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Abstract— This paper is about an efficient implementation of adaptive
filtering for echo cancelers. First, a realization of an improved Block
Proportionate Normalized Least Mean Squares (BPNLMS + +) using
Generalized Sliding Fermat Number Transform (GSFIN'T) is presented.
Unfortunately, during the double-talk mode, the echo cancelers often
diverge. We can cope with this problem by employing a double-talk detector
formed by two Voice Activity Detectors (VAD's) . We propose a general
system based on the Robust-Block-PNLMS + + (RBPNLMS + +)
adaptive filter combined with a post-filter. The general system was imple-
mented with GSFNT which can significantly reduce the computation
complexity of the filter implantation on Digital Signal Processing (DSP) .

I. INTRODUCTION

The problem of echo cancellation is recurrent for all modern
communication systems. The general solutions for reducing the
additive echo noise are based on digital filtering process. Several
types of adaptive algorithms exist, which give an efficient answer to
these audio degradations [1].

To improve conversation quality, the most popular echo canceler
(EC) uses a Least Mean Square (LMS) adaptive filter. It will
therefore be desirable to implement fast-converging algorithms in
future echo cancelers. In [2], faster converging algorithms called
proportionate normalized least means squares (PNLMS + +) are
proposed. In order to gain computational advantages, a realization of
this recent PNLMS + + adaptive filter with a blockwise process-
ing is introduced in [3] [4]. The previous Block-PNLMS + +
(BPNLMS + +) algorithm is proposed to realize the implemen-
tation with Fermat Number Transform (FNT), developed for fast
error-free computation of finite digital convolutions [5] [6]. These
transforms present the following advantages compared to Fast Fourier
Transform FFT [7]:

e They require few or no multiplications

e They suppress the use of floating point complex number and
allow error-free computation

e All calculations are executed on a finite ring of integers, which
is interesting for implementation into DSP

Hence, the use of FIN'T will reduce the delay features by mini-
mizing the computational complexity.

An efficient state space method for implementing the fast FFT
over rectangular windows is proposed for the cases when there is
a large overlap among the consecutive input signals. This is called
Generalized Sliding FFT (GSFFT) [8].

Similar to the GSFFT, the Generalized Sliding FNT
(GSFNT) is proposed with the purpose of reducing the complexity
of FIN'T based convolvers and correlators and thus enlarging the
application area for the FIN'T. We propose the algorithm of the
GSFNT similar to the GSFFT [9].

The GSFNT is then used to propose an efficient implementation
of the BPNLMS + + algorithm. The complexity of this method is
compared with that of standard FNT.

A high convergence rate of the EC is usually accompanied by a
proportional divergence rate in the double-talk situation (i.e., near-
end speech). The presence of this mode perturbs the EC adaptive
filter and as a consequence, the echo will not be correctly canceled.
To inhibit the divergence of the EC during double-talk, the standard
procedure is to use a level-based double-talk detector formed by two
Voice Activity Detector (VAD'’s). Unfortunately, during the time
required by the double-talk detector to detect the mode, the EC
often diverges.

To compensate the problem of divergence, we propose a general
system based on the conventional EC combined with a post-filter
which attenuates the echo while keeping the near-end signal. During
single-talk the post-filter attenuates the residual echo that still exists
at the output of the EC.

Although the double-talk detector works well, detection errors do
occur, and these result in large amounts of divergence of the adapted
filter coefficients. The solution to this problem is to adapt the co-
efficients by the new robust-BPNLMS + + (RBPNLMS + +)
algorithm. We propose to realize the implementation of the previous
general system with GSFNT. Hence, the use of GSFNT will re-
duce the delay features, by minimizing the computational complexity.

The paper is organized as follows. In Section II, we will introduce
the new block diagram of EC and the double-talk detector. The
RBPNLMS + + algorithm and the post-filter are presented in
Section III. In Section IV, the GSFNT is employed and in
the final part, numerical results of the general combined system
realization using fast transforms are given.

Il. ECHO CANCELLATION SYSTEM AND THE DOUBLE-TALK
DETECTION

The classic method used for echo canceller (EC), is based on
adaptive identification of the echo path impulse response w [1].

The conventional EC filters the far-end speech {x} by an echo
path image {Wwx (n)}ﬁ;; to obtain an echo estimation {y} in single-
talk situation:

L-1
yk = Z v‘vk(n)xk,n = WEXk (1)
n=0
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In double-talk situation, the observation signal {dx } can be written
as follows :

{di} = {sk} + {yx}

where {sx} and {yx} is the near-end speech and the acoustic echo
respectively. Here k denotes the sample iteration.

Given this context, the EC often diverges and to compensate we
consider a new scheme presented in Figure 1.

The double-talk detector is used in order to process the situations
of single-talk or double-talk differently. In fact, the microphone signal
can be composed of :

e The far-end speech {x} only (absence of the near-end speech
{s}). In such case, the echo is present and must be eliminated, the
RBPNLMS + + adaptive filter must be updated. The post-filter
algorithm is supposed to attenuate the residual echo that still exists
at the output of the EC.

e Both the far-end speech and the near-end speech. In such case,
the adaptation is stopped and the post-filter is applied.

e The near-end speech only (absence of the far-end speech). In
such case, the echo is absent. There is no need for filtering.

It’s proven in [11] that the RPNLMS + + adaptive filter is an
excellent candidate for both acoustic and network echo cancellation.
In the next section, we derive this algorithm using block structure.

I11. ROBUST ALGORITHMS AND POST-FILTER
A. Robust PNLMS++ Using Block Structure

This subsection presents a new block adaptive filtering procedure
in which the filter coefficients are adjusted once per each output
block in accordance with a RPNLMS + + algorithm. Note that
the previous robust-LIMS-type adaptation, which adjusts parameters
once per each sample, is in fact a special case with a unitary block
length.

The filtering equation 1 is then written in matrix form as [3]:

TN TkN—L+1 Wi (0)
Yy = TEN_L+2 |: ) L . :|
T(k41)N—1 T(k+1)N—L wi(L —1)
- . . T .
Yi=[ dkn Jetnn-1 | = XxWk @)

where xi is a (N x L)-Toeplitz matrix and wy is an estimated
echo path vector.

Note that, in the block structure, the term k is no longer the sample
iteration but becomes the block index.

The block-RNLMS algorithm uses a fast convolution method
based on FFT techniques, in computing the filter outputs and
updating its weights, given respectively by equations 3 and 4 .

Yi = Wi * Xi 3
. sign (ex) * (X—k) [ |ex|
Wit1 = Wk + 4 Xp*xX_x+ 3 ¥ Sk Sl @)
in which Xy =[ zrnv_r41 Z(k+1)N—1 ]T is

(N +L — 1)-dimensional vector and < (.) is a limiter given
by equation 5, [11]. The operator * denoting the linear convolution,
[ is a regularization parameter which prevents division by zero and
u €]0,2] is the adaptation step. Typically, 3 corresponds to the
variance of the signal {x}.

where ko = 1.1 and the estimate of the scale factor, sx, can be
calculated as follows :

Sk = ASk—1 +

E e (L) ©

Sk—1
where X\ € [0.99,1], and a € [0.60,0.74]. The initial value of
the scale factor can be chosen as s_1 = ox, where oy is set approx-
imately to the average speech level in voice telephone networks.
The residual echo vector e is defined as :
ac=Di— Yy = [ exN €(k+1)N—1 ] (M

The sequence of the path echo for the iteration k, is given by
T
Dy = [ din desnyn-1 | -
The vector weight updated equation of RBPNLMS algorithm
is given by :

Wkt1 = Wk + 1

sign (ex) * (GeX—k) [ ex|
Xk * (GeX_k) + 3 ( Sk > s ®

Here, G = diag | gx(0) gr(L — 1) ] is a diagonal ma-

trix with the elements of Gy calculated as follows:
T (n)

Toi 1 )
£ o7k(m)

where yic(n) = max { pvg, |ik(n)| },0<n<L-1 and
ve=max{ 6§ |Wk(0)], ..., |Wx(L—1)] }. p and § are
typically chosen equal to % and 10~ ?respectively.

Then the alternation between RBNLMS (if k is even) and
RBPNLMS (if k is odd) yields the RBPNLMS + +.

gk(n) =

B. Post-Filter using noise reduction techniques

This approach is based on a general concept of disturbance
reduction, the echo being one of these disturbances. Therefore a
large number of methods similar to noise reduction can be used to
compute the post-filter. Our approach is based on a method of spectral
subtraction used in noise reduction techniques [10]. The post-filter
transfer function can be expressed as : k.6)

~ SERprio (k, f
Wope (k£) = 77 SERrio (K, F)

where SERvio (k, f) stands for the a priori Signal to Echo Ratio:

(10)

- 2
Wopt (k —1,f) E (k — 1, )

e (£)

(1 —n) SERpost (k, ) (11)

where 0 < n < 1, and 4. is an estimation of the power spectral

density of the noise. The SERpost (k, f) is the a Posteriori Signal
to Echo Ratio, is calculated by:

SERpriO(ka f) =n +

SERpost (k, f) = % -1 (12)

The estimate S (k, f) in the frequency domain of the block k for
the frequency f is given by:
S (k,f) = Wopt (k, f) E (k, f) (13)
where E; is the Short Time Fourier Transform (STFT) of ex.

1V. GENERALIZED SLIDING FERMAT NUMBER TRANSFORM
(GSFNT)

A. Principle of the FNT

Discrete transforms based on the FN'T concept have been devel-
oped for efficient and error-free computation of finite convolutions
[5]. An FINT of a discrete time signal x and its inverse are given
respectively by:

X(j) = (B x(m)a™) (14)
Fy

x(n) = (N =G X (j)a ™) (15)

Fy
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where the operator (-)g, denoting the modulo F¢, N is the

transform length, Fy = 22" 11 is the particular modulo equal to
a Fermat number, with t € N, and the basis « can be equal to a
power of 2, thus allowing the replacement of multiplications by bit
shifts. When the parameters of an FIN'T are chosen judiciously, an
FNT defined over Galois Field (GF (F:)) has several desirable
properties in carrying out convolutions and correlations in comparison
to the FFT. For the parameters given in Table I, by N = 2¢F1~1
and o = 22 with i < ¢.

[t [ modulo Fy | Nfora=2 [ Nfora=+v2 |

1 22 11 4 -

2 24 +1 8 16
3 28 +1 16 32
4 216 11 32 64
5 232 11 64 128
6 264 11 128 256

TABLE |

Possible combinations of FNT parameters

Some tests have shown that an FIN'T-based convolution reduces
the computation time by a factor of 3 to 5 compared to the FFT
implementation [6].

B. principle of the GSFNT.

In a similar way to the GSFFT, a GSFNT is proposed in
order to reduce the input-output delay of finite ring convolvers and
correlators. It refers to the computation of the FINT as the sequence
slides over a time-limited rectangular window one sample at a time
[9]. The main advantage is the reduction of complexity. Here, we
consider a more general case of the SFIN'T when the data window
hops P samples at a time. We call this the GSFNT. This is best
explained by considering an example. For this purpose, we may
consider the N-point FINT structure of Figure 2 (N = 16) . Next,
we may assume that two new data samples are collected (P = 2),
and the FNT has to be performed on these two samples plus the
last 14 samples of the previous inputs to the FIN'T structure.

x(n) %, (0)
x(n-1)
x(n-2)
*(n-3)
(n-4)
x(n-5)
*(n-6)
*x(n-7)
x(n-8)

x(n-9)

A
R \,o,’% o
. A ”Q" .
N

x(n-13)
x(n-14)
*(n-15)

@ : to calculate O

already known from m-1

Fig. 2. Generalized Sliding FNT of N = 16 and P = 2

The computation complexity of performing the GSFNT after
every P new data samples, in terms of the number of butterflies to
be calculated, is:

N
CasFNT = ) (log2P +2) - P (16)
Minimum input-output delay is obtained when P =1, the
GSFNT reduces to the SFINT, whereas the case P = N corre-
sponds to the ordinary FNT ( Cgsrn iS Seen to vary from N — 1
for P =1 to Jlog:N for P = N).

C. Algorithm of the GSFNT

We propose the algorithm of the GSFNT similar to the GSFFT
[9], based on computing the value of the variables in the FNT
structure that are not computed in previous iterations. We define the
GSFNT input vector as:

X = [ n To-ni1 T = [V YT ]
a7
with Y., is the block of the new samples of iteration m :
T
Ym = [ Tn  Tp—1 Tp_oli ] (18)

with P = 2!, M = 29 and N = P.M. The GSFNT is based

on the fact that in FIN'T a large part of the calculations is available

from the previous iterations, i.e., we calculate the elements of Yy,.

The state vector is defined as:

Un=[ Ul Ulm o Ulipw ] (9

With Uom = Ym, and FNT (Xm) = Uq4.q),m- The state vec-
tor can be expressed in iterative form, when 0 <i<q-—1:

Ui+1,m =
1 1 Ui,m
<(Ri ®I). <Izl+i ® |: 1 -1 :| |: ViiUi m—2a-i—1 :|)>F:
(20)
R; = [ €1 €140i €o9i9i €9it1 ] is a 2i+1 by 2i+1

permutation matrix, e is r’th column of 211 by 2+ identity matrix
and the operator ® denoting the Kroneker product.

The last element of the state vector is given by:

Vilei,mfzqul =(Vi®ly) Ui’mfzqfi—l =
(diag ( 1 a‘:r(l) aU(Q'i—l) ) [02] 121> Ui’mfzq—i—l
(1)

with the basis o equal to a power of 2. o (r) is the bit reverse of
r, wherer =0,1,...,2"' — 1.

forq<i<l+q

Ui = [ Uit Uizm Ui |* (22)
Uiti,t,m 1 Vig Ui t,m

m | = % 23

[ Uit1,t4¢,m } <{ I —Vig ] [ Ui t+e,m ]>Ft =

inwhich Vi = a”® ¢ = 2179711 and ¢ (t) is the bit reverse
of ((t — 1)) /21 SUCh a5 0 < (t)y 5 < N/2F1and 0 <t < N.

The inverse FINT using the sliding technique is obtained in a
similar manner to the inverse GSFFT [8].

The total complexity of the GSFNT in terms of number of
butterflies is given in equation 16. The complexity of the GSFNT
butterfly processors on the other hand is dominated by the adders
since all coefficients multiplications are powers of a.
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V. NUMERICAL RESULTS

A full numerical simulations have been conducted to evaluate the
performances of the general combined system. In this section the
simulations are organized as follows.

e We propose to realize the implementation of the previous
BPNLMS + + algorithm with GSFNT.

e We will compare the robust versus the non-robust algorithms
(convergence and divergence when double-talk occurs)

e \We propose to realize the implementation of the general com-
bined system with GSFNT to reduce the complexity compared to
Fermat Number Transforms FN'T.

A. Implementation of GSFNT-based BPNLMS++

The BPNLMS + + algorithm proposed in [4], presents a faster
adaptation convergence than BNLMS or BPNLMS algorithms.
Since the GSFINT has several desirable properties mentioned ear-
lier, a realization of BPNLMS + + filters using the GSFNT
compared to the FINT is also considered. An implementation of
BPNLMS + + filters using the GSFNT reduces the complexity
of a filter using a block structure.

The BPNLMS + + adaptative filter algorithm, with blockwise
processing, is investigated in single-talk situation where empirical
values for the parameters are chosen as 5 = 100, p = %, § =102
and the step size p = 0.8. The dimension of the computed block
in filter processing is taken N =64, L =193 and P = 64. In
Figure 3-a, The far-end signal {x} is 16 bit PCM coded at a
8kHz sampling rate and the performance of the adaptation for
echo cancellation is measured by means of the Echo Return Loss
Enhancement of the compensator Wi (ERLEC) (Figure 3-b).

oM n))2
ERLEC (k) = 10logio ( n=(-1)N+1 (Y (1) i

n=(k—1)N+1 (y (n) =3 (n))

where k is the index of block.

4
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Fig. 3. Performance for BPNLMS + + algorithm. Far —end (a)
and ERLEC (b)

In Figure 3-b, we present the attenuation of the echo brought by
algorithm BPINLMS + +. In this Figure the attenuation of the echo
is about 25 dB.

In Figure 4, the performance of the BPINLMS + + algorithm is
mesured by means of the filter weight error convergence Ny, :

A 112
N. = 10logo (M)

wi? @)

Amplitude (dB)
L
o

|
R
a

—20

_o5l 4

o 50 150 200 250

Blocks

300 350 400 450

Fig. 4. Adaptation normalized misalignment

The overall computational efficiency of a realization is directly
associated to the computational complexity of both transforms (FN'T
and GSFNT). In Figure 5, the operation number, required for the
convolution of the BPNLMS + + filter, corresponds to GSFNT
and FIN'T-based realizations.

x 10°

ek

sl 4

Number of Operations

L LE 1
[
0.5 1 15 2 2.5 3 3.5 a a5

Fig. 5.
blocks

Operations required for BPNLMS + + filtering for 10

This later implementation of the BPINLMS + + filter is compu-
tationally more efficient due to GSFINT efficiency.

B. Comparisons between robust and non-robust algorithms

We compare the robust and the non-robust algorithms (BNLMS,
BPNLMS, and BPNLMS + +) using the VAD presented in
[12].

The parameters chosen for the following simulations are as follows:

e Parameters for the non-robust BPNLMS + + algorithm are
given in subsection V.A.

e Parameters for the robust BPNLMS + + algorithm are,
(\ ko) = (0.995,1.1), a= 0.6 and s_; = 1000.

In Figure 6 the misalignment of the robust and non-robust algo-
rithms (BNLMS, BPNLMS, BPNLMS + +) is measured by
means of the filter weight error convergence Ny, given in equation
25.

double—talk

BNLMS -
BPNLMS
BPNLMS++

Amplitude (dB)
4

|
o
]

—20

25

() 500 1000

Blocks

Fig. 6. Adaptation normalized misalignment

Initial convergence rate of BNLMS, BPNLMS, and
BPNLMS + + are clearly superior to that of RBNLMS,
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RBPNLMS and RBPNLMS + +. While the non-robust al-
gorithms (with detector double-talk) diverge, the robust algo-
rithms are much less affected and never perform worse than —10
dB misalignment during double-talk. We can note also that the
RBPNLMS + + presents the faster adaptation convergence.

C. Implementation of GSFNT-based combined system

We insert a new block given in Figure 1. Numerical simulations
have been conducted to evaluate the performance of the GSFINT-
based general combined system. There are three cases to study
(Figure 7):

The parameters chosen for the following simulations are given in
subsection V.B.

Figure 7-a represents the far-end signal, Figure 7-b represents the
near-end signal and Figure 7-c represents the signal restored.

a

o ol @) double—talk |
£
= ‘
5 o e =5 3
R w10
o 1F (b)
I
£
g0
- ‘
5 oE i o5 3 75 3
R w10
o 1F ©
2 o
£
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o 0.5 1 1.5 B 2.5 3
samples «10°

Fig. 7. a) Far—end speech, b) Near —end speech and ¢) Near —end
speech estimation {5}

In Figure 8-a, the performance of the general combined system is
measured by means of the Echo Return Loss Enhancement (ERLE)
(case-single-talk) and Figure 8-b represents the SNR. obtained by the
general combined system (case-double-talk) :

Eﬁ (k—1)N+1 (s(n )) 2) (26)
§(m))

Z:ﬁN(k 1N+1( ( )

SNR (k) = 1010g10 (

where s(n) and §(n) are the near-end speech and the reconstructed
speech respectively.

@

ERLE (68)

Blocs

SNR (68)

o 20 a0 60 80 100 120
Blocs

Fig. 8.  Echo Return Loss Enhancement (ERLE) and SNR
between {s} and {8} signals

The computation gain being more significant for the filtering
process, as the computational complexity of various operations
needed in implementing FNT or GSFINT-based general combined
system is about the same when the convolutions are excluded, the
overall computational efficiency of a realization is directly associated
to the computational complexity of both transforms.

x 10"
ask

1 basic op(FNT)
—_ OP(FFT)

= FT)
Uit (FNT)

Number of Operations

o . . . I |

0.5 1 15 2 2.5 3 3.5 a a5

Fig. 9. filter for 10 blocks

Operations required for the post —

The operation number required for the convolutions of the
RBPNLMS + + is given in Figure 5. In the calculation of the
post-filter there is no overlap between the consecutive input signals.
The complexity of both different transforms (FNT and GSFNT)
are identical. In Figure 9 is presented the number of operations
required for the FFT and FIN'T-based post-filter implementation.

V1. CONCLUSIONS

In this paper, we consider the adaptation filter algorithm
BPNLMS + + and its implementation GSFNT. A high con-
vergence rate is usually accompanied by a high divergence rate in
presence of double-talk. To avoid this problem of divergence, a
general combined system is proposed, RBPNLMS + + and the
post-filter. The procedure is to use a system based on the double-
talk detector formed by two Voice Activity Detectors (VAD's).
We realize the implementation of the general combined system
with GSFNT which reduced the computational complexity of the
implantation on Digital Signal Processors.
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