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ABSTRACT

In this paper, we investigate the effect of disfluent repeti-
tions in spontaneous speech recognition. We characterize the
repetition errors in an automatic speech recognition frame-
work using repetition word error rate (RWER). The problem
is addressed by both building classifiers based on acoustic-
prosodic features and a multiword model for modeling repe-
titions. We also analyze the repetition word error rate for dif-
ferent acoustic and language models in the Fisher conversa-
tional speech corpus. The classifier approach is not promis-
ing on recognizer output and generates a high degree of false
alarms. The multiword approach to modeling the most fre-
quent function word repetitions results in an absolute RWER
reduction of 1.26% and a significant absolute WER reduc-
tion of 2.0% on already well trained acoustic and language
models. This corresponds to a relative RWER improvement
of 75.9%.

1. INTRODUCTION

Spontaneous speech is not well structured, acoustically and
syntactically, as read speech. The presence of disfluen-
cies makes the spontaneous speech disparate and provides
a challenge for speech processing. State-of-the-art automatic
speech recognition has achieved high recognition accuracy
for read speech. However, the accuracy is still poor for spon-
taneous speech with disfluencies. The growing demand for
reliable spontaneous speech recognizers has been manifested
in applications such as dialogue systems, spoken document
retrieval, call managers and automatic transcription of lec-
tures and meetings. The disfluent speech portions in these
tasks alter the smooth speaking style and therefore degrade
the performance of the speech recognizer.

Disfluencies generally include filled pauses (uh, uhm, er
etc.), repetitions, revisions, restarts and fragments. Typically,
disfluencies can be broken down into a reparandum, inter-
ruption point (IP), editing phase and repair region [1]. Here
we are interested in one specific type of disfluency, namely
repetition. Repetitions in spontaneous speech in most cases
involve a first instance of the repeated word (R1), a possible
silent pause (SIL), a second instance of the repeated word
(R2), and continuation of the utterance. An example is given
below :
• I might (R1) might (R2) have to go to the cla- class.
• I might (R1) SIL might (R2) have to go to the cla- class.
Spoken language often also gives rise to disfluent repeti-

tions that are a series of backchannel responses such as yeah
yeah, right right. The studies and experiments conducted in
this paper include these instances.

In the past, detection of repetitions in disfluent speech has
been addressed from the perspective of acoustic [2, 3, 4],
prosodic [5, 6] and language [5, 7, 8] models. Parsing tech-
niques [9] have also been used to detect and correct these
disfluencies at either the ASR n-best list or the lattice level
by applying parsers, trained on disfluency-tagged treebank.

The acoustic modeling approaches have treated the disflu-
ency as a general recognition model. With sufficient training
instances, they attempt to capture the variations in duration
and pause exhibited by the disfluencies. Acoustic analysis of
disfluent repetitions was first presented in [3]. It suggests that
repetitions are either prospective or retrospective depending
on where the pause occurs in the repetition. [4] categorizes
disfluent repetitions into canonical repetitions, covert self-
repairs and stalling repetitions based on prosodic features.
Acoustic-prosodic features used in building classifiers for de-
tecting disfluencies are based on these trends observed in the
signal.

Prosody based disfluency detection typically works with
word boundaries, extracting the acoustic-prosodic features at
each word boundary and building classifiers for each type.
Decision tree classifiers are used with discrete features like
duration, distance from pause and normalized f0 values [6].
Assuming that the ASR can give reliable end point estimates
even if the hypothesized word sequence is erroneous, one can
apply these classifiers at each word boundary to predict the
disfluency type. However, most ASR systems do not provide
accurate segmentations due to WER.

Language modeling approaches have been employed for
detecting and correcting disfluencies in speech [7] primarily
for natural language understanding. These approaches tag
the training data with disfluency tags and during decoding
predict the tags for the hypothesized word sequence. How-
ever, for ASR output these approaches are heavily dependent
on the word error rate (WER). Also, the inherent nature of
spontaneous speech is such that a speaker can introduce a
repetition at any point in the conversation and a language
model (LM) cannot completely characterize the repetition
by itself. Hidden event modeling incorporating prosody in
language models was presented in [5]. Recently, finite state
grammar (FSG) based methods [8] have been proposed to de-
tect and correct repetitions. These FSGs are typically formed
from the training data and are constrained in that they are
domain dependent and may not necessarily port well for a
different application.

Typically, disfluencies have been detected and corrected as
a post-processing step after first pass recognition or for iso-
lated utterances with time alignment information. Our goal
in this paper is to investigate the repetition phenomena in
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spontaneous speech recognition and model them within the
recognition framework. In this regard we characterize the
accuracy of a spontaneous speech recognizer in terms of the
repetition word error rate for different configurations of the
ASR.

RWER= 100.0∗ R1(sub+ins+del) +R2(sub+ins+del)

total(correct+sub+del) (1)

whereR1 andR2 denote the first and the second instance
of the repetition in a repetition pair.

The motivation for doing so is two-fold. First, with re-
liable identification of repetitions we hope to prevent ASR
performance degradation. This also reduces the need to per-
form additional post-processing of the ASR output to detect
and correct errors caused due to repetition. Second, repeti-
tions serve as an indicator of interruption point and help a
speaker to think and maintain his turn in the conversation.
They are also correlated with revisions and false starts and
hence can be used in providing additional information about
discourse structure.

The paper is organized as follows. In section 2, we present
repetition statistics on popular conversational speech cor-
pora. In section 3, we describe acoustic-prosodic features we
have investigated for detection of repetition as a classifica-
tion task. We describe the data used in this paper in section 4
followed by description of the ASR built for the task of ana-
lyzing repetitions in spontaneous speech. Section 6 explains
our proposed multiword training for repetitions and reports
the results. We end with conclusions and future work in sec-
tion 7.

2. REPETITION STATISTICS ON SPONTANEOUS
SPEECH CORPORA

Repetitions are common in spontaneous speech. Repetitions
can be single word repetitions, where one word is repeated
after another with a possible silent pause in between or multi
word repetitions1 where two or more words are repeated. Ta-
ble 1 shows repetition statistics on commonly available spon-
taneous speech corpora. As the statistics suggest, repetitions
are frequent in spontaneous speech and hence need attention.

Corpus Single word Multi word # words
Switchboard 2.02 0.40 3.1 million
Call Home 1.05 0.22 181 K

Fisher 1.72 0.33 17.8 million

Table 1: Repetition statistics in spontaneous speech corpora
(%)

3. DATA

3.1 Data Description

The Fisher English Training data represents the conversa-
tional telephone speech (CTS) created at the Linguistic Data
Consortium (LDC). The data used in this paper are from the
second part of the collection designated as Fisher part 2. It
contains speech data for 5849 complete conversations, each

1Note that we refer to multi word repetitions as a group of two or three
words repeated and not the same word repeated more than once

lasting upto 10 minutes. The transcription was performed by
both LDC, BBN and WordWave. The cut times for the utter-
ances are partially hand labeled and others are as a result of
a first-pass speech recognizer for detecting sentence bound-
aries.

3.2 Training and Test Corpora

A total of 220 hours of data was selected as training mate-
rial for the ASR system from the Fisher part 2 corpus. The
10 minute conversations were segmented into individual ut-
terances based on the cut times provided by LDC. The re-
sults reported in this paper are based on acoustic models con-
structed using this training material. The test corpus consists
of 2 hours of data from 20 speakers not seen in the training
data. The percentage of repetitions in the test set is 1.91%.
The language models were constructed from the training data
transcripts as well as the transcripts from the Fisher part 1
collection and other conversational speech corpora .

4. ACOUSTIC-PROSODIC FEATURE ANALYSIS OF
REPETITIONS

We first address the problem of detection of repetitions using
acoustic-prosodic features in a classification framework. The
resultant classifier is later applied to the output of the ASR
to characterize the repetitions. Using the acoustical analy-
sis of repetitions performed in [3, 4] as motivation, we ex-
tracted acoustic-prosodic features from the boundary of repe-
titions that quantify the inferred properties. We extracted du-
ration, f0 and pause information across the repetition bound-
ary. Specifically, the features considered were the pause du-
ration after the repetition, the stylized f0 values around the
boundary (f0 onset, offset, range, mean) and duration infor-
mation (rhyme duration, duration of voiced regions before
the boundary, duration of the vowels inR1). The duration
features were normalized by overall phone durations and the
f0 values by speaker specific mean f0. We also experimented
with raw values but the normalization provided better classi-
fication accuracy. The creakiness in the voice during a repeti-
tion can be characterized quantitatively by the Open Quotient
(OQ) measure [8]. We use the definition of OQ as the dif-
ference in amplitude of the first and second harmonics of the
spectral envelope.

We trained Gaussian Mixture Models (GMMs) for rep-
etitions (λrep) and non-repetitions (λnon−rep) based on the
acoustic-prosodic features extracted at each boundary in the
training data. The classifier thus trained is used in the two-
way classification problem.

boundary=
{

rep if p(X/λrep) > p(X/λnon−rep)
non-rep else

(2)

whereX denotes the acoustic-prosodic feature vector.
The classifier was trained with 30000 tokens from the

training data after performing forced alignments. The forced
alignments were performed using the transcriptions provided
and the acoustic-prosodic features were extracted from the
resultant phone-level alignments. The test data consisted of
1000 tokens and both the training and test set were downsam-
pled to have equal priors. The classifier was also applied to
the hypothesized word boundaries from the recognizer2 out-

2Results reported here are for the SAT+m1 configuration of the recog-
nizer specified in Table 4
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put (also downsampled). The results of the classification is
presented in Table 2.

Accuracy Recall False Alarms
Forced alignment 75.9 74.0 25.97
Recognizer ouput 67.0 64.3 34.2

Table 2: Classification results of the acoustic-prosodic classi-
fier (%)

The classification results for repetitions is similar to results
presented in [6] though a direct comparison is not possible
due to the different corpus used in our experiments. The
results also indicate that the classifier based approach per-
forms better when accurate time alignment of the words is
known. Typically, this is not possible in a recognition sce-
nario due to insertion, deletion and substitution errors. The
false alarm rate is also reasonably high. In the next section
we address an alternative view of disfluent repetitions, from
an ASR perspective and also present a multiword modeling
approach aimed at reducing both the WER and RWER.

5. ASR SYSTEM OVERVIEW

5.1 Dictionaries and Vocabularies

The Mississippi State switchboard dictionary with 38910 en-
tries was augmented with the CMU dictionary that contains
over 125000 words to form the base dictionary. Pronun-
ciations for partial words were automatically derived from
the baseform dictionary. Hypotheses for words not found
in the dictionary during alignment were generated using
CART based letter-to-sound rules [10] with the CART sys-
tem trained on the base dictionary.

5.2 Language Model

Since language modeling data for conversational speech
is sparse, we constructed the LM from all available data
sources. The main sources used were the Fisher Training
data transcripts, switchboard data transcripts and the HUB4
transcripts. The data from different sources were normalized
using identical processes. Normalized spelling and uniform
hyphenation was ensured across all corpora. Trigram LMs
were trained using the SRI LM toolkit [11] with Kneser-Ney
discounting and backoff. The interpolation weights were de-
termined by minimizing the perplexity on held-out data from
the fisher corpus. Table 3 shows the perplexity results on the
test data chosen for the task. The WER reported here is for
the baseline acoustic model.

LM Corpora Perplexity WER RWER
SWB + HUB4 (LM1) 103.235 56.0 2.20

Fisher Part 2 73.09 49.8 1.97
Fisher Part 2 + LM1 72.60 49.5 1.92

Fisher Part 1 & 2 (LM2) 70.11 48.4 1.95
LM2 + LM1 (LM3) 69.85 48.0 1.90

Table 3: Repetition WER for different language models (%)

5.3 Acoustic Model and Adaptation

Standard acoustic models that are phonetic decision tree state
clustered triphone models with left-to-right 3-state topology
were trained using SONIC [12] speech recognition toolkit.

The data at the leaves of the decision tree were modeled with
Gaussian distributions via a BIC-based procedure and trained
using multiple iterations of the EM algorithm. This is our
baseline model. The acoustic models are further improved by
performing cepstral variance normalization (CVN) and vocal
tract length normalization (VTLN).

In addition to speaker independent acoustic models, we
also built speaker adaptive models (SAT). The training
was done via constrained maximum likelihood regression
(CMLLR) transform on the feature space for each training
speaker. The transform is applied to both means and vari-
ances of the system parameters. Once all speakers were
transformed, we computed a new canonical acoustic model.
In Table 4, (m1) refers to the acoustic model obtained af-
ter CVN and VTLN and the language model trained from
Switchboard, HUB4 and Fisher transcripts. The SAT + (m1)
model refers to speaker adaptation performed over cepstral
variance and vocal tract length normalized acoustic model.

Model WER RWER
Baseline + LM3 48.0 1.90

CVN + VTLN + LM3(m1) 46.0 1.80
SAT + LM3 42.8 1.67
SAT + (m1) 42.1 1.66

Table 4: WER and RWER on test data for different acoustic
models (%)

6. MULTIWORD TRAINING FOR MODELING
REPETITIONS

We have shown the effect of repetitions on the accuracy of
ASR systems in the previous sections. As results indicate,
there is still room for improvement. In this section, we pro-
pose a multiword (also referred to as compound words) ap-
proach for modeling repetitions in spontaneous speech. A
data driven approach to choosing multiwords for minimiz-
ing the WER has been presented in [13] though not from the
perspective of modeling repetitions. Results in [13] also in-
dicate that manual design of multiwords yield WER compa-
rable to automatic selection. In this paper, we use a different
approach by using a threshold for the raw count of the repe-
tition pairs and by classifying them into function and content
word categories.

Analysis of the repetitions in the training data indicate that
most repetitions are function words3 and content words form
very small percentage of the total single word repetitions.
Table 5 shows the distribution of repetitions among func-
tion and content words. Another motivation is that function
words are on an average shorter in length (in terms of number
of phones) and hence a function word repetition pair is much
likely to be confused with another word during ASR decod-
ing. We found that modeling all repetitions (function or con-
tent) as multiwords did not improve the performance, possi-
bly due to the increase in acoustic confusability. This augurs
well for most speech recognition tasks where the function
word vocabulary is constant while the content words can vary
with the task and may also be out of vocabulary (OOV).

In an attempt to reduce the RWER, we used a multiword
training for the most frequent function words (we considered

3We categorize words as function or content based on part-of-speech tags
obtained from a POS tagger
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Corpora function word reps content word reps
Switchboard 91.0 9.0
Fisher Part 2 91.9 8.1

Table 5: Function and content word repetitions in spontaneous
speech corpora (%)

function word repetitions that occurred more than 250 times
in the training data) in the corpus. The repetitions were in-
cluded as entries in the dictionary as concatenated baseforms.
We found that coarticulation is not common among repeti-
tions and hence refrained from using coarticulated pronun-
ciation variants. However, using the acoustic analysis pre-
sented in [3] as motivation, silent pauses (SIL) were included
between the repetitions as alternate forms. This is illustrated
in Table 6.

Repetition pair Dictionary entry
YEAH YEAH (1) Y AE Y AE
YEAH YEAH (2) Y AE SIL Y AE

Table 6: Repetition entries in the pronunciation dictionary

Finally, we retrained acoustic models with the new mul-
tiword repetition dictionary. To incorporate the multiword
repetitions in the LM, we replaced the appropriate bigrams
and trigrams with corresponding multiwords and otherwise
used the same LM training procedure as before. To verify
the hypothesis that the multiword modeling approach does
target the repetition errors, we examined the ratio of repeti-
tion errors to number of words in the repetitions. The results
are reported in Table 7.

Model WER RWER R1-R2 errors
total words in repetitions

SAT + (m1) (∗) 42.1 1.66 41.04
(∗) + multiword model 40.1 0.40 20.02

Table 7: WER and RWER on test data for multiword approach
(%)

The results in Table 6 indicate that the multiword approach
to modeling repetitions in spontaneous speech is beneficial.
The improvement in the WER and RWER is on the best
trained acoustic and language models. Tabe 8 shows the per-
formance on normal and back-channel repetitions. In the ex-
periments, only ‘yeah yeah’ and ‘right right’ spoken in isola-
tion were considered as back-channel repetition pairs and all
the other repetitions constitute normal responses.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an investigation into the nature of
disfluent repetitions and their impact on spontaneous speech
recognition. In particular we addressed the problem from
the point of reducing RWER and hence the absolute WER,
in ASR systems by employing different training procedures
for language and acoustic models. We have also addressed
the problem of detecting repetitions from acoustic-prosodic
features by building GMM classifiers. An elaborate analysis
of the RWER for various configurations of the acoustic and
language model was presented. A multiword training pro-
cedure taking into account the most frequent function word
repetitions in the training data provided an absolute RWER

Repetition Type RWER
SAT + (m1) SAT + (m1) + multiword

Normal Responses 1.33 0.34
Back-channel 0.27 0.06

Table 8: RWER (%) of normal and back-channel responses in
the test set

reduction of 1.26% and contributed to an absolute WER re-
duction of 2.0%. While the RWER is considerably reduced
by using the multiword training procedure, the application
of the acoustic-prosodic classifier to the hypothesized ASR
output to detect and correct disfluencies is far from benefi-
cial. The false alarm rate is also reasonably high for such a
procedure. In future work, we plan to investigate our method
on other conversational speech corpora. We also envision
that incorporating scores from the disfluencies into the word
lattice along with acoustic and language model scores will be
beneficial to ASR performance on spontaneous speech.
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