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ABSTRACT

Reverberation can severely degrade the intelligibility of
speech. Blind de-reverberation aims at restoring the orig-
inal signal by attenuating the reverberation without prior
knowledge of the surrounding acoustic environment nor of
the source. In this paper, single-channel and multi-channel
de-reverberation structures are compared and the advantages
of the multi-channel approach are discussed. We propose
an adaptive multi-channel blind de-reverberation algorithm
based on a maximum likelihood approach that exploits re-
sults relating to the multiple input/output inverse theorem
(MINT). The performance of the algorithm is illustrated us-
ing an eight-channel linear microphone array placed in a
real room. Simulation results show that the algorithm can
achieve very good de-reverberation when the channels are
time aligned.

1. INTRODUCTION

Reverberation, a component of any sound generated in a nat-
ural environment, can degrade speech intelligibility or more
generally the acoustic quality. In a typical setup for telecon-
ferencing, for instance, where the microphones receive both
the speech and the reverberation of the surrounding space, it
is of interest to have the latter removed from the signal that
will be broadcast. A similar need arises for automatic speech
recognition systems, where the reverberation decreases the
recognition rate [1]. More ambitious applications have ad-
dressed the improvement of the acoustics of theaters or even
the creation of virtual acoustic environments [2]. In all these
cases de-reverberation is critical.

If the system input is unknown, only blind techniques
can be applied and the equalization becomes more com-
plex. Different approaches have been proposed for blind de-
reverberation, the core idea being the estimation of one or
more inverse filters that are used as system equalizers. Al-
though the evaluation of the inverse filter can be problematic
for a realistic acoustic environment, multi-channel structures
offer a viable solution. Intuitively, since they provide several
measurements and thus a greater amount of information, they
potentially lead to better de-reverberation performances.

In this paper we propose a modification based on a maxi-
mum likelihood (ML) approach of the multi-channel struc-
ture discussed in [3]. The problems connected to single-
channel system inversion and the advantages of a multi-
channel approach are explained in section 2. The benefits
of the ML approach over the one based on kurtosis are dis-
cussed in section 3. The modification of the multi-channel
de-reverberation system by the ML learning rule is reported
in 3.1 and in section 4 is described its application to the de-

reverberation of speech acquired by a linear microphone ar-
ray.

1.1 Single channel de-reverberation

If the acoustic path is modeled as a linear-time invariant sys-
tem characterized by an impulse responseh(n), the source
signal,s(n), and the reverberant signal,x(n), are linked by
the equation

x(n) = h(n)∗ s(n) (1)

where∗ denotes the discrete linear convolution.
De-reverberation is achieved by finding a filter with impulse
responseg(n) so that

δ (n−Nd) = g(n)∗h(n) (2)

whereg(n) is defined as the inverse filter ofh(n), δ (k) is the
unit sample sequence andNd a delay [4].

If the impulse responseh(n) is unknown and there is no
information about the original sources(n), de-reverberation
is blind. The aim of blind de-reverberation is to estimate
s(n) by removing the reverberation components from the
measured signalx(n), without knowledge of the surround-
ing acoustic environment. Therefore, single channel blind
de-reverberation is connected to the blind estimation ofg(n)
so that

ŝ(n) = y(n) = g(n)∗ x(n) (3)

wherey(n) = ŝ(n) is an estimate ofs(n).
Several approaches exist to address this problem, includ-

ing a large class of blind identification methods that are based
on higher order statistics [5].

1.2 Multi-channel de-reverberation, the MINT and the
Bezout identity

The de-reverberation problem can be generalized for an arbi-
traryN-input channel system, leading to the following set of
relations

xi(n) = hi(n)∗ s(n), 1≤ i ≤ N (4)

ŝ(n) = y(n) =
N

∑
i=1

gi(n)∗ xi(n) (5)

wherexi(n), hi(n),gi(n) are respectively thei-th observation,
transfer function and equalizer of the corresponding source-
to-receiver channel. For a multi-channel structure, equaliza-
tion is achieved by finding a set of filters with impulse re-
sponsegi(n) so that
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Figure 1:Illustration of the inversion (a) Single echo impulse
response; (b) Truncated inverse filter. A strong reflection re-
quires a very long inverse filter.

δ (n−Nd) =
N

∑
i=1

gi(n)∗hi(n) (6)

this expression is know as the MINT theorem [6] and it is
closely related to the Bezout identity [7]

The Bezout identity states that there exists polynomials
Gi(z) such that equation

1 =
N

∑
i=1

Gi(z)Hi(z) (7)

holds if the polynomialsHi(z) have no common zeros. The
algebraic decomposition that satisfies the Bezout identityis
in general not unique and the algorithm reported in [6] cal-
culates one of the possible solutions for the equalizersgi(n).

2. SYSTEM INVERSION

2.1 Single-channel system inversion

When the speaker-to-receiver impulse responseh(n) is non-
minimum phase (i.e. it has zeros outside the unit circle), the
calculation of its inverse filter is problematic. In fact, the
inverse of a non-minimum phase FIR system is an unstable
IIR filter.

The acoustic signal-transmission channel is generally a
non minimum phase function [8]. A possible solution is
to consider a truncated FIR approximation of the inverse
IIR filter, that is by definition always stable. Nevertheless,
a very long filter might be necessary to attain a good de-
reverberation. As an example, the inversion of a single echo
impulse response is shown in figure 1.

2.2 Multi-channel system inversion

The MINT theorem offers a solution to the instability issue
associated with the inversion of non-minimum phase trans-
fer functions [6], by ensuring that the equalizers will be FIR
filters if the channel transfer functions are FIR. Since rever-
beration is essentially due to energy that is decaying, every
room transfer function can be approximated, down to a de-
sired noise floor, by an FIR filter. Therefore, the inverse im-
pulse responses are characterized by shorter lengths than in
the single-channel case.

As was pointed out in [9] the MINT theorem also implies
that the the number of taps needed for anN-channel system,
considering anM-tap long impulse response,T is given by

T = ceil((M +1/N−1)−1) (8)

therefore, by increasing the number of microphones, the filter
length is reduced. This yields better statistical properties in

Figure 2: Two-channel system composed by two single-
channel structures

the equalizer estimation, less computational demand and less
memory requirement. Thus multi-channel based structures
can potentially exploit these properties to provide betterand
more efficient de-reverberation.

3. A MAXIMUM LIKELIHOOD APPROACH TO
DE-REVERBERATION

The observation that the kurtosis of the linear prediction (LP)
residual can serve as a reverberation metric resulted in an al-
gorithm based on higher order statistics introduced in [10].
Low kurtosis values of the residual imply an highly rever-
berated speech signal, thus enabling the inverse filter to be
identified by kurtosis maximization. However, the calcula-
tion of the kurtosis and its derivative are prone to instability
[3, 11]. In order to reduce this sensitivity, a single-channel
blind de-reverberation algorithm that uses a ML approach to
estimate the inverse filterg(n) has been proposed [3].

In this paper,̃x andỹ are respectively the residual vector
of the LP analysis ofx and the output vector from the kurto-
sis maximization filter. The method is based on the idea of
building an FIR filterg(n) so that the output ˜y(n)

ỹ(n) = g(n)∗ x̃(n) (9)

has any desired probability density function. The probabil-
ity density function of ˜y is chosen to have high kurtosis and
bounded derivative. A popular probability density function
with these properties is

P(ỹ) =
1

cosh(ỹ)
(10)

this leads to an adaptive algorithm based on the update equa-
tion [3].

g(k+1) = g(k)− µE{tanh(ỹ)x̃} (11)

whereµ is the adaptation step of the adaptive algorithm. In
[3] it is shown how this solution can provide a better de-
reverberation result for a single-channel structure compared
to the kurtosis based method.

The stochastic gradient version of equation (11) is of
course, a Bussgang-type equalizer.

3.1 The multi-channel ML de-reverberation algorithm

In blind de-reverberation, the transfer functionshi(n) are un-
known. This implies that the equalizersgi(n) must be blindly
estimated. To achieve this goal, we propose a time domain
multi-channel structure similar to the two-channel system
shown in figure 2. This is inspired by the method proposed
in [10] but exploits the ML filter update rule (11) for each
channel. In theN-th dimensional case (11) becomes
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Figure 3:Comparison of the MINT and multi-channel equal-
izers. (a), (b) Inverse filters calculated by MINT. (d), (e) In-
verse filters calculated by the multi-channel algorithm. (c),
(f) Equation (6) evaluated in both cases.

gi(n+1) = gi(n)− µE{tanh(ỹm)x̃i} (12)

wherex̃i is the output vector of thei-th LP analysis filter and
ỹm is defined as

ỹm =
1
N

N

∑
i=1

ỹi (13)

whereỹi is the output vector of thei-th maximization filter.
The filters are jointly optimized to maximize the outputỹm
and the de-reverberator outputy is defined in (5).

Extending our results from the single-channel ML tech-
nique, we expect the multi-channel structure to benefit by
improved stability and less noise in the convergence com-
pared to the kurtosis approach. Conversely, the use of the LP
residual to decouple the harmonic structure of speech and
reverb introduces ambiguity, since both the LP and the de-
reverb FIR filter are convolutional operators. This problem
has been mitigated as proposed in [12].

3.2 A comparison between ML de-reverberation and the
MINT

To highlight the affinity of the algorithm above with the
MINT a two-channel system has been used to equalize a
speech signal sampled at 22050Hz that has been processed
with the following two long echoes:

{

h1(n) = δ (0)−0.8δ (n−600)

h2(n) = δ (0)−0.8δ (n−1000)
(14)

The inverse filters have been calculated by the MINT inverse
formula given in [6] with the explicit use of the impulse re-
sponses of the system, and this result has been compared
to the filters that have been blindly identified by the multi-
channel structure. This second approach directly estimates
the inverse filters,which is statistically better than estimating

the impulse responses of the system and then inverting. Note
that the lengths of the inverse filters are comparable to the
length of the longest delay present. This is in contrast to the
single-channel case, which would require a much longer fil-
ter. The results are shown in figure 3 where the three leftmost
plots relate to the MINT method while the rightmost three
plots show the algorithm performance. The inverse filters
have similar placement of the taps but different gains; both
inverse filters provide an equalization for the system (figures
3c, 3f ); the multi-channel structure does not converge to the
solution calculated by the MINT but to a similar noisier one.
For longer tap filters this solution is non-unique since it only
needs to satisfy the Bezout identity.

4. EXPERIMENTAL RESULTS

An eight-channel system that uses a one-point sample mean
version of the adaptation rule of equation (11) was evaluated.
A linear array composed of eight microphones was used in a
room to measure the impulse responses of the corresponding
source-to-receiver acoustic paths. To acquire these impulse
responses, the technique reported in [13] was applied. A 4cm
spacing between microphones was chosen for the first exper-
iment and 45cm for the second, and to simulate a generic
setup, the array was not placed orthogonal to the loudspeaker.
The minimum microphone-to-loudspeaker distance was of
2.5 meters. The impulse responses measured for the 4cm ar-
ray configuration did not exhibit significant delay misalign-
ment among the channels, while the impulse responses for
the 45cm array were not aligned. The algorithm was applied
to male and female speech files sampled at 22050hz and con-
volved with the resulting impulse responses.

The following parameters and initializations were used
for the algorithm. µ was set to 5· 10−5, the LP analy-
sis order to 26 with an LP analysis frame length of 25ms.
The equalizers wereT = 1000 taps long and initialized to
gi = [1,0,0,0,0, ...]. To obtain a more uniform convergence,
the residual of each channel was normalized to a zero mean,
unit variance process. The algorithm was left free to adapt
also during unvoiced or silent periods as suggested in [10].

To solve the problem of gain uncertainty, a normalization
of the filter coefficients was performed at every update cy-
cle [10]. It should be noted that normalizing all the channels
makes the problem over-constrained if we wish to take ad-
vantage of the Bezout inverse solution. Identifying the best
form of constraint should therefore be the subject of future
work.

The algorithm was found to provide de-reverberation in
the case of the 4cm spacing, but not in the 45cm configura-
tion, due to the time-misalignment among the channels. Af-
ter investigation, it was understood that a meaningful con-
vergence cannot be achieved for this algorithm when the
channels are time-misaligned. Therefore the algorithm can-
not identify the inter-channel delay. Note that this problem
equally applies to the use of kurtosis within this framework
[10]. Conversely, when the impulse responses were aligned
manually, the algorithm converged for the 45 centimeter
setup, and provided de-reverberation, although its operation
was no longer blind. Figure 4(a) shows the echogram of the
original impulse relating to the shortest source-to-receiver
path. Figure 4(c) shows the equalized impulse response ob-
tained with equation (11), in the case of a one-point sample
mean.



The process of alignment is the same that is required for
a delay and sum beamformer. In this sense it is worthy to
observe that the algorithms proposed here and in [10] require
a preprocessing stage. A large amount of de-reverberation is
already achieved by the delay and sum beamformer, which
however does not produce a consistent attenuation of the iso-
lated early reflections. Figure 4(b) shows the echogram of
a delay and sum beamformer using the same delays used to
align the channel in the proposed method. Similar results
were obtained in several synthetic simulations where the im-
pulse responses were calculated by the image source method
[2].

The performance of the de-reverberation algorithm re-
ported in figure 4 have been evaluated by the Signal-to-
Reverberation Ratio (SRR)

SRR(dB) = 10log10
h2(δ )

∑M−1
k=0(k6=δ )

h2(k)
(15)

whereh(n) is the speaker-to-receiver impulse response, M,
its length in samples, andδ the time-index of the direct path
in samples [1].

5. CONCLUSIONS

In this paper a novel modification of a multi-channel struc-
ture based on maximum likelihood has been proposed,
which was used to de-reverberate signals recorded in a real
room. The proposed algorithm allows the use of shorter
filter lengths than single channel systems by exploiting the
MINT. Our simulation results have shown that good de-
reverberation is achieved even in real room, although a
pre-processing might be necessary, particularly for widely
spaced microphones. Both the kurtosis and ML based al-
gorithm suffer from this drawback.

We are currently investigating different schemes for the
initialization and/or in the normalization to provide a blind
estimation of the delay among channels, or otherwise, to use
a different blind deconvolution algorithm that can address
this problem.
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