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phone: +46-13-286698, email: {matol, hakanj, perl}@isy.liu.se
web: www.es.isy.liu.se

ABSTRACT

This paper provides error analysis regarding filter approxi-
mation errors versus estimation errors when utilizing Farrow-
based fractional-delay filters for time-delay estimation. Fur-
ther, a new technique is introduced which works on batches
of samples and utilizes the Newton-Raphson technique for
finding the minimum of the corresponding cost function.

1. INTRODUCTION

The need for estimating time-delays between two signals
arises in many different fields, including biomedicine, com-
munications, geophysics, radar, and ultrasonics. In [1],
a technique utilizing Farrow-based digital fractional-delay
(FD) filters [2] was introduced for this purpose. The use of
Farrow-based FD filters has two major advantages over other
delay estimation techniques working in the digital domain.
First, it is eminently suitable to handle delays that are frac-
tions of the sampling interval. This is in contrast to cross
correlation-based methods that require additional interpola-
tion [3]. Second, it can handle general bandlimited signals.
This is in contrast to techniques that assume a known input
signal, like a sinusoidal signal [4].

In [1], the idea of using Farrow-based FD filters for
delay-estimation was proposed. However, no analysis was
provided as to filter approximation error versus estimation er-
ror. Such an analysis will be provided in this paper. Further-
more, a new technique is introduced that works on batches of
samples and utilizes the Newton-Raphson technique for find-
ing the minimum of the corresponding cost function. Since
the fractional delay of Farrow-based FD filters is governed
by only one parameter, analytical derivatives can be derived
for this purpose. Thereby, the problems associated with the
use of numerical derivatives are avoided.

Following this introduction, Section 2 will provide a
short introduction to time-delay estimation using FD filters,
followed by a presentation of the delay-estimation technique
in Section 3 and an error analysis in Section 4. In Section 5
we write FD filter design and in Section 6 we verify the error
analysis. Finally some conclusions are drawn.

2. TIME-DELAY ESTIMATION USING FD FILTERS

Two (or more) discrete-time signals, originally coming from
one source, might experience different delays. We model this
as

x(n) = xa(nT )+ e1 (1)

v(n) = xa(nT −d0T )+ e2 (2)
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Figure 1: Example of the cost function F for a sinus input
with d0 = 0.25.

where d0 is the unknown difference in delay between the sig-
nals, T is the sampling period and e1 and e2 are uncorrelated

additive noise1. We assume that the delay d0 is a fraction of
T and that any integer sample delay has already been taken
care of in a proper manner.

Now, let v(n) act as a reference signal and let the other
signal x(n) pass through a FD filter generating the output
y(n,d) [see (7)]. The average squared difference function
(ASDF) F(d) for a certain delay d over a batch of N samples
can then be written as

F(d) =
1

N

n0+N−1

∑
n=n0

(y(n,d)− v(n))2 . (3)

An estimate d̂ of the unknown fractional delay d0 in the ref-
erence signal can then be computed by minimizing F as

d̂ = argmin
d

F(d). (4)

An example of this cost function F for a sinusoidal input
can be seen in Fig. 1. Ideally, the function would be equal

to 2sin 2(ω(d−d0)
2

), which is approximately square for small
d, however, if noise, magnitude errors, delay errors, etc, are
present, it will deviate from the square shape.

1Due to lack of space, the effect of noise is not included in this paper.
It will not affect the filter approximation error vs. estimation error which is
in focus in this paper. The noise can be reduced to a level that is negliable
compared to the filter approximation error by increasing the batch length N.
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Figure 2: The modified Farrow-based FD Filter where Gk(z)
are linear-phase FIR filters. In an implementation delays
must added to make sure the delay is equal for all the subfil-
ters.

3. PROPOSED TIME-DELAY ESTIMATOR

3.1 Farrow-Based FD Filters

The desired frequency response of an FD filter is

Hdes(e
jωT ,d) = e− j(D+d)ωT , |ωT | < ωcT < π (5)

where D is an integer delay and d is a subsample (fractional)
delay. In practice an approximation of (5), designed for fre-
quencies up to ωcT , is used.

The FD filters in this paper make use of the modified Far-
row structure shown in Fig. 2 [5], [6] which is a modifica-
tion of the original Farrow structure [2] in that the subfilters
Gk(z) are linear-phase FIR filters. The advantage of using
linear-phase filters is that their impulse responses are sym-
metrical and can be implemented with fewer multiplications.
The overall transfer function can thus be written as

H(z) =
L

∑
k=0

dkGk(z) (6)

where Gk(z) are linear-phase FIR filters of either odd or even
order, say Mk, and with symmetric (anti-symmetric) impulse
responses gk(n) for k even (k odd), i.e., gk(n) = gk(Mk − n)
[gk(n) = −gk(Mk − n)] for k even (k odd) [7]. When d is
fixed, the overall filter approximates an allpass filter with the
fractional delay d, provided that the subfilters have been de-
signed in a proper manner [5], [6].

The output y(n,d) from the FD filter in Fig. 2 can be
written as

y(n,d) =
L

∑
k=0

dkyk(n). (7)

where

yk(n) = gk(n)∗ x(n). (8)

In this paper, it is assumed that the order M = max{Mk}
is even. The reason is that the delay of H(z) is then an in-
teger, D = M/2, when d = 0. This is suitable for the time-
delay estimation problem. The filter is normally optimized
for |d| ≤ 0.5 to cover one sampling interval.

3.2 The Estimator

To find the minimum of F with respect to d, the well-known
Newton Raphson (NR) algorithm is used. The algorithm
is iterative and tends towards the closest zero of a one-
dimensional function, in this case the derivative of F . The

update equation is here

d̂n+1 = d̂n +
F ′(d̂n)

F ′′(d̂n)
(9)

where F ′(d) and F ′′(d) are the derivatives of F(d). The
principle of the estimator is depicted in Fig. 3. Compared
to the common Least-Mean-Square (LMS) algorithm we do
not need to specify a step length since it is computed explic-

itly as 1/F ′′(d̂n). For a perfectly quadratic function this step
length is optimal and only one iteration is needed. However,
in a real situation, a few more iterations are needed. Each
new iteration can use a new batch of samples N or the same
batch, depending on the amount of memory at hand and if
the estimation is run on-line or off-line.

To be able to calculate the next iterative estimate in (9),
the first and second derivatives of F(n,d) with respect to d
are needed, which can be calculated as

F ′(d) = 2
1

N

n0+N−1

∑
n=n0

(y(n,d)− v(n))y′(n,d) (10)

and

F ′′(d) = 2
1

N

n0+N−1

∑
n=n0

(y(n,d)− v(n))y′′(n,d)+(y′(n,d))2.

(11)
When a Farrow-based FD-filter is used, the derivatives of (7)
can be calculated analytically as

y′(n,d) =
L

∑
k=1

kdk−1yk(n) (12)

and

y′′(n,d) =
L

∑
k=2

k(k−1)dk−2yk(n), (13)

respectively. In Fig. 4, a straightforward implementation of
the derivatives (10) and (11) can be seen. Note that the sub-
filters Gk(z) only have to be used once.

Since a Farrow-based FD filer is an approximation of the
ideal response in (5), the approximation errors will affect the
estimator performance. In the next section we will investi-
gate the performance of the algorithm when the FD filter is
not ideal.

4. APPROXIMATION ERROR VS. ESTIMATION

ERROR

We model the non-ideal FD filter as

H(e jω ,d) = (1+δ (ω,d))e− jω(D+d+d̃(ω,d)) (14)

where δ (d,ω) denotes the magnitude error and d̃(d,ω) de-
notes the delay error of the FD filter for a certain fractional
delay d and a certain angular frequency ω . D is the integer
delay of the FD-filter. This is a formulation which is general
for all types of FD filters, not just the Farrow-based FD filter
used in this paper, and the resulting expressions in this sec-
tion is hence independent of the FD filter type. In Section 5,
expressions specific for Farrow-based FD filters are derived.
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Figure 3: The principle of the proposed estimator.
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Figure 4: A straightforward implementation of the derivatives.

Now, if we assume that x(n) is sinusoidal (for the choice
of signal see the conclusions), the output from the FD filter
at a frequency ω0 is

y(n,d) = (1+δ )sin(ω0(n−d − d̃)) (15)

and the reference signal v(n) is

v(n) = sin(ω0(n−d0)). (16)

Henceforth, the dependence of δ and δ ′ on d and ω0 will be
omitted in the notation for the sake of clarity.

After inserting (15) and (16) into (3) and some simplifi-
cations we arrive at

F ′(ω,d) = δ ′[(1+δ )− cos(ω(d −d0 + d̃))]+

+(1+δ )ω(1+ d̃′)sin(ω(d −d0 + d̃))+

1

N

[
(1+δ )ω0(1+ d̃′)sin(ω0(−(d0 +d + d̃)+2ϕ)−

− (1+δ )2ω0(1+ d̃′)sin(ω0(−(d + d̃)+2ϕ)+

+δ ′ cos(ω0(−(d0 +d + d̃)+2ϕ)−

−(1+δ )δ ′ cos(ω0(−(d0+ d̃)+2ϕ)
] sin(Nω0)

sin(ω0)

= F ′
0(ω,d)+F ′

N(ω,d) (17)

where F ′
0 does not depend on the batch length N and F ′

N con-
tains the terms that do. At the minimum of F , as we will see

later, d + d̃ will be close to d0. Using this fact we can rewrite
F ′

N as

F ′
N(ω,d)|d+d̃=d0

= −
δ sin(Nω0)

N sin(ω0)

[
(1+δ )ω0(1+ d̃′)

sin(ω0(2d0 +N −1))+δ ′ cos(2ω0(2d0 +N −1))
]
. (18)

Since δ and δ ′ usually are very small, (18) will be small even
for a small N. However, when ω0 tends towards 0, (18) will
tend towards −δ ′δ , independently of N.

The iterative Newton-Raphson algorithm in (9) will, if
the function is behaving well, converge towards the zero of
F ′

0. If we assume that N is so large that F ′
N can be approxi-

mated as zero for all d and ω0, it can be seen from (17) that
if δ ′ and d̃ are zero, F ′ will be zero when d = d0, irrespective
of δ . On the other hand, if δ ′ is small, but not zero, the effect
of a constant magnitude error δ will affect the estimator. The

effect of a delay error derivative d̃′ is normally neglible since
it tends to be small compared to 1.

Unfortunately, it is impossible to directly from (17) ana-
lytically find the d that makes F ′

0 zero. It can be done numer-
ically and to find an approximation of the estimation error we
do a first-order Taylor expansion of the sine and cosine in F ′

0
and write it as

F ′
0 ≈ δ ′(δ +

ω2
0

2
(d−d0 + d̃)2)−(1+δ )(1+ d̃′)ω2

0 (d−d0 + d̃)

(19)
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If 1 + d̃ and 1 + δ are approximated by 1, we can solve for
derr ≈ d −d0 and get

derr ≈−
1

δ ′
+

1

ω0δ ′

√
ω2

0 −2(δ ′)2δ − d̃. (20)

This expression can be used to predict the final estimation er-
ror. The first part becomes small when ω2

0 is large compared

to 2(δ ′)2δ and the error will then be dominated by d̃. For
small ω0, if δ or δ ′ are not zero, the error deviates more and
more from d̃. If d′ = 0 the error becomes derr = d̃.

5. FILTER DESIGN

As was seen in (17) the main error source is the delay er-

ror d̃ which directly affects the estimate. However, when the
derivative of the magnitude error, δ ′, is nonzero the magni-
tude error δ and the frequency ω0 will come into effect. To
find an FD filter which is optimized for small estimation er-
rors, the expression in (20) can be used as cost function in
an optimization problem. The optimization problem can for
example be formulated as a minimax problem

minimize ε subject to |derr(ω,d)| < ε (21)

which is then optimized over a range of angular frequen-
cies ωk and delays dk. The fminimax-routine in MATLAB
efficiently implements a sequential quadratic programming
method that is capable of solving the minimax constraint
problem in (21). However, the solution is not guaranteed to
be the global minimum as the problem is nonlinear.

The derivative of δ , which is needed to calculate the ex-
pected estimation error, can be found analytically by noting
that the magnitude of the Farrow-based FD filter can be writ-
ten as

|H(d,e jωT )| =

∣∣∣∣∣

⌊L/2⌋

∑
k=0

d2kG(2k)R(ωT )+

+ j

⌊(L+1)/2⌋

∑
k=1

d2k−1G(2k−1)R(ωT )

∣∣∣∣∣

= |A(d)+ jB(d)| = 1+δ (22)

where G(2k)R and G(2k−1)R are the zero phase frequency re-
sponses for the even-order linear-phase FIR filters with im-
pulse responses gk(n).

Since the derivative of the magnitude is equal to the
derivative of the magnitude error we can calculate δ ′ as

δ ′ = 2
A(d)A′(d)+B(d)B′(d)√

A(d)2 +B(d)2
(23)

where A′(d) and B′(d) can be calculated as

A′(d) =
⌊L/2⌋

∑
k=1

2kd2k−1G(2k)R(ωT ) (24)

and

B′(d) =
⌊(L+1)/2⌋

∑
k=1

(2k−1)d2k−2G(2k−1)R(ωT ). (25)
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Figure 5: The simulated estimation error for N = 10000 and
N = 100 samples. 0.1 < ω0 < π/2.

Figure 6: The expected error. 0.1π < ω0 < π/2.

6. PERFORMANCE OF THE ESTIMATION ERROR

PREDICTION

To verify the error analysis, a number of simulations were
performed. An FD filter with L = 7 subfilters was optimized
for minimal error up to the frequency ω0 = π/2. The result-
ing even-order subfilters had orders Mk ranging from 8 to 18.
The maximum magnitude error was δmax = 1.83 · 10−4, the

maximum delay error was d̃max = 1.168 ·10−5 and the max-

imum derivative of the delay error was d̃′
max = 1.01 ·10−4.

In Fig. 5 the simulated estimation error for N = 10000
and N = 100 samples can be seen. As predicted by (20) the
estimation error increases for decreasing frequencies when
there is a magnitude error. The reason for the lower perfor-
mance for N = 100 samples is that N must be larger for the
variance of F ′

N to become small, especially when δ and δ ′ are
relatively large, which they tend to be for small ω0 and large
d. In Fig. 6 the expected error derr can be seen. Compared to
the simulated error in Fig. 5 a smaller frequency range has
been used to enhance the details.
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Figure 7: The difference between the expected estimation er-
ror and the simulated error, N = 10000. 0.1π < ω0 < π/2.
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Figure 8: The difference between the expected estimation er-
ror and the simulated error, N = 100. 0.1π < ω0 < π/2.

When derr was derived we omitted F ′
N , assuming that N

is infinite or at least large enough. If the batch size N is
decreased the expected estimation error will increase, which
can be seen in Fig. 7 and 8. As expected, the difference
between the estimated error and the simulated error is in-
creased when N becomes smaller so that F ′

N no longer can
be approximated to be zero. For N = 100 samples the esti-
mator still performs quite well, see Fig. 5, but the expected
error derr no longer works as a good estimation of the actual
error since the expected error is almost as large as the actual
difference between the simulated and expected error. This is

because for small N noise and the variance of F ′
N will dom-

inate, while for large N the filter approximation errors will
dominate.

7. CONCLUSIONS

We have presented a novel method to estimate the delay er-
ror between two sets of samples using a FD filter. The idea
is to use an iterative, Newton-Raphson-based, estimator to
minimize the mean-squared-difference between a reference
signal and a signal with an unknown delay.

The effects of a nonideal FD filter with magnitude and
delay errors have been studied theoretically and in simula-
tions. An expression of the expected estimation error derr

was derived, which can be used to optimize the FD filter in
the estimator for a minumum estimation error. The expected
estimation error derr is a bias, or in other words, the best one
we can achieve without noise, i.e when N → ∞.

In the analysis we have assumed a single sinusoid, but the
time delay estimator can be used for more general bandlim-
ited signals. However, in this case, the estimation error will
differ from the case where a sinusoidal is used. The analysis
done in this paper is still useful since it gives an insight into
errors caused by the nonideal interpolation performed by the
fractional-delay filters. Additionally, in some applications
where the training sequence may be chosen freely we can
actually choose a sinusoid and achieve the limits computed
in this paper.

The time-delay estimation method can easily be extended
to more sets of samples, using one set as the reference, which
could be useful e.g. in the calibration of time-interleaved
analog-to-digital-converters (TIADCs).
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