Adaptive-3D-Wiener, (c)
with PC A-Lee'sWiener, (d) with PCA-SWT.

We assess the results from the probabilities of good de-
tection and false alarms. With the aim of giving the same
importance to the small, medium and large targets in the
results, one target is detected if one of the pixels which com-
posed it is greater than the threshold.

4.1 Target Detection :
(AMF)

In target detection, there are some difficulties: firstly to ex-
tract each target from the composite background noise, but
secondly and above all to discriminate the targets between
them. Actually the ten spectral signatures of the represented
targets are quite close. That is the reason why these first re-
sults essentially highlight the impact of the restoration on
the discrimination of the different targets.

The Receiver Operating Characteristic (ROC) Curves
are presented Figure 4. We work out an average on the ten
targets and on ten noise realizations with a standard devia-
tion of 50. The zone of interest corresponds to probabilities
of false alarm going from 107° to 5.1072.

It can be noticed that the four restoration filters of com-
parison do not improve, and even sometimes degrade the de-
tection performances. The visual restoration results Figure
3 (b)(c)(d)(e) has enabled us to expect these results. On the
contrary, the data restored with the Adaptive-3D-Wiener
filter give better detection results than the others. It is in
keeping with the quality of the restoration noticed Figure 3
(f). In particular, with a probability of false alarm fixed at
1073, we have a probability of detection of 0.7 on the non
restored data or those restored with one of the hybrid filters,
whereas, the probability of detection is higher than 0.8 on
the data restored with the Adaptive-3D-Wiener filter. That
is a gain of about 15%.

The improvement of the performances can be explained
particularly by a better discrimination of the targets, given
that they have very close spectral signatures. The proposed
filter is at the same time local spatially, multichannel and
non separable (spectral/spatial), and it enables to restore
spectrally and spatially each area in an adapted way. It
explains the results.

Adaptive Matched Filter

4.2 Anomaly Detection : RX-algorithm

In the section 4.1 to obtain good detection results, it was
necessary to have a good restoration of the different targets
and the restoration of the background was minor. In this
part, it is totally different. In anomaly detection, there are
no problem of discrimination, all targets have to be detected
on the same detection map.
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In the Figure 5, we show the probability of detection with
respect to the noise power, with a probability of false alarm
equal to 1072, These results show that the restoration with
the Adaptive-3D-Wiener filter enables to improve the de-
tection performances whatever the noise power may be, and
that the average gain is about 10%. The other restorations
do not improve and even sometimes degrade these perfor-
mances.

Anomaly detection maps are presented Figure 6 with
a probability of detection equal to 0.83 (25 targets out of
30). We notice, that the Adaptive-3D-Wiener filter ena-
bles to denoise without degrading the characteristics of the
targets. The separable restoration filters give worse detec-
tion results than non restored data for high detection prob-
abilities. Given that the RX algorithm estimates the Ma-
halanobis distance of the test pixel from the mean of the
background, so it highlight the fact that the separable filters
merge the characteristics of the background with those of
the targets, when the Adaptive-3D-Wiener filter does in a
certain extent independent restorations. It can specially be
noticed with high detection probabilities because they are
reached when we detect the small targets, which are those
who might be merged in the background.

5. CONCLUSION

In this paper, we have done a state of the art of the existing
multichannel restoration methods which can be applied to
hyperspectral data.We have noticed that the most efficient
methods are the hybrid ones; they are composed of a channel
decorrelating transformation and of a 2D-image restoration
classic filter. These methods are based on the hypothesis
that the spectral and spatial restorations can be done sepa-
rately.

Then we have developed a new image restoration mul-
tichannel filter: the Adaptive-3D-Wiener filter. This local-
spatial and global-spectral filter makes a non separable spec-
tral / spatial restoration.

Afterwards, we have compared these different restoration
filters and we have noticed that hybrid filters give better vi-
sual results than those of the proposed filter, in particular
the PCA-SWT filter. However, the results on the HSIT image
have shown that the proposed filter enables to keep some
details finer than with the other comparison filters. The hy-
brid filters seems to be sufficient when the number of bands
is small or when the details do not have a major interest
(visualization, classification, segmentation, ...).

On the contrary, it is totally different in detection. We
have noticed that the restoration with the Adaptive-3D-
Wiener filter enables to improve the detection performances
of the AMF filter in target detection, and those of the RX
filter in anomaly detection, although the targets are small.
The separable filters merge the characteristics of the back-
ground with those of the targets, when the proposed filter
does, in a certain extent, independent restorations between
targets and the background.

The proposed method should be tested on many other
data in order to assess its performances on a variety of situa-
tions. Furthermore, we noted that the Lee’s adaptive Wiener
filter was subject of many extensions [14, 15, 16, 17]. This is
why, with an aim of looking further into this study, we view
to introduce a Markovian model to locally characterize the
signal.
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