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ABSTRACT 
 
Mean shift is robust for image segmentation through local 
mode seeking. However, like most segmentation schemes it 
suffers from over-segmentation due to the lack of semantic 
information. This paper proposes an enhanced spatial-range 
mean shift segmentation approach, where over-segmented 
regions are reduced by exploiting the positions and 
frequencies at which mean shift filters converge. Based on 
our observation that edges are related to spatial positions 
with low mean shift convergence frequencies, merging of 
over-segmented regions can be guided away from the 
perceptually important image edges. Simulations have been 
performed and results have shown that the proposed scheme 
is able to reduce the over-segmentation while maintaining 
sharp region boundaries for semantically important objects.  

 

1. INTRODUCTION 

Mean shift for local mode seeking and clustering was 
initially proposed by Fukunaga and Cheng [10,1], followed 
by some major development and extensions in [2]. Since 
then, many new studies and development have been 
reported on mean shift theories and applications to edge-
preserving nonlinear image smoothing and segmentation 
[3,4,5]. One attraction of mean shift is the statistical basis 
and its association with the density estimate. Mean shift 
directly estimates the local modes (maxima) without the 
requirement of actually estimating the pdf. Mean shift 
segmentation of images is based on the fact that pixels in 
the same region share some similar modes. Depending on 
the selected features, regions with different types of 
similarity (e.g. intensities, colors, or texture attributes) can 
be estimated. By including both spatial position and range 
as features, mean shift takes into account both the 
geometrical closeness and the photometric similarity of 
image during image filtering and segmentation. Recent 
studies have shown that mean shift is related to nonlinear 
diffusion and bilateral filtering [6,7]. Comparing with a 
bilateral filter, a mean shift filter is more robust since the 
filter uses different sets of data during the mean shift 
iterations due to the changes of kernel spatial positions. 
Despite all these attractive properties, mean shift segmented 
images suffer from over-segmentation due to the lack of 
semantic information, a common phenomenon in most 
image segmentation methods based on low level image 

features. It also requires a careful selection of bandwidth 
parameters. A fixed bandwidth value for the entire image 
may not be suitable depending on the image property.  Also, 
mean shift segmentation usually requires a post-processing 
for merging small regions. Motivated by the above, we 
proposed an enhanced spatial-range mean shift by 
combining mean shift convergence frequencies and 
positions. From the associations of converging frequencies 
and edges/homogeneous areas, merging of over-segmented 
regions can be guided away from the perceptually 
important image edges. This can lead to reduced over-
segmentation, but still retaining semantic meaningful 
regions. Further, the selection of bandwidths in mean shift 
may become less sensitive by allowing an initial over-
segmentation before a refined processing. 
 

2. SYSTEM DESCRIPTION 

The proposed scheme combines spatial-range mean shift 
with converging frequencies and positions for a refined 
image segmentation. As shown in Fig.1, the segmentation 
scheme consists of four main blocks. First, a spatial-range 
mean shift filter is applied to the feature vectors extracted 
from the image I(s), s is the pixel position (block-1). The 
frequencies and positions to which mean shift filtered pixels 
converge are recorded in a map (block-2). Pre-segmentation 
is performed based on clustering similar modes in the 
filtered image (block-3). Refined segmentation uses the map 
which guides merging of over-segmented regions away from 
image edges (block-4).   
 
 
   
 
 

 
 
  Fig.1. Block diagram of the proposed segmentation scheme 
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3. SPATIAL-RANGE MEAN SHIFT FILTERING 

In this section, we briefly review the spatial-range mean shift 
filter that is used as the basis of image segmentation in this 
paper. Let a given set of L-dimensional feature vectors 

{ ,  1, , }iS i= n=x  be given for estimating the kernel 
density of a feature vector x, 
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where 2( ) ( )kK c k=x x is a radially symmetric kernel with 

 distance measure, and  is a normalization constant. 
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For a spatial-range mean shift filter, the feature vector is 
defined as , where the 1[ d r=x x x ]T

]T

st component vector 
is the domain feature defined as the spatial position of pixel 

, and the 2[   d
yxs s= =Sx nd component feature is the 

range feature defined as the function of domain 

feature, frequently set as the image intensity . 
For a Gaussian kernel,  in (2) becomes,  

( )df x

( )dr = Ix x
( )g x

  
2 2

2

2 2

( )
exp

2 2
( ) = exp

d d

d r

g
σ σ

− −
⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

x I x
x

⎞
⎟
⎠

d

                     (3) 

Or, , where h( ) ( ) ( ( ))d
d rg gg =x Ix x 22d dσ= r, 22rh σ=  

are the spatial and range kernel bandwidths, respectively. 
We only consider Gaussian kernels in this paper. This is 
because a Gaussian kernel is known to yield a better 
segmentation after convergence, as compared to using a 
Epanechnikov kernel [2]. Further, the shadow kernel of 
Gaussian is also a Gaussian kernel. Such a mean shift filter 
can be used as a nonlinear edge-preserving smoothing: 
when the differences of pixel intensities are small, the mean 
shift filter acts as a lowpass filter in a local image region. 
However, if the intensity differences are large (e.g. around 
edges), then the range filter kernel is close to zero value, 
hence no filtering is actually applied to these pixels. In such 
a way, a joint spatial-range mean shift filter takes into 
account the geometrical closeness as well as the 
photometric similarity in an image.  
 

4. ENHANCED SEGMENTATION   

4.1 Frequency and position where mean shift converge 
The basic idea is to exploit the information (from the mean 
shift filter) related to image edges and homogeneous areas 
to guide the merging of over-segmented image regions. 

Since the mean shift vector is proportional to the 
normalized density gradient and is pointing towards the 
direction of maximum increase in the density (or, towards 
the local mode), a large number of mean shift filtered pixels 
is expect to converge near to (but not on) the sharp edges. 
Conversely, a low frequency of convergence to a pixel may 
correspond to a point in a flat area. This phenomenon can 
be confirmed by simulation results shown in Fig.1. The 
map M(s) in the figure shows how frequent the mean shift 
converges towards each pixel. For example, M(s)=0 means 
zero pixels converge to s, which implies discontinuities 
(edges) in s; M(s)=1 means that only one pixel converges to 
s, implies homogenous areas; while M(s)>i means that i 
pixels converge to s, a mode candidate for a homogenous 
area surrounded by image edges. In the map image, a dark 
pixel indicates a high convergence number. One can 
observe that pixels with high frequency of convergence 
(black) are indeed concentrated next to image edges, points 
with zero number convergence (white) are associated with 
image edges, and the main parts are the homogeneous areas 
which have median frequency of convergence (gray). Based 
on the above observations, enhancing the segmentation 
from mean shift can be obtained by exploring positions and 
frequencies of mean shift convergence. This will lead to a 
reduced number of over-segmented regions, resulting 
regions more close to semantic meaningful objects 
indicated by edge curves.  
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Map image M(s) shows the mean shift convergence 
frequency at each pixel position. (white: indicate edges, 
black: indicate nearer to edges; gray: indicate smooth areas. 
Left: from image “peppers”, right: from “swimming lady”).  
 
4.2  Pre-Segmentation using Spatial-Range Mean Shift 
To obtain pre-segmented image, a joint spatial-range mean 
shift filter, with pre-specified bandwidths h  and , is 
applied. The algorithm is summarized in Table 1. 
Meanwhile, the frequency of convergence map M(s) is 
generated during the mean shift filter process as follows: 
assuming that mean shift filtering of x s  

converges to

rhd

[   ( )]T
i i i= F s

, ,, [   ]d r
i c i c

T
i c =y y y ,

d
i cy, where  is the 

converged position for s . If y  (i.e., the converged 

domain feature is equal to a pixel position coordinator ) 

then value is increased by one, i.e, 

,
d
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ks
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( ) ( ) 1k k← +M s M s . This process continues for all pixels in 
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the image. This step for forming up M(s) can be added in 
between Steps 5 and 6 of Table 1.  
Afterwards, pre-segmentation is applied to the filtered 
image F(s), based on merging connected pixels into a 
region whose range difference is smaller than a range 
bandwidth. However, the segmentation is only applied to 
those filtered image pixels F(s) satisfying M(s)>1. That is, 
a set of connected pixels belonging to one candidate region 
satisfy,  
 

( ) ( ){ }2
,   ; ( ) 1, ( ) 1|l m l m l mrS h= − ≤ >s s F s F s M s M s >   (4)  

          
The i-th candidate region is described by 2 components, the 
mode value and the set of pixels, as below  
       ( )1 ,  { }{i i
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k k
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                (5)   

where  is the total number of pixels in the region i.       
Segmented candidate region boundaries are then 
drawn, where the corresponding boundary map is 
assigned as:  

in                                            

      B s     (6) ( )
if    is a boundary point of region 

0 otherwise
i i

In such a way, an initial over-segmented image is generated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
Table 1. Algorithm for Joint spatial-range mean shift filtering  
 
4.3. Refined-segmentation based on the frequencies and 
Positions where mean shift filters converge   
For reducing the number of over-segmentation, a typical 
way is to merge small regions as post processing [2,3]. The 
disadvantage is that some small regions (such as eyes, lips) 
that are perceptually important may be merged to nearby 
regions (e.g. face). Also, over-segmentation may create 
some split regions, each having sufficiently large size.  In 

our proposed method, the map of convergence frequency 
M(s) is explored when merging regions. Since the 
convergence frequencies indicate whether pixels are close 
to edges, it can be used to refine segments by merging those 
spurious regions which do not have image edges around. 
For each pixel s on the candidate region boundary, B(s)>0, 
we compute the total number of M(s)=0 over a small 
window W, 
        ( )( ) ( ),    for all ( ) 0

i

i i
s W

c s
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Where c(x)=1 if x=0, otherwise c(x)=0. Here using a small 
window in computing v s  is aimed at introducing some 
resilience to edge noise. If  (  is a small number) 
then the pixel 

is s considered as being located near an edge 
which should be retained as a region boundary during 
candidate region merging process, otherwise it is a 
boundary point of a spurious region which should be 
merged, i.e., 

( )i

0( )i n≥v s 0n
 

 ⎧⎨     (8) 

where  contains the boundaries of spurious 
regions, its (non-zero) value denotes the candidate region 
index. For each spurious region, it is merged to one of the 
neighbor regions with which it shares the longest common 
border and their range difference is below the threshold T . 
That is, for a spurious region i, and its neighboring regions j, 
j=1,2…, the length of their common border le  is 
computed. Then the neighboring region j* having the 
longest common border is picked up,  

0 ( ) 0>B s
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1. Spatial-range mean shift filtering: 
 For each pixel s in the original image I(s), do: 
  1.1. Apply spatial-range mean shift x=[s  I(s)]   
         to generate  filtered  F(s)   (see Section 4.2); 

3.  Compute the mean shift  ( ), ,, 1G i j i ji j+= −m y y y   1.2. Generate a converging frequency map M(s)  
         (see Section 4.2) .  ( ),i jG ε<m y4.   If 0.01ε =  (e.g. ), go to Step 5,  
 End; 

      Otherwise: 1j j← + , and repeat Steps 2-3.  2. Pre-segmentation: 
 For each pixel s, M(s)>1, do  5. Set the converged value , assign filtered value , ,i c i j+←y y      2.1. Generate candidate regions using (4) and (5) 1

c
     2.2  Draw region boundaries in the map image B(s). ( ) ,

r
i i←F s y     as converged range vector . 

 End; 
6. Repeat Steps 1-5 until all pixels in image converges.  3. Refined-segmentation: 

  3.1. Split boundary map B(s) to and using (8). 0 ( )B s 1 ( )B s

  3.2. For each region indicated by , merge a region  0 ( ) 0>B s
          to its  neighbour region  (see Section 4.3, (8) and (9)). 
  3.3. Update mode and draw new boundary for the region. 
  3.4. Repeat Steps 3.2 and 3.3 until all  B s . 0 ( ) 0=

     Table 2.  Pseudo algorithm of the proposed method. 
 
Regions i and j* are then merged if they satisfy 
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*i j rTF F− <                                                             (10) 
Otherwise, check the neighbor region with the 2nd longest 
common boarder that satisfies (11), until either a merge can 
be done, or all neighbor regions are exhausted. Finally, the 
mode for the merged region is assigned as the averaging 
mode of these two regions weighted by their sizes. The 
merging process is continued until all spurious regions 
indicated by  are merged. Table 2 summarizes the 
pseudo algorithm of the proposed segmentation method. 

0 ( ) 0>B s

 

5. SIMULATIONS AND RESULTS 

Simulations were conducted for a variety of 2D color images 
using the proposed method. Fig.2 includes five segmented 
images with different complexity. The bandwidth parameters 
used in the simulations are described in columns 2-4 of Table 
3. One can see from the results (the 2nd row in Fig.2) that the 
convergence frequency maps clearly indicated image edges 
and areas next to edges, as well as smooth areas. One can 
also see from the results (the 4th row in Fig.2) that there is a 
significant reduction in spurious regions after refined 
segmentation, meanwhile sharp image edges are maintained. 
Further, the refined segmented regions are more related to 
semantically meaningful objects. It is also noticed that the 
final segmentation results are not very sensitive to the initial 
over-segmentation. Since the conventional mean shift 
segmentation is known to be sensitive to the kernel 
bandwidth selection [11,12], the proposed method means less 
sensitive and less demand to tuning the bandwidth parameter 
values. Also, in the proposed scheme, there is no post-
processing for (blindly) merging small regions to their large 
neighbouring regions as in [2,4].   
For further measuring the performance of the segmented 
images, two objective performance measures were applied as 
a partial indication of performance. One is the uniformity 
measure [8] defined as  
 

     (11) ( )2 2
max1 / j j

j
U P σ σ= −∑

where 2
maxσ  is the maximum variance for all regions, 2

jσ  

and jP  are the variance and weighting factor associated with 
the region j. A larger U value (maximum value 1.0) indicates 
a more homogeneous segmented image. Another measure is 
the evaluation function [9] defined as  
 
            ( )

1

2 /
N

j
j

jE N e N
=

= ∑    (12) 

where 2
je  is the sum of Euclidean distance between the 

original and segmented image pixels in the region j, jN  is the 
number of pixels in the j-th region, and N is the total number 
of regions. A smaller E indicates a better performance. 
Table.3 (columns 5-7) shows the performance measured from 
using these 2 criteria. One can observe that the uniformity 
measure is close to 1.0, indicating that the segmented images 

are rather homogenous (although this measure does not 
penalize small region sizes). The results of evaluation 
function E have indicated an improved performance after the 
refined segmentation. 

6. CONCLUSIONS 

A novel statistical-based segmentation method is proposed 
by combining joint spatial-range mean shift and edge-guided 
merging of over-segmented regions through the use of 
frequency of mean shift convergence and their positions. 
Our simulations results and preliminary performance 
evaluation have shown that the proposed method has 
provided enhanced results with reduced over-segmentation 
meanwhile retaining sharp image edges. Further study will 
be conducted on evaluations and comparisons.  
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             E function   Uniformity  
U 2rhrh dh   Image Pre- Refined-

segment     Segment. 
Swim lady 0.15 5 0.13 422.5 294.7 0.9928 

Peppers   0.2 5 0.13  2480.1       1775.7 0.9851 
Tree 0.1 5 0.15 2266.2 1989.5 0.9919 
house 0.1 5 0.15 1129.7 1068.0 0.9864 
hall 0.1 5 0.12 809.3 784.3 0.9814 

Table 3.  Parameters used for images in Fig.2 (columns 2-4) and 
segmentation performance measures (column 5-6). 
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Fig.2. Segmentation results from the proposed method. 1st row: original images (left to right: tree, swimming lady, 
peppers, house, hall) 2

 
 
 
 
 
 
 
 
 
 
 

nd row: the map images M(s); 3rd row: pre-segmented results; 4th row: refined segmented results. 
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