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1ABSTRACT 
In this paper we propose a maximum a posteriori (MAP) 
framework for the super resolution problem, i.e. reconstruct-
ing high-resolution images from shifted, low-resolution de-
graded observations. In this framework the restoration, in-
terpolation and registration subtasks of this problem are 
preformed simultaneously. The main novelties of this work 
are the use of a new hierarchical non-stationary edge adap-
tive prior for the super resolution problem, and an efficient 
implementation of this methodology in the discrete Fourier 
transform (DFT) domain. We present examples with real 
data that demonstrate the advantages of this methodology.  

1. INTRODUCTION 

The problem of super-resolution is defined as obtaining an 
image with enhanced resolution from a set of lower resolu-
tion degraded images. The super-resolution problem has a 
long history. In this paper we will not attempt to overview it, 
for this purpose the interested reader is referred to the recent 
surveys articles [1] and [2] and the edited book [7].  In this 
work, we introduce a maximum a posteriori framework that 
bypasses certain shortcomings of our previous efforts in [3].  
More specifically, in [3] a maximum a posteriori (MAP) and 
a Bayesian methodology, based on the expectation-
maximization (EM) algorithm, was presented which solved 
simultaneously the restoration, registration and interpolation 
subtasks of the super resolution problem. The main short-
comings of the work in [3] that we address herein are: the 
stationary simultaneously autoregressive (SAR) prior image 
model used in [3] and the computationally demanding ap-
proach used to perform the registration subtask. Stationary 
models are convenient; however, they cannot capture effec-
tively the local image structure especially in the vicinity of 
image edges.  
In this work we utilize for the first time in the super resolu-
tion problem a new non-stationary, directional prior, that 
uses a continuously valued model for the image edge struc-
ture. The Bayesian model used in this prior enforces sparse-
ness in the directional differences among neighboring pixels 
and has been applied successfully to the image restoration 
problem in [4] and [5]. We must note that a non-stationary 
prior has already been used in [8]. However, the major nov-
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elty in this work is the use of a directional prior, which is an 
extension of the prior used in [8]. 
The second novelty of this work is a fast implementation of 
the registration subtask. In [3], the registration subtask was 
computationally very demanding. Herein we propose a new 
method to estimate the registration parameters. This algo-
rithm is implemented in the discrete Fourier transform (DFT) 
domain and is based on the Newton-Raphson algorithm. 
Furthermore, it utilizes analytically calculated 1st and 2nd 
derivatives. Thus, it is fast to implement and converges rap-
idly since Newton-Raphson algorithms display quadratic 
convergence [6]. 
The rest of this paper is organized as follows; in section 2 
and 3 we present the imaging and the proposed image prior 
models, respectively. In section 4 we present the MAP based 
restoration algorithm. In section 5 we present the method for 
estimating the registration parameters. In section 6 we pre-
sent experiments with real data that demonstrate the proper-
ties of our algorithm. Finally in section 7 we provide conclu-
sions and thoughts for future research.  

2. IMAGING MODEL 

A linear imaging model is assumed. We denote as d the inte-
ger decimation factor. In other words, the imaging model 
assumes a high resolution image of size 1HN × , where 

HN dN= . This model also assumes as observations P  low 
resolution images of size  by applying the 1N × HPN N×  
degradation operator B  to the high resolution image. Then, 
white noise is added at each observation. Let  be a y 1PN ×  
vector, containing the P low resolution images  such that:  iy

TT T T⎡ ⎤= ⎣ ⎦1 2 Py y y yL  

where  is a iy 1N × . Then the observations are given by: 
y = Bx + n , (1) 

where  the (unknown) original  high-resolution 
image to be estimated,  is a 

x 1HN ×
B HPN N×  degradation matrix 

and 
TT T T⎡ ⎤= ⎣ ⎦1 2 Pn n n nL  a  vector consisting 

of 

1HPN ×

P  1HN × , additive white noise vectors. We assume 

Gaussian statistics for the noise given by ( )1~ ,i iN β −n 0 I

P

, 
1,... ,i =  where  is a 0 1HN ×  vector with zeros and  the I
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H HN N×  identity matrix respectively, and 1
iβ
− , 1,... ,i P=  

are the noise variance at each image that are assumed un-
known and statistically independent with each other. The 
degradation operator  is given by: B

( )( ) ( )( )
TT T

1 1 ,P Pδ δ⎡ ⎤=
⎣ ⎦

B DS H DS HL  

where matrix  is the known D HN N×  decimation matrix. 
,  are the shift-invariant iH 1... ,i = P H HN N×  blurring con-

volutional operators, and ( )iδS ,  are the 1,... ,i = P H HN N×  
shift-invariant shifting operators. Each iδ  is a scalar which 
represents translation and is assumed unknown. The shift 
operator, ( )iδS , is the Shannon interpolation operator which 
is shift invariant [3]. The impulse response of the shift opera-
tor is given by: 

( )sin ( )
( ; )

( )
i

shift i
i

m
S m

m
π δ

δ
π δ

−
=

−
,  1, , .m N= K

The shift invariant operators are assumed circulant. This is 
very useful for computational purposes because such matri-
ces can be easily diagonalized in the DFT domain. One diffi-
culty that arises in the super resolution problem is the deci-
mation operator which is not square and thus not circulant. In 
this work we take advantage of the simple form of this ma-
trix, and despite its non-circulant nature, we obtain tractable 
calculations in the DFT domain.  

3. IMAGE PRIOR MODEL 

Since we utilize a MAP algorithm, a prior for the image is 
necessary. The prior used here is non stationary and has been 
used with success in other image processing problems [4] 
and [5]. This image prior model assumes that the first order 
differences of the image  in four directions, 0x 0, 900, 450 and 
1350 respectively, are given by: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1

2

3

4

, , , 1

, , 1,

, , 1,

, , 1,

i j i j i j

i j i j i j

i j i j i j

i j i j i j

ε

ε

ε

ε

= − +

= − +

= − + +

= − − +

x x

x x

x x

x x

,

,

1 ,

1 ,

 

  (2) 

with ( ),k i jε 1,2,3,4k = , the difference residuals for the 

image location ( ),i j . The above equations can be also writ-

ten in matrix vector form for the entire image as , 
 where  the 

k kQ x = ε
1,2,3,4,k = kQ H HN N×  directional difference 

operators for  images.  Without loss of generality, in 
what follows, for convenience, in what follows we will use 
one dimensional notation, in other words, we assume 

. We assume that the residuals have 

Gaussian statistics according to 

1HN ×

1 2, ,
H

Tk k k k
Nε ε ε⎡= ⎣ε K

For the inverse variances ’s we introduce the notation k
ia

k =A diag { }1 2, ,k k k
Na a aK  a H HN N×  diagonal matrix and 

=A% diag { }1 2 3 4, , ,A A A A  a 4 4H HN N×  diagonal matrix 

and 
T1 2 3 4

, , ,= ⎡ ⎤⎣ ⎦a a a aa%  a  vector. Also for the errors 

we use the notation 

4 HN ×1
T1 2 3 4

, , ,⎡ ⎤= ⎣ ⎦ε ε ε ε ε% . We assume that the 
errors in each direction and at each pixel location are inde-
pendent. This is based on the assumption that at each pixel 
location an edge can occur at any direction independently of 
what happens in adjacent pixels.  This assumption makes 
subsequent calculations tractable. Thus, the joint density for 
the errors is Gaussian and is given as 

( ) ( ) ( )( )( )
( ) ( )( )

1 2

1 2

4 T

1 1

4
T

1 1

; exp 0.5

exp 0.5 .

H

H

N
k k
i

k i
N

k
i

k i

p a

a

= =

= =

k k =

=

∝ −

−

∏∏

∏∏

ε a ε A ε

ε Aε

%%

%% %

 

 To relate  with the image  we define the ε% x 4 H HN N×  op-

erator ( ) ( ) ( ) ( )
TT T T T1 2 3 4, , ,⎡ ⎤= ⎢ ⎥⎣ ⎦

Q Q Q Q Q% . Then, the rela-

tion between the image and the residuals is .  Based 
on this relation and 

=ε Qx%%

( );p ε a%%  we can define an improper prior 
for the image . This prior is given by: x

( ) ( ) ( )( )
( ) ( )( )( )

4 T1 8

1 1

4 1 8 T

1 1

.

; exp 0.5

= exp 0.5 (3)

H

H

N
k
i

k i
N

k k k k
i

k i

p a

a

= =

= =

⎛ ⎞∝ −⎜ ⎟
⎝ ⎠

−

∏∏

∏∏

x a Qx AQx

Q x A Q x

% % %%

 

The role of the parameters  is to capture the directional 
variation structure of the image. More specifically, a large 
variance (small ) indicates the presence of a large varia-
tion along the direction of the difference, in other words an 
edge perpendicular to this direction. The introduction of the 
spatially varying  scales down the differences of adjacent 
pixels in regions of image discontinuities. As a result this 
prior maintains edges and suppresses noise in smooth areas 
of the image.  

k
ia

k
ia

k
ia

The drawback of the proposed prior is that it introduces 
4 HN  parameters  that have to be estimated from  
observations. This is clearly not a desirable situation from an 
estimation point of view.  For this purpose we employ the 
Bayesian paradigm and consider  as random variables 
(instead of parameters) and introduce Gamma hyper-priors 
for them. In the case of a stationary model where all  are 
equal the over parameterization problem does not exist and it 
is rather straightforward to obtain good estimates for the un-
known parameters using even maximum likelihood (ML). 

k
ia PN

k
ia

k
ia

⎤⎦

( )( )1
~ 0,k k

i iN aε
−

,  for 

1, , Hi = K
We consider the following parameterization for the Gamma 
hyper-prior:  N  and  where  the inverse vari-

ance of is 

1,2,3,4,k = k
ia

k
iε  and HN  the size of the image.  

( ) ( ) ( ){ }
2

2; , exp 2 .
kl

k k
i k k i k k ip a m l a m l a

−

∝ − − k   (4)  
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For such a representation the mean and variance of Gamma 
are given by ( )( 12 2k

i kk kE a l m l )−= −⎡ ⎤⎣ ⎦ , and 

 respectively. This representa-

tion is used because the value of the parameter  can be also 
interpreted as the level of confidence to the prior knowledge 
provided by the Gamma hyper prior. More specifically, 
as ,  and . In other 
words, the prior becomes very informative and restrictive 
resulting in . This also implies that the im-
age model becomes stationary. In contrast, when  

then both  and , thus the prior 
becomes uninformative and does not influence at all the val-
ues of the ’s. In other words, the ’s are free from the 
moderating influence of the prior and are allowed to “vary 
wildly” following the data. In such case the image model 
becomes “highly non stationary”. As a result, the value of the 
parameter  can be also viewed as a way to adjust for the 
degree of non stationarity of the image model. 

( )( 1222 2k
i k k kVar a l m l

−
⎡ ⎤ = −⎣ ⎦ )

i∀

]

kl

kl →∞ ( ) 12k
i kE ma −

→⎡ ⎤⎣ ⎦ 0k
iVar a⎡ ⎤ →⎣ ⎦

( ) 12k
i kma −=

2kl →
k
iE a⎡ ⎤ → ∞⎣ ⎦

k
iVar a⎡ ⎤ → ∞⎣ ⎦

k
ia k

ia

kl

4. MAXIMUM A POSTERIORI (MAP) ESTIMATION 

The super-resolution image  is estimated from the observa-
tions  utilizing a MAP approach in which we infer simul-

taneously ,  and 

x
,y

a% x [ T
2 Pδ δ=δ L . This is based on 

maximization of the posterior probability. Thus we have:  
( ) ( ), | ; , , , , , ; , , ,p pβ β∝x a g m l δ =y x a m l δ% %  

( ) ( ) (| , ; , | ; ; , ,p p pβ= y x a δ x a a m l% % % )

]m m m m l l l l= =m l

)

)
)

β

=

%

  
where:  

[ ] [T T
1 2 3 4 1 2 3 4,, , , , , , .  

Maximizing the quantity  with respect to 
 and a  is equivalent to minimizing the negative logarithm: 

( , | ; , , ,p βx a g m l δ%

x %

( ) (
( ) ( ) (
, | ; , , , log , , ; , , ,

log | , ; , log | log ; ,
MAPJ p

p p p

β

β

∝ − =

− + +

x a y m l δ y x a m l δ

y x a δ x a a m l

%

% % %
 

( )
42

1 1

1 1log log
2 2 8

N
k
i

k i

N aβ β
= =

= − + − +∑∑B δ x - y  

( )

( )( )

4 4T

11 1 1

4

11

21 log
2 2

2 .

N Nk k k kk
i

ik i k

N k
k k i

ik

l
a

m l a

== = =

==

−⎛+ − ∑⎜ ⎟
⎝ ⎠

+ − ∑

∑∑ ∑

∑

Q x A Q x ⎞ +
     (5) 

To minimize the above function with respect to  and , we 
adopt an iterative scheme that sets alternatively the gradient 
of  and  equal to zero. 

x a%

x a%
Setting  yields: ( ), | ; , , , 0MAPJ β∇ =a x a y m l δ% %

( )
( )

( ) ( )

*

2

1 1 2
8 2

1 2
2

k
k
i

k
i k k

l
a

m lε

⎛ ⎞+ −⎜ ⎟
⎝ ⎠=

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

.  (6) 

Setting ( ), | ; , , , 0MAPJ β∇ =x x a y m l δ%  yields: 

( ) ( ) ( )( ) 14 T* T 1 T

1

k k k

k
β

−
−

=
= + ∑x B δ B δ Q A Q B y . (7) 

Equation (7) cannot be solved in closed form since analytical 

inversion of ( ) ( ) ( )4 TT 1

1

k k k

k
β −

=

⎡ ⎤+ ∑⎢ ⎥⎣ ⎦
B δ B δ Q A Q  is not pos-

sible due to the non-circulant nature of matrices  and . 
Thus, we resort to a numerical solution using a conjugate 
gradient algorithm 

B kA

[6].  
Estimation of the [ T

2 P ]δ δ=δ L  is equivalent to regis-
tration and is performed in a similar manner. The registration 
parameters  are estimated by minimizing the quantity δ

MAPJ  with respect to : δ

( ) ( ) 2* *
.arg min arg minMAPJ= =

δ δ
δ δ B δ x - y        (8) 

The implementation details of this minimization task are 
described in detail in section 5. 
The observation of the previous section that the parameters 

 control the degree of non-stationarity of the model can be 

verified from Eq. (6), the MAP estimates of the
kl

( )k
ia . More 

specifically, when , , and the 

image model becomes stationary. In contrast, when , 
kl →∞ ( ) ( )* 12k

i ka m −= i∀

2kl →

( ) ( )( ) 1* 2k k
i ia iε

−

= ∀ , thus the ( ’s are completely unaf-

fected from the moderating effect of the Gamma hyper-prior 
and only follow the data. For example, in smooth areas of the 
image where the local residual in the denominator of Eq. (6) 
tend to zero, it holds that 

)k
ia

∗

( )k
ia

∗
→ ∞ .  

5. FAST REGISTRATION IN THE DFT DOMAIN 

In this section a fast implementation of the registration task 
based on the Newton-Raphson algorithm is described. This 
method is chosen as the method of preference due its conver-
gence speed [6]. Registration requires the minimization in 
Eq. (8). The DFT domain is used since it allows easy analytic 
calculations of the first and second derivatives of the objec-
tive function. By the definition of the matrix the norm in 
Eq. (8) is written as such:  

,B

2 T

1
( ) 2 ( )

P

i i i
i

δ
=

= +∑B δ x - y y DS H x   (9) 

T T T T

1 1
( ) ( ) ( ) ,

P P
i

i i i i MAP i
i i

C Jδ δ δ
= =

C+ + = +∑ ∑x H S D DS H x  

where: 
T T T T T( ) 2 ( ) ( ) ( )i

MAP i i i i i i i iJ δ δ δ δ= +y DS H x x H S D DS H x  
and TC = y y  is constant.  
It is sufficient to demonstrate the derivatives for one iδ . As-
sume the H HN N×  DFT matrix  and the 1W N N×  DFT 
matrix  then 2 ,W 1=X W x  and  for 2i i=Y W y 1,..., ,i P=  
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the DFTs of the desired high resolution and the low resolu-
tion observations, respectively. Then, we can write: 

{ }
T T T T T

H H * * T
( ) ( ) ( )

( ) 2 ( ) ( ) ( )

2
i i i i i i

i
MAP i i i i i i i i

i

J

real δ δ

δ δ δ δ∝ +

= +D S H H S D D S H

y DS H x x H S D DS H x

Y Λ Λ Λ X X Λ Λ Λ Λ Λ Λ X

[ ] [ ] [ ] [ ]* *

1 1

2
N N

i i i i
m m

real m m m m
= =

⎧ ⎫= +⎨ ⎬
⎩ ⎭
∑ ∑Y R R R

δ

=

,                (10) 

where:  

[ ]

1

( )
0 .

i i

d

n
i

nN nN nNm m m
d d

m
d

δ

−

=

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠=
∑ S HΛ Λ X

R
d

 

The symbol ‘H’ denotes the Hermitian and ‘*’ the conjugate. 
The matrices ( )

1
1 1( )

i iδ δ −=SΛ W S W  and 1
1 1i i

−=HΛ W H W  for 

 are diagonal due to the circulant nature of the 
matrices  

1,..., ,i = P
( )iδS  and . For simplicity, the notation iH [ ]m  for 

the matrices denotes their diagonal element. It can be shown 
that 

[ ]1
2 1 1 2 ... /d d−= =DΛ W DW I I I  

is a HN N×  block matrix that contains d identity matrices of 
size .  N N×
The evaluation of the first and second derivatives of Eq. (10) 
is very convenient in the DFT domain since the parameter iδ  
is only in the diagonal elements of the matrix  The 

diagonal elements of matrix 
( ) .iδSΛ

( )iδSΛ , see for example [7], are 
equal to: 

( ) [ ] { }exp 2 ( 1) /
i im j mδ πδ= − −SΛ N , for  1,..., / 2,m N=

where . The remaining elements are a “mirrored” 
version of the previous ones; in other words: 

2 1j = −

[ ] { }( ) exp 2 ( 1) /
i im j N m Nδ πδ= − − +SΛ , 1,..., .

2
Nm N= +  

For convenience, the derivative calculations are done only 
for the first half.  The first and second derivatives are: 

[ ]
{( ) 2 ( 1) exp 2 ( 1) /i

i
i

m j m j m N
N

δ π πδ
δ

∂ − −
= −

∂
SΛ

}−       (11) 

[ ]
( )

{
2 2

( ) 2
2 2

4 ( 1) exp 2 ( 1) /i
i

i

m
m j m

N
δ π πδ
δ

∂ −
= − − −

∂
SΛ

}.N  (12) 

The derivative of the term in Eq. (10) is given by applying 
Eq. (11) as: 

( ) [ ] [ ] [ ] [ ]*
*

1 1

i N N
iMAP i

i i
m mi i

mJ
m m

δ
δ δ= =

∂ ∂∂
= +

∂ ∂∑ ∑
R

Y Y i

i

m
δ

+
∂

R
 

      [ ] [ ] [ ] [ ]
*

*

1 1

N N
i i

i
m mi i

m m
m

δ δ= =

∂ ∂
+ +

∂ ∂∑ ∑
R R

R i mR , 

where:  

[ ] ( )1

0

i

i

d
i

ni i

nNmm nN nNd m m
d

δ

δ δ

−

=

⎡ ⎤∂ +⎢ ⎥∂ ⎡ ⎤ ⎡⎣ ⎦= +⎢ ⎥ ⎢∂ ∂ ⎣ ⎦ ⎣
∑

S

H

ΛR
Λ X

d
⎤+ ⎥⎦

, 

and:  

[ ]
*

( )
* 1

0
* *

i

i

d
i

i
ni

nm N
d

m

n nm N m N
d d

δ

δ
δ

−

=

⎛ ⎞⎡ ⎤∂ +⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟×∂
∂⎜ ⎟=

∂ ⎜ ⎟
⎡ ⎤ ⎡ ⎤⎜ ⎟× + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∑
S

H

Λ
R

Λ X

. 

Similarly, the second derivative is: 
( ) [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

2 2 *2
*

2 2
1 1

22 2
*

2 2
1 1 1

2 .

i N N
i iMAP i

i i
m mi i

N N N
i i i

i i
m m mii i

m mJ
m m

m m m
m m

δ
δ δ

δδ δ

= =

= = =

∂ ∂∂
2

*

iδ
= + +

∂ ∂ ∂

∂ ∂ ∂
+ + +

∂∂ ∂

∑ ∑

∑ ∑ ∑

R R
Y Y

R R R
R R

 

In both cases the evaluation of the first and second deriva-
tives of  is straightforward. Using these results, the appli-
cation of the Newton-Raphson iterations, is straightforward. 
To be precise, we note that for 2-d signals, like images, there 
are two translations parameters per image. Thus, in the above 
update equation there is a  gradient vector and a 2 2

R

2 1× ×  
Hessian matrix involved. However, the inversion of a 2 2×  
matrix is easily found in closed form; hence the 2-d registra-
tion algorithm is very fast. 

6. EXPERIMENTS 

In order to test the proposed MAP methodology, we used it 
on a real set of 20 grayscale images of size 57 49× , which 
were extended by padding with zeros to . A subset of 
these images is shown in Fig. 1a-d. Using this data we pro-
duced high resolution images of size 128  shown in 
Fig. 2 and 3.  

64 64×

128,×

To facilitate learning the proposed image model we used the 
1

iβ
−  for all i  (additive noise variances) and equal  for all 

k obtained by learning a stationary SAR model 
km
[3]. The 

parameter km  were obtained TATa  where 

STATa   the image model parameter of the stationary SAR 
model.  The parameters kl  were selected to ual to 

2.1l

s  as m =

be eq

  ( )1/ 2k S

= . This value was found by trial and error experiments. 
The stationary restored image, implementing the method in 

F[3], is shown in ig. 2. 
In estimating the shape of the blur for each low resolution 
image a Gaussian-shaped blur was assumed. The width of 
each blur was experimentally estimated in trial and error res-
toration experiments with each low resolution image. The 
values of the widths were found in the range [0.5, 4] pixels.  
The restoration algorithm estimates ,iδ   and   iterating 
between Eq. (6), (7) and (8) till convergence. The shifts 
found between the low resolution image in 1(a) and the rest 
are also given in Fig. 1a-d. In the presented experiments, the 
convergence criterion was the likelihood function.  

x k
ia

7. CONCLUSIONS 

Inspection of the super-resolved images in Fig. 2 and 3 re-
veals that the resolution of the reconstructed image has sig-
nificantly been improved. The letters in the super resolved 
images are now easily legible.  Furthermore, the image re-
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constructed using the proposed non-stationary prior is visu-
ally more pleasant and displays less ringing in the edges. 
Each iteration of the proposed algorithm required 15-20 sec-
onds per iteration in spite of the iterative conjugate gradient 
used to compute  in Eq. (7). This is a significant improve-
ment in speed as compared to the algorithm in 

x
[3] that re-

quires ~60 seconds per iteration, even though an estimate in 
closed form for  is available. As noted in x [3] most of that 
delay was due to the numerical search for the registration 
parameters in the M step of the algorithm. In the future we 
plan to include a PSF estimation step in the formulation of 
this problem. A Bayesian algorithm for the non-stationary 
model is also being developed. 
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(a): [0, 0] (b) [0.32, 0.82] 

 
(d) [0.43, 0.01] (c) [0.58, 0.90] 

Figure 1: Degraded low-resolution images, shifts between the im-
age in (a) and the rest are given.  

 
Figure 2: Stationary [3] super-resolution image. 

 
Figure 3: Non-stationary MAP super-resolution image. 
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