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ABSTRACT In the past, detection of repetitions in disfluent speech has

In this paper, we investigate the effect of disfluent repeti-been addressed from the perspective of acoustic [2, 3, 4],

tions in spontaneous speech recognition. We characterize tRE0S0dic [, 6] and language [5, 7, 8] models. Parsing tech-
repetition errors in an automatic speech recognition frame2idues [9] have also been used to detect and correct these
work using repetition word error rate (RWER). The promemdlsfluenqles at either th_e ASR n-_best list or the lattice level
is addressed by both building classifiers based on acoustifY @PPlying parsers, trained on disfluency-tagged treebank.
prosodic features and a multiword model for modeling repe- The acoustic modeling approaches have treated the disflu-
titions. We also analyze the repetition word error rate for dif-ency as a general recognition model. With sufficient training
ferent acoustic and language models in the Fisher converststances, they attempt to capture the variations in duration
tional speech corpus. The classifier approach is not promighd pause exhibited by the disfluencies. Acoustic analysis of
ing on recognizer output and generates a high degree of fal§ésfluent repetitions was first presented in [3]. It suggests that
alarms. The multiword approach to modeling the most frefepetitions are either prospective or retrospective depending
quent function word repetitions results in an absolute RWERN Where the pause occurs in the repetition. [4] categorizes
reduction of 1.26% and a significant absolute WER reducdisfluent repetitions into canonical repetitions, covert self-
tion of 2.0% on already well trained acoustic and languagéepairs and stalling repetitions based on prosodic features.

models. This corresponds to a relative RWER improvemenficoustic-prosodic features used in building classifiers for de-
of 75.9%. tecting disfluencies are based on these trends observed in the

signal.
1. INTRODUCTION Prosody based disfluency detection typically works with
. , word boundaries, extracting the acoustic-prosodic features at
Spontaneous speech is not well structured, acoustically anchch word boundary and building classifiers for each type.
syntactically, as read speech. The presence of disfluemyecision tree classifiers are used with discrete features like
cies makes the spontaneous speech disparate and provigggation, distance from pause and normalized f0 values [6].
a challenge for speech processing. State-of-the-art automaliGsuming that the ASR can give reliable end point estimates
speech recognition has achieved high recognition accuragen if the hypothesized word sequence is erroneous, one can
for read speech. However, the accuracy is still poor for sponapply these classifiers at each word boundary to predict the
taneous speech with disfluencies. The growing demand fQfisfluency type. However, most ASR systems do not provide
_rellable_ spontaneous spe_ech recognizers has been manifesigd rate segmentations due to WER.
in applications such as dialogue systems, spoken document, 4 ;age modeling approaches have been employed for
tretrleval, dcall rr:_alnage1r_sh ar:jq ﬁumTat'C trarl]nscrltptlon .OftLeCaetecting and correcting disfluencies in speech [7] primarily
ures and meetings. 1he distiuent speech portions in e, 4431 language understanding. These approaches tag
tasks alter the smooth speaking ster_and therefore degra e training data with disfluency tags and during decoding
th%pilrformance of the”speefhdregtl)lgglzer. h uh Eredict the tags for the hypothesized word sequence. How-
ISfluencies generally Include fifled pauses (uh, u M, €byver, for ASR output these approaches are heavily dependent
etc.), repetitions, revisions, restarts and fragments. Typically, the \word error rate (WER). Also, the inherent nature of
disfluencies can be broken down into a reparandum, inte,,1ane0us speech is such that a speaker can introduce a
ruption point (IP), editing phase and repair region [1]. Here g, qyition at any point in the conversation and a language
we are interested in one specific type of disfluency, namely, ,ye| (| ) cannot completely characterize the repetition
repetition. Repetitions in spontaneous speech in most Ca35§ itself. Hidden event modeling incorporating prosody in
|r]volve a firstinstance of the rt—_zpeated woRll), a possible language models was presented in [5]. Recently, finite state
silent pause (SIL), a second instance of the repeated .Wo’f?rammar (FSG) based methods [8] have been proposed to de-
E)Rlz), and continuation of the utterance. An example is giverfe .t an correct repetitions. These FSGs are typically formed
elow - _ from the training data and are constrained in that they are
e I might (R1) might (R2) have to go to the cla- class.  domain dependent and may not necessarily port well for a
o I might (R1) SIL might (R2) have to go to the cla- class. different application.

Spoken language often also gives rise to disfluent repeti- Typically, disfluencies have been detected and corrected as
tions that are a series of backchannel responses such as y@apost-processing step after first pass recognition or for iso-
yeah, right right. The studies and experiments conducted ilated utterances with time alignment information. Our goal
this paper include these instances. in this paper is to investigate the repetition phenomena in
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spontaneous speech recognition and model them within tHasting upto 10 minutes. The transcription was performed by
recognition framework. In this regard we characterize théboth LDC, BBN and WordWave. The cut times for the utter-
accuracy of a spontaneous speech recognizer in terms of thaces are partially hand labeled and others are as a result of
repetition word error rate for different configurations of thea first-pass speech recognizer for detecting sentence bound-
ASR. aries.

R (Subtinside) | R o(subtins:de) 3.2 Training and Test Corpora

RIWER= 1000+ total(correct:subi-del) (1) Atotal of 220 hours of data was selected as training mate-
rial for the ASR system from the Fisher part 2 corpus. The
) ) 10 minute conversations were segmented into individual ut-
whereR1 andR2 denote the first and the second instanc&erances based on the cut times provided by LDC. The re-
of the repetition in a repetition pair. _ _ sults reported in this paper are based on acoustic models con-
_ The motivation for doing so is two-fold. First, with re- strycted using this training material. The test corpus consists
liable identification of repetitions we hope to prevent ASRof 2 hours of data from 20 speakers not seen in the training
performance degradation. This also reduces the need 0 Pefata. The percentage of repetitions in the test set is 1.91%.
form additional post-processing of the ASR output to detecthe Janguage models were constructed from the training data
and correct errors caused due to repetition. Second, repeffanscripts as well as the transcripts from the Fisher part 1
tions serve as an indicator of interruption point and help &ojlection and other conversational speech corpora .
speaker to think and maintain his turn in the conversation.
They are also correlated with revisions and false starts angd AcOUSTIC-PROSODIC FEATURE ANALYSIS OF
hence can be used in providing additional information about REPETITIONS
discourse structure. ] ) N .
The paper is organized as follows. In section 2, we presefVe first address the problem of detection of repetitions using
repetition statistics on popular conversational speech COaCOUStIC-pI'OSO_d_IC features In a_classmcatlon framework. The
pora. In section 3, we describe acoustic-prosodic features wiésultant classifier is later applied to the output of the ASR
have investigated for detection of repetition as a classifical0 characterize the repetitions. Using the acoustical analy-
tion task. We describe the data used in this paper in section¥s of repetitions performed in [3, 4] as motivation, we ex-
followed by description of the ASR built for the task of ana- tracted acoustic-prosodic features from the boundary of repe-
lyzing repetitions in spontaneous speech. Section 6 explairiions that quantify the inferred properties. We extracted du-
our proposed multiword training for repetitions and reportsation, f0 and pause information across the repetition bound-

the results. We end with conclusions and future work in secary. Specifically, the features considered were the pause du-
tion 7. ration after the repetition, the stylized fO values around the

boundary (fO onset, offset, range, mean) and duration infor-
2. REPETITION STATISTICS ON SPONTANEOUS mation (rhyme duration, duration of voiced regions before
SPEECH CORPORA the boundary, duration of the vowels Ri1). The duration
features were normalized by overall phone durations and the
Repetitions are common in spontaneous speech. Repetitiofisvalues by speaker specific mean f0. We also experimented
can be single word repetitions, where one word is repeategith raw values but the normalization provided better classi-
after another with a possible silent pause in between or mulfication accuracy. The creakiness in the voice during a repeti-
word repetition$ where two or more words are repeated. Ta-tion can be characterized quantitatively by the Open Quotient
ble 1 shows repetition statistics on commonly available sponfOQ) measure [8]. We use the definition of OQ as the dif-
taneous speech corpora. As the statistics suggest, repetitioiesence in amplitude of the first and second harmonics of the
are frequent in spontaneous speech and hence need attentigpectral envelope.
We trained Gaussian Mixture Models (GMMs) for rep-

Corpus Single word | Multi word # words etitions @ep) and non-repetitionsAgon-rep) based on the
Switchboard 2.02 0.40 3.1 million acoustic-prosodic features extracted at each boundary in the
CallHome 1.05 0.22 181K training data. The classifier thus trained is used in the two-

Fisher 1.72 0.33 17.8 million |  way classification problem.
Table 1: (I?)/i)petltlon statistics in spontaneous speech corpora boundary= {;e:)r;_re if p(X/Arep) > P(X/Anon-rep) @)
p else

whereX denotes the acoustic-prosodic feature vector.

3. DATA The classifier was trained with 30000 tokens from the
training data after performing forced alignments. The forced
alignments were performed using the transcriptions provided

The Fisher English Training data represents the conversand the acoustic-prosodic features were extracted from the

tional telephone speech (CTS) created at the Linguistic Dataesultant phone-level alignments. The test data consisted of

Consortium (LDC). The data used in this paper are from thé.000 tokens and both the training and test set were downsam-

second part of the collection designated as Fisher part 2. fled to have equal priors. The classifier was also applied to

contains speech data for 5849 complete conversations, eatie hypothesized word boundaries from the recogRiaat-

3.1 Data Description

INote that we refer to multi word repetitions as a group of two or three  ?Results reported here are for the SAT+m1 configuration of the recog-
words repeated and not the same word repeated more than once nizer specified in Table 4
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put (also downsampled). The results of the classification i§he data at the leaves of the decision tree were modeled with
presented in Table 2. Gaussian distributions via a BIC-based procedure and trained
using multiple iterations of the EM algorithm. This is our

Accuracy | Recall | False Alarms baseline model. The acoustic models are further improved by
Forced alignmenf ~ 75.9 74.0 25.97 performing cepstral variance normalization (CVN) and vocal
Recognizer oupu 67.0 64.3 342 tract length normalization (VTLN).

In addition to speaker independent acoustic models, we
also built speaker adaptive models (SAT). The training
was done via constrained maximum likelihood regression

e . . (CMLLR) transform on the feature space for each training
The classification results for repetitions is similar to rESU|t35peaker. The transform is applied to both means and vari-

presented in [6] though a direct comparison is not possiblgces of the system parameters. Once all speakers were
due to the different corpus used in our experiments. Thgansformed, we computed a new canonical acoustic model.
results also indicate that the classifier based approach pgf Taple 4, (m1) refers to the acoustic model obtained af-
forms better when accurate time alignment of the words i$s; cyN and VTLN and the language model trained from
known. Typically, this is not possible in a recognition sce-gyitchhoard, HUB4 and Fisher transcripts. The SAT + (m1)
nario due to insertion, deletion and substitution errors. The,qde| refers to speaker adaptation performed over cepstral

false alarm rate is also reasonably high. In the next sectiof,riance and vocal tract length normalized acoustic model.
we address an alternative view of disfluent repetitions, from

Table 2: Classification results of the acoustic-prosodic classi-
fier (%)

an ASR perspective and also present a multiword modeling
approach aimed at reducing both the WER and RWER. Base'\ﬂﬁgil LM3 \2,/55 RYVQEOR
CVN + VTLN + LM3(m1) | 46.0 | 1.80
5. ASR SYSTEM OVERVIEW SAT +LM3 738 167
5.1 Dictionaries and Vocabularies SAT + (m1) 42.1 1.66
The Mississippi State switchboard dictionary with 38910 en- Table 4: WER and RWER on test data for different acoustic
tries was augmented with the CMU dictionary that contains models (%)

over 125000 words to form the base dictionary. Pronun-
ciations for partial words were automatically derived from
the baseform dictionary. Hypotheses for words not found g MULTIWORD TRAINING FOR MODELING
in the dictionary during alignment were generated using REPETITIONS
CART based letter-to-sound rules [10] with the CART sys-
tem trained on the base dictionary. We have shown the effect of repetitions on the accuracy of
ASR systems in the previous sections. As results indicate,
5.2 Language Model there is still room for improvement. In this section, we pro-
: ; ; ose a multiword (also referred to as compound words) ap-
Since language modeling data for conversational Speegg]roach for modeling repetitions in spontaneous speech. A

is sparse, we constructed the LM from all available dat ta driven aporoach to choosina multiwords for minimiz-
sources. The main sources used were the Fisher Trainir%a PP 9

data transcripts, switchboard data transcripts and the HUB g the WER has been presented in [13] though not from the

transcripts. The data from different sources were normaIiz(zg.ers‘:’e(:tive of modeling repetitions. Results in [13] also in-

using identical processes. Normalized spelling and uniforn§ cat€ that manual design of multiwords yield WER compa-
able to automatic selection. In this paper, we use a different

hyphenation was ensured across all corpora. Trigram I‘Mépproach by using a threshold for the raw count of the repe-

were trained using the SRI LM toolkit [11] with Kneser-Ney tition pairs and by classifying them into function and content
discounting and backoff. The interpolation weights were de- P y 9

termined by minimizing the perplexity on held-out data fromWord catggories. . : - -
the fisher c)é)rpus. TabI% 3 sﬁovx?s theyperplexity results on the Analysis of the repetitions in the training data indicate that

test data chosen for the task. The WER reported here is f6pOSt repetitions are function wortiand content words form
the baseline acoustic model. very small percentage of the total single word repetitions.

Table 5 shows the distribution of repetitions among func-

LM Corpora Perplexity | WER | RWER tion and content words. Another motivation is that function
SWB + HUBZ (LM1) 103.235 | 56.0 | 2.20 words are on an average shorter in length (in terms of number
Fisher Part 2 73.09 4298 | 1.97 of phones) and hence a function word repetition pair is much

Fisher Part 2 + LM1 7260 205 [ 1.92 likely to be confused with another word during ASR decod-

Fisher Part 1 & 2 (LM2)|  70.11 484 | 1.95 ing. We found that modeling all repetitions (function or con-
LM2 + LM1 (LM3) 69.85 280 | 1.90 tent) as multiwords did not improve the performance, possi-

bly due to the increase in acoustic confusability. This augurs
Table 3: Repetition WER for different language models (%)  well for most speech recognition tasks where the function
word vocabulary is constant while the content words can vary

with the task and may also be out of vocabulary (OQV).
5.3 Acoustic Model and Adaptation In an attempt to reduce the RWER, we used a multiword

Standard acoustic models that are phonetic decision tree sté{gmmg for the most frequent function words (we considered

clustered triphone models with left-to-right 3-state topology  3we categorize words as function or content based on part-of-speech tags
were trained using SONIC [12] speech recognition toolkit.obtained from a POS tagger
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Corpora | function word reps| content word reps Repetition Type RWER
Switchboard 91.0 9.0 SAT + (m1I) [ SAT + (m1) + multiword
Fisher Part 2 91.9 81 Normal Responses  1.33 0.34
Back-channel 0.27 0.06

Table 5: Function and content word repetitions in spontaneous )
speech corpora (%) Table 8: RWER (%) of normal and back-channel responses in

the test set

function word repetitions that occurred more than 250 times, 4\ ~tion of 1.26% and contributed to an absolute WER re-
in the training data) in the corpus. The repetitions were iny,,.ion of 2.0%. While the RWER is considerably reduced
cluded as entries in the dictionary as concatenated basefor using the multiword training procedure, the application

¥Ve founéj rt]hat coarfhcylagofn Is not commotr) almf)r:jg répelivt the acoustic-prosodic classifier to the hypothesized ASR
lons and nNence refrained from using coarticulated pronung, .+ to detect and correct disfluencies is far from benefi-
ciation variants. However, using the acoustic analysis presia|" The false alarm rate is also reasonably high for such a

e e gjocedure. n e work, we ln o vestgateou metos
P ' n other conversational speech corpora. We also envision

in Table 6. that incorporating scores from the disfluencies into the word
lattice along with acoustic and language model scores will be
beneficial to ASR performance on spontaneous speech.

Repetition pair | Dictionary entry
YEAH_YEAH (1) | YAEY AE
YEAH_YEAH (2) | YAESILY AE REFERENCES

Table 6: Repetition entries in the pronunciation dictionary [1] W. Levelt, “Monitoring and self-repair in speectCog-

nition, vol. 14, no. 1, pp. 41-104, 1983.

Finally, we retrained acoustic models with the new mul- [2] w. Ward, “Understanding spontaneous speech: The
tiword repetition dictionary. To incorporate the multiword phoenix system,” ifProceedings ICASSBp. 365-367,
repetitions in the LM, we replaced the appropriate bigrams 1991.
and trigrams with corr(_as.ponding multiwords and otherwise [3] E. E. Shriberg, “Acoustic properties of disfluent rep-
used the same LM training procedure as before. To verify et.itio'ns,“ in Prc;c. International Congress of Phonetic

the hypothesis that the multiword modeling approach does : _
target the repetition errors, we examined the ratio of repeti- Sciences(Stockholm), pp. 384-387, Aug. 1995.

tion errors to number of words in the repetitions. The results [4] M. C. Plauche and E. E. Shriberg, “Data-driven sub-

are reported in Table 7. classification of disfluent repetitions based on prosodic
fea}tures," inProc. Internauo_nal Congress of Phonetic
Model WER [ RWER | g FLRZems fggegnce,svol. 2, (San Francisco), pp. 1513-1516, Oct.
SAT + (m1) &) 421 1.66 41.04 : _ .
(*) + multiword model| 40.1 | 0.40 20.02 [5] A. Stolcke, E. Shriberg, D. Hakkaniéf, and G. T,

“Modeling the prosody of hidden events for improved
word recognition,” inProc. EUROSPEECHvol. 1,
(Budapest), pp. 307-310, Sept. 1999.

E. Shriberg, R. Bates, and A. Stolcke, “A prosody-
only decision-tree model for disfluency detection,” in

Table 7: WER and RWER on test data for multiword approach
(%)

The results in Table 6 indicate that the multiword approach [6]
to modeling repetitions in spontaneous speech is beneficial. )
The improvement in the WER and RWER is on the best Proc;3§g_l1\;(§§é3ESEeC{-| 18’;\7/0" 5, (Rhodes, Greece),
trained acoustic and language models. Tabe 8 shows the per- Pp- » € B e
formance on normal and back-channel repetitions. In the ex-L7] A. Stolcke and E. Shriberg, “Statistical language mod-

periments, only ‘yeah yeah’ and ‘right right’ spoken in isola- eling for speech disfluencies,” Proceedings ICASSP
tion were considered as back-channel repetition pairs and all Vol 1, (Atlanta, GA), pp. 405-409, 1996.
the other repetitions constitute normal responses. [8] V. Liu, E. Shriberg, and A. Stolcke, “Automatic dis-
fluency identification in conversational speech using
7. CONCLUSIONS AND FUTURE WORK multiple knowledge sources,” ifProc. Eurospeech

(Geneva), pp. 957-960, Sept. 2003.

In this paper, we presented an investigation into the nature 01;[|9] E. C. Matthew Lease and M. Johnson, “Parsing and its

d|sfluerjt_ repetitions and their impact on spontaneous speec applications for conversational speech,Firoceedings
recognition. In particular we addressed the problem from ICASSP 2005

the point of reducing RWER and hence the absolute WER ’ ) . ) o

in ASR systems by employing different training procedured10] A. Black, K. Lenzo, and V. Pagel, “Issues in building
for language and acoustic models. We have also addressed generalletter to sound rules,” #nd ESCA Workshop on
the problem of detecting repetitions from acoustic-prosodic ~ SPeech Synthesiglenolan Caves, Australia), pp. 77—
features by building GMM classifiers. An elaborate analysis 80, 1998.

of the RWER for various configurations of the acoustic and11] A. Stolcke, “SRILM - An extensible language mod-
language model was presented. A multiword training pro- eling toolkit,” in Proc. International Conference on
cedure taking into account the most frequent function word Spoken Language Processjngpl. 2, (Denver, CO),
repetitions in the training data provided an absolute RWER pp. 901-904, Sept. 2002.
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[12] B. Pellom, “Sonic: The university of colorado contin-
uous speech recognizer,” tech. rep., University of Col-
orado, Boulder, Colorado, 2001.

[13] G. Saon and M. Padmanabhan, “Data-driven approach
to designing compound words for continuous speech
recognition,”IEEE Transactions on Speech and Audio
Processingvol. 9, pp. 327-332, May 2001.



