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ABSTRACT

This paper introduces multivariate polynomial impulse
response time-varying FIR filters for reconstruction of M-peri-
odic nonuniformly sampled signals. The main advantages of
these reconstruction filters are that 1) they do not require on-
line filter design, and 2) most of their multipliers are fixed and
can thus be implemented using low-cost dedicated multiplier
elements. This is in contrast to existing filters that require on-
line design as well as many general multipliers in the imple-
mentation. By using the proposed filters, the overall implemen-
tation cost may therefore be reduced in applications where the
sampling pattern changes now and then. Design examples are
included demonstrating the usefulness of the proposed filters.

1. INTRODUCTION

Nonuniform sampling takes place in many applications either
intentionally or unintentionally [1]. One application belonging
to the latter category is constituted by M-channel time-inter-
leaved analog-to-digital converters (ADCs) [2] where static
time-skew channel mismatch errors give rise to an M-periodic
nonuniform sampling pattern instead of the desired uniform
pattern, as exemplified in Fig. 1 for M = 3. In such an applica-
tion, it is necessary to reconstruct the “uniform sequence” from
the “nonuniform sequence” In this paper, a time-varying FIR
filter is employed for the reconstruction. If the sampling pattern
is known and fixed, this filter can be designed in an optimum
way using, e.g., least-squares or minimax design [3], [4]. How-
ever, problems arise when the sampling pattern is changed now
and then during normal operation, like in time-interleaved
ADCs, as the filters then need to be redesigned. This results in a
large overhead cost in the implementation as general on-line
design is cumbersome.

To circumvent this problem, this paper introduces an FIR
filter class for which the time-varying impulse response can be
expressed as a multivariate polynomial with the variables being
the distances between the undesired nonuniform sampling
instances and the desired uniform sampling instances. The main
advantage of using these filters is that the need for on-line
design thereby is eliminated. Instead, it is enough to perform
only one design before the filter is implemented. In the imple-
mentation, it suffices to adjust only M variable parameters.
Although the number of multipliers (filter coefficients) is larger
for the proposed filters than for the ones in [3], [4], most of
these multipliers are fixed which means that they can be imple-
mented using dedicated multipliers which can be implemented
to a substantially lower cost than general multipliers [5]. This is
in contrast to the filters in [3], [4], which do need general multi-
pliers. Therefore, using the proposed filters, the implementation
cost of the filtering can be kept low and the overall cost reduced
due to the removal of the on-line design.

It should be noted, however, that depending on the maxi-
mum distance between the undesired nonuniform sampling
instances and the desired uniform sampling instances, and the
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Figure 1. (a) Uniform sampling. (b) M-periodic nonuniform sam-
pling for M = 3.

approximation error allowed, the number of terms in the multi-
variate polynomial may become rather high which can result in
an intolerably high complexity. The proposed filter class may
therefore be less attractive in such cases. On the other hand, it
turns out that many of the terms in the general multivariate
polynomial a priori can be eliminated and, in addition, it is pos-
sible to impose symmetries among the polynomial coefficients
in order to further reduce the complexity. Therefore, the pro-
posed filter class it is indeed useful for many practical cases, in
particular applications where the sampling instance deviations
from the uniform grid are small. This is the case in, e.g. time-
interleaved ADCs where the deviations (time-skew mismatch
errors) are typically only a few per cent.

The proposed filters are generalizations of the filters in [6]
that target the special case of two-periodic nonuniform sam-
pling with one of the sampling instance deviations being zero,
which corresponds to a reference channel in two-channel time
interleaved ADCs. It should also be noted that similar
approaches have been reported earlier [7], [8], but the technique
in [7] is more restricted in the sense that it requires an addi-
tional amount of oversampling, whereas the technique in [8] is
not well understood; both the design and potentials are unclear.
The advantage of the proposed filters comes from the fact that
high-order terms in the polynomial are included. In [7], [8],
only first-order terms are present which imposes restrictions.

2. PREREQUISITES

Throughout the paper, it is assumed that the nonuniform sam-
pling of the continuous-time (CT) signal x,(f) generates the
sequence v(n) given by

v(n) = x,(t,) (1)
where
t,=nT+¢,T 2)

with ¢, T representing the distance between the nonuniform
sampling instance #, and the uniform sampling instance nT ,
and the average sampling frequency being 1/7. Furthermore, we
assume that 1) ¢, T is M-periodic, which means that
e,T =¢,, uT, and2) ~Eax = €, S €

The second condition means that we know beforehand that

¢, are fixed and lie in the interval —¢ , =<¢, <€ . ., but we
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do not know beforehand the exact values ¢, will take on in a
specific realization. This is the situation in, e.g., M-channel
time-interleaved ADCs where one typically knows that ¢, (the
time-skew mismatch errors) are bounded in magnitude by a few
percent of the sampling period, but one does not know the exact
values. These values are obtained through estimations, and they
may change now and then during operation !. Regardless the
values of ¢,T, satisfying —¢_ . <¢,=<¢_ . , the reconstruc-
tion filter must be able to reconstruct the nonuniformly sampled
signal within a certain approximation error. The simplest way
to do this is to redesign the reconstruction filter once a new set
of M fixed values ¢, T = ¢,,,,T,n=0,1, .., M-1, has been
obtained. This is costly though in an implementation. To avoid
this problem, we introduce the multivariate polynomial impulse
response time-varying FIR filters in Section 3 for which rede-
sign is not needed.

Furthermore, it is assumed that 3) x,(f) is bandlimited
according to

X, (jo) =0, 0<wy<l|a, wy<a/T. 3)

and 4) x,(¢) is slightly oversampled which means that there is a
certain “don’t-care region” between w, and s/T where the
signal contains no frequency components. The practical advan-
tages of assuming a slight oversampling were thoroughly dis-
cussed and demonstrated in [3], [4].

3. PROPOSED MULTIVARIATE POLYNOMIAL
IMPULSE RESPONSE TIME-VARYING FIR FILTERS
Using a noncausal (for convenience in the design) time-varying
FIR filter of order 2N with the impulse responses #,(k), the
output y(n) is formed according to

N

() = N v(n=k)h, (k). @)
k=-N

It is desired to select h,(k) so that y(n) approximates
x(n) = x,(nT) as close as possible in some sense as perfect
reconstruction is not feasible in general. This is done by mini-
mizing e(n) = y(n)—x(n) (in some sense) where [3], [4]

w,T
e(n) = 5= [ (4,(j0T) = DX(SNeloTrd(wT)  (5)
-w,T
with
N .
An(ij) — E hn(k)e*]wT(kfs,,,k)' (6)
k=-N

Apparently, to goal is to make A, (jwT') as close to one as pos-
sible in some sense.

The formulas above hold for general nonuniform sampling
[3], [4] in which case a new impulse response has to be deter-
mined for each n. In the M-periodic case, it suffices to deter-
mine only M impulse responses because, then,
h,(k) = h,, (k). To this end, we let &, (k) be expressible as
a multivariate polynomial according to

h(k) = 8(k)+ E N (O AL ARRT LS 0))
res

1. The deviations ¢,T cannot change from sample to sample, but between
batches of samples in which case reconstruction of M-periodic nonuni-
form sampling still applies, but only “batchwise”.

where (k) is the unit impulse sequence,

T
r=lrgry ] s ®)
and S is a set of vectors for which
ro€[1,2,...,L], )
r,€00,1, ..., L-1], m=1,2,..,M-1, (10)
and
M-1
E r, €012, ..., L]. (11)
m=0

This means that only those combinations of r,, for which the
sum in (7) contains at least one of ¢, , 83 Y e 8’% , are utilized.
The rationale behind this is the observation that, when ¢, = 0,
we already have available the “uniform sample”
v(n) = x,(nT). This means that the filter output should sim-
ply produce y(n) = v(n) which corresponds to
h, (k) = (k) ,i.e., the first term in (7). This is independent of
the values of the remaining deviations ¢, ,,, €,,5, -
€, p_1» Which implies that it is not meaningful to include
terms in the sum in (7) that does not contain ¢,, .

For L =1 and L = 2, (7) can be written in a simpler form.
For L =1, (7) reduces to

h,(k) = 8(k)+a,, o(k)e, (12)
and for L = 2 one obtains
hy(k) = 0(k) + g o(K)e, + ey (k)
M-1
Y 0 0K (13)

m=1

For L =1 and L = 2, it is seen from (12) and (13) that the
number of terms in &, (k) is small. These cases can however
only be used when ¢ is small. As ¢ increases, one has to
increase L to obtain an acceptably small approximation error.
This comes with an increase of the number of terms that grows
faster and faster with increasing L. For example, for M = 4, we
need 1, 5, 15, and 35 terms for L = 1, 2, 3, 4, respectively. The
corresponding realizations require 1, 5, 15, and 35 fixed subfil-
ters and equally many general multipliers (see Section 4). This
should be compared to four filters (M filters in general) with
general multipliers plus the additional block that implements
the on-line design when using the traditional approach [3], [4].
From these figures, it is clear that the proposed filter class is
most attractive for cases where ¢, is small like in time-inter-
leaved ADCs. In such cases, the number of fixed subfilters and
general multipliers is small which results in a substantially
lower overall implementation complexity than that of the tradi-
tional approach [3], [4]. More detailed examples are given in
Section 5.

Both the design and implementation complexity of the pro-
posed filters can be reduced by utilizing symmetries among the
filter coefficients. When —¢_. <¢€,<¢€_. . , it can be shown
that the following symmetries can be imposed.

First, we have

aroo...()(_k)’ for even r,

@0...0(k)

—aroomo(—k), foroddr, .  (14)
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That is, the impulse responses e, 0. (k) for the terms &, "0 are
symmetric (anti- symmetrlc) [10] °for even (odd) r¢. It is noted
that the anti-symmetry in (14) implies

O‘ro()...o(o) =0, foroddr,. (15)

Second, we have
a ey (K) =

[

o . (k) for even R (16)

_ T T a—mee T T 1

(=k), for odd R

TorTm—mTmTm—1

form=1,2, ..., M1, where
M-1
R = 2 r,, - (17)
m=0

That is, the impulse responses « - I(k) for

70T T —m

terms containing &7 g'M-n

W E s _, €qual the reversed (and sign-

inverted for odd R) versions of the impulse responses

-k for terms containin
rO...erm...rm‘..erl( ) g
"m
€ r;:gn”;— M-m "
When r, = r,, . the two a impulse responses in (16)

coincide which means that this impulse response is symmetric
or anti-symmetric, like (14). When r, =r, ., the two «
impulse responses do not coincide but exhibit pair-wise sym-
metry or anti-symmetry. Further, for M even, we have
Tm =7 - m for m = M/2 which means that all terms contain-
ing en o M 2 Ty > 0, are symmetric or anti-symmetric,
like (14).

4. REALIZATION
The transfer functions corresponding to (7) are
N
E h,(k)z*. (18)

k=-N

H,(z) =

Inserting (7) into (18), H,(z) can be rewritten as

L
Hy(2) = 1+ Y ael e 1Qrpy r, (D) (19)
r=0
where
N
— -k
Qrorl...erl(Z) - E aror erl(k)Z : (20)
k=-N

The reconstruction filter can consequently be implemented
with the aid of the fixed 2Nth-order FIR filters Q — 71(1)
and the set of variable multipliers & 05 w1 ”i a_1 asillus-
trated in Fig. 2. It is noted that thls structure reduces to the
well-known Farrow structure [9] in the one-dimensional case,
i.e., when only .9;0 are present.

5. DESIGN EXAMPLES
In general, the reconstruction system is designed by minimizing
the “size” of A, (jwT)—1 in some sense. Two ways to do it is
to minimize A, (jwT)—1 in the minimax (Chebyshev) sense

v(n)

Fixed subfilters

errz...rM,l(z)

Variable multipliers '

ryr
1¢°2
€ Exxl o

y(n)

Figure 2. Realization of the proposed time-varying FIR filters
using fixed subfilters and variable multipliers.

and least-squares sense. A third option is to formulate the prob-
lem as a filter bank design problem and then design a distortion
and M-1 aliasing functions [4]. Due to the limited space, we
cannot go into design details in this paper. Instead, we provide
two examples that demonstrate the usefulness of the proposed
filters. Design details will be published elsewhere.

Example I —The case withM=4,L=2, ¢ . = 0.02,and
wo,T = 0.8 is considered. The reconstruction filter is
designed by minimizing the maximum of A (ij) over
[-wyT, w,T] for all combinations of ¢, ¢ n B n +2» and
€,,3 within —g_<€.¢€ 1,6, ,2 & ,3= Emax 2 Thisis a
convex problem for which a unique optimum exists. We have
used minimax.m in MATLAB to solve the corresponding dis-
cretized problem. Using filters of order 2N = 20, the maximum
error becomes 0.0000825 (-81.67 dB). Figure 3 plots the mag-
nitude of A, (jwT)-1 for three different combinations of
Enipr P = 0,1,2,3.

The filter realization consists of five subfilters Q,0(2) .
05000(2) > Q1100(2) » Q1010(2) > and Q,4y;(2) , and the corre-
sponding five variable multipliers ¢,, €;, €,&,. 1> €,€, 42
and ¢,¢, , 5, respectively. The filter Q40,(z) is anti-symmet-
ric whereas Q,00(z) and Q,y,o(z) are symmetric. The filters
01100(z) and Q,4,0(z) do not possess symmetries, but they
contain the same coefficients but in reversed order according
to (16). The number of distinct multiplier values in the design is
therefore only 53 plus the four variable ones. Using transposed
direct-form FIR structures (for Q;,q0(z) and Q,y,4(2)), the
number of fixed multipliers in the implementation is also 53,
but this comes with an increased number of delay elements.
Using instead direct-form FIR structures for all five subfilters
(and thereby the minimum number of delay elements) the
implementation requires 74 fixed multipliers.

Using the filters in [3], [4], the same specification (—80 dB)
is met with orders of 18. The corresponding implementation
requires four different filter impulse responses, and thus 76 dis-
tinct multiplier values, and at least 19 general multipliers (if a
single filter with time-varying coefficients is implemented).
This should be compared to 53 (or 76) fixed multipliers, which
are substantially less complex to implement, and four general
multipliers. For the fixed multipliers, one can take full advan-
tage of so called multiple-constant techniques [11], [12], which
is not possible for general multipliers. In addition, the filters in
[3], [4] require on-line filter design which increases their over-
all implementation cost dramatically. This illustrates that, for

small ¢, , the use of the proposed filters can reduce the over-

2. Since the optimization is done over all combinations of ¢,,,, p=0, 1,2, 3,
in their interval [—&,,,y,6max]> the problem formulation and solution are
independent on the value of n. Hence, one can in the filter design fix n to
an arbitrary number, and perform only one optimization.
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Figure 3. Magnitude of A,(jwT) — 1 in Example 1 for three dif-
ferent combinations of Enapr P = 0,1,2,3.
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Figure 4. Time-domain error before (top) and after (bottom)
reconstruction in Example 1. A nearly 60 dB improvement is
seen.

all complexity substantially.

To verify the function of the proposed filter, we have applied
a multi-sine input with frequencies at kn/8 for k=1, 2, ..., 8, for
the case where the sampling instance errors are 0.01, —0.02, —
0.01, and 0.02, respectively. Figure 4 plots the time-domain
error before reconstruction [i.e., v(n)—x(n)] and the error after
reconstruction [i.e., y(n)—-x(n)]. We see that the error after recon-
struction is far below 0.0000825 (-81.67 dB) which is the upper
bound here due to the minimax design [4]. It is also seen that the
maximum error has been suppressed by some 60 dB.

Example 2 —The case with M =2,L =3, ¢ . = 0.05, and
woT = 0.87 is considered. As opposed to Example 1, the
reconstruction filter is here designed in the least-squares sense
instead of minimax sense. This is done by extending the
method in [6] where one of ¢, and ¢, is fixed. This
amounts to solving a triple integral over the region
oT €[-w,T, w,T], €, ¢, | €[-0.05,0.05], with the inte-
grand being ‘An(ij) - 1‘2 . This is a convex problem to
which a unique solution exists. Figure 3 plots the magnitude of
A,(joT)—-1 for three different combinations of ¢, and ¢,
and the order being 2N = 22. As expected, the solution is more
“least-squares like” compared to the minimax optimized filters
in Example 1 (Fig. 3).

Using the filters in [3], [4] with the same order, roughly the
same error is obtained. The corresponding implementation
requires two different filters, and thus 46 distinct multiplier val-
ues for each combination of ¢, and ¢,,, at least 23 general
multipliers (if a single time-varying filter is implemented), and
on-line design. This should be compared to 68 fixed multipliers,

Magnitude [dB]

-100
0 0.21 0.4 0.6 0.8w
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Figure 5. Magnitude of A,(jwT) — 1 in Example 2 for three dif-
ferent combinations of ¢,, and ¢,,, ;.

two general multipliers, but no on-line design. This demon-
strates that the proposed filters can be efficient also for larger
values of L, at least as long as M is small.

6. CONCLUSION

This paper introduced multivariate polynomial impulse
response time-varying FIR filters for reconstruction of M-peri-
odic nonuniformly sampled signals. The main advantages of
these reconstruction filters are that they do not require on-line
filter design and, in cases of small uniform sampling instance
deviations like in time-interleaved ADCs, most of their multi-
pliers are fixed and can thus be implemented using low-cost
dedicated multiplier elements. The proposed filters are there-
fore attractive for applications where the sampling pattern may
change now and then. The features and benefits of the proposed
filters were demonstrated through design examples. Design
details were not included but will be considered elsewhere.
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