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ABSTRACT 

This paper investigates the mathematical framework of the 
multiresolution approach under the assumption that the 
sequence knots are irregularly spaced. The study is based 
on the construction of nested non-uniform quadratic spline 
multiresolution spaces. We focus on the construction of 
suitable quadratic orthonormal spline scaling and wavelet 
bases. If no more additional conditions than 
multiresolution ones are imposed, the orthonormal basis of 
the quadratic spline space is represented, on each bounded 
interval of the sequence, by three discontinuous scaling 
functions. Therefore, the quadratic spline wavelet basis, 
closely related to the scaling basis, is also defined by a set 
of discontinuous wavelet functions on each bounded 
interval of the sequence. We show that a judicious 
orthonormalization procedure of the basic quadratic spline 
space basis allows to (i) satisfying the continuity conditions 
of the scaling and wavelet functions, (ii) reducing the 
number of the wavelet functions to only one function, and 
(iii) reducing the complexity of the filter bank. 

1. INTRODUCTION 

Since many years, the multiresolution analysis method has 
been intensively studied see e.g. ([1], [2], [3], [4]). The 
scaling and wavelet bases, provided in the literature, are 
constructed under the assumptions that the knots of the 
infinite sequence are regularly spaced. However for reasons 
related to the experiment (e.g. presence of clouds during 
the measurement of the brightness of a star) or for 
treatment facilities, signals can not be sampled at regularly 
spaced moments. Hence the traditional approaches such as 
the multiresolution analysis, based on regularly sampled 
data, cannot be used any more just as they are. Our 
presentation focuses on the multiresolution analysis 
adapted to non-equally spaced data, located at known 
knots, thus resulting in a more general definition of the 
scaling and wavelet functions. Relatively little works have 
been published about these functions on arbitrary non-
uniform spacing knots ([8]). The scaling functions 
presented in this paper are constructed from the quadratic 
non-uniform B-spline functions. This choice is directly 

related to the adaptation of the B-splines (whatever the 
spline degree), to any bounded interval when imposing 
multiplicities at each knot of the sequence ([5]). On a non-
equally spaced knots sequence, we show that the spline 
scaling and wavelet functions cannot be obtained as 
traditionally by translations or dilatations of one prototype 
function. The main objective of this paper is to construct 
suitable orthonormal quadratic scaling and wavelet bases 
within the framework of irregularly spaced data yielding 
therefore to an easy multiresolution structure. 
The outline of this paper is as follows. Section 2 
summarizes some necessary background material 
concerning the quadratic non-uniform basic spline space. 
Section 3 introduces the multiresolution analysis concepts 
yielding therefore to the construction of the approximation 
and detail subspaces. The new orthonormalization 
procedure of the scaling and wavelet bases is presented in 
section 4. Section 5 provides the orthogonal decomposition 
algorithm. Some implementation results are then provided. 

2. BASIC QUADRATIC SPLINE SPACE 

Before presenting the multiresolution analysis adapted to 
irregularly spaced data, we briefly introduce the basic 
definitions necessary for our later developments. We 
assume that the continuous given signal is represented by 
its samples located at irregularity positions. These known 
positions are represented by the following sequence of 
knots, ...... 110 <<<<< +ii tttt  organized in an increasing 
order. The quadratic non-uniform B-spline function is 
represented by a piecewise polynomial of degree two. In 
this paper, a multiplicity of order 3  is imposed on each 
knot of the sequence (). It has been shown that, for this 
particular configuration of knots, only three non-uniform 
B-spline functions [ ] [ ] [ ]{ }2

,,2
2

,,1
2

,,0 111
,,

+++ iiiiii tttttt BBB , defined on the 
bounded interval [ ]1, +ii tt , generates a basis for the basic 
quadratic spline space ([5]). Thus, the quadratic spline 
function, denoted )(tf , is defined as a linear combination 
of three quadratic non-uniform B-spline functions: 
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=
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for 1+≤≤ ii ttt  and all Ni∈   (1) 
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where the expressions of the non-uniform B-spline 
functions are given as follows: 
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The basic quadratic spline space, denoted 0V , is spanned 
by the piecewise polynomials of degree two: 
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3. MULTIRESOLUTION ANALYSIS CONCEPTS 

The construction of orthonormal quadratic spline scaling 
and wavelet basis starts with the specification of the 
underlying multiresolution spaces. Let us first consider an 
infinite sequence 0S  of non-equally spaced knots organized 
in an increasing order ( ...... 110 <<<<< +ii tttt ). This 
sequence is considered as the finest sequence. At a given 
resolution level j , we define the bounded interval ijI , ,:as 
follows: 

[ [
)1(22, ,

+
=

iiij jj ttI  (3) 

At resolution level j , the corresponding sequence jS  is 
thus built from the union of bounded subintervals ijI ,  as 
defined below: 

U
∞

=
=

0 ,i ijj IS  with Ni∈  (4) 

Going from the resolution level 1−j  to the resolution level 
j  (coarse resolution) consists in removing one knot out of 

two in the sequence 1−jS . Hence, we obtain obviously a set 
of embedded sub-sequences as follows: 

....... 110 jj SSSS ⊃⊃⊃⊃ −  (5) 
A multiresolution analysis consists in approximating a 
given signal, denoted )(ts , at different resolution levels j . 
Calssicaly, in order to minimize the approximation error 
( )()( tsts j− ), the approximation of the signal )(ts  at 
resolution level j  (i.e. )(ts j ) is defined as its orthogonal 
projection on the subspace on which it belongs. This 
subspace is denoted jV  and known also as quadratic spline 
scaling subspace. Remember that functions belonging to 
the basic spline space 0V  are piecewise polynomials of 
degree two over bounded intervals iI ,0 . Therefore, 
functions defined on ijI ,  are obviously quadratic piecewise 
polynomials. Moreover, the embedded sub-sequence 
structure imposes imbrications of the quadratic spline 
scaling subspaces as follows: 

....... 110 jj VVVV ⊃⊃⊃⊃ −  (6) 
The orthogonal complement of the subspace jV  in the 
subspace 1−jV  is introduced to carry the necessary details 
improving the signal approximation in the subspace 1−jV . 
Therefore, the orthogonal projection of the signal )(ts  on 
the subspace jV  is decomposed as the sum of orthogonal 
projections of )(ts  on jV  and on the complement subspace 
denoted jW . This subspace jW  is known as the quadratic 
spline wavelet subspace, at resolution level j . This leads 

to the following traditional relation: 

jjj WVV ⊕=−1  (7) 

4. ORTHONORMAL QUADRATIC SPLINE 
SCALING AND WAVELET BASES 

In order to satisfy the significant conditions imposed by the 
multiresolution approach, we propose to study the 
orthonormalization of the quadratic non-uniform spline 
basis of the basic spline space 0V . Hence the basic spline 
space 0V  can also be defined as : 







 ∈== ∑      )()( : 2

2
0 LctBctffV k

k
kk

 (8) 

where the set { })(2 tBk  represents the functions of the 
orthonormal spline scaling basis which will be constructed 
by a new orthonormalization procedure improving the 
features of the previous procedure described in [7]. 
Let us recall that in the previous procedure, the classical 
Gram-Schmidt method has been applied to orthonormalize 
the quadratic spline basis on each bounded interval without 
considering any relationship between the adjacent intervals. 
Therefore, the scaling functions carried out on each interval 
are not continuous at each end-point of consecutive 
intervals. Moreover the spline wavelet functions are neither 
continuous, on the bounded interval on which they belong, 
nor at the end-point of adjacent intervals. However the 
continuity feature of the functions represents an important 
problem for some applications. 
In this paper, we focus on the construction of scaling and 
wavelet functions satisfying continuity conditions between 
consecutive bounded intervals. The proposed 
orthonormalization procedure is quite different from the 
previous one. The new procedure is described in such away 
that its generalization to any degree of the spline function 
remains obvious. 
 
4.1. Quadratic orthonormal spline scaling basis 
We propose to divide the problem into two parts. Initially, 
we start by dealing the problem of the spline basis 
orthogonalization. Then, we study the normalization 
problem under the same constraints of continuity. The 
proposed approach is closely related to the features of the 
basic spline basis elements defined in section 1. In fact, the 
two spline basis functions ( )(),( 2

,2
2
,0 ,,

tBtB
ijij II ), defined on 

any bounded interval ],[ 1+ii tt , are naturally symmetrical 
compared to the point 2)( 1++= iis ttt

i
. While the third 

function )(2
,1 ,

tB
ijI  is its self symmetric compared to the point 

is
t . Based on these features, we propose to shift vertically 
each non-uniform B-spline function belonging to the same 
bounded interval, using shifting parameters denoted { }2

, ,ijIks  
as follows. 

)()( 2

,,0
2

,,0
2

,,0 tBstb
ijIijIijI += ; )()( 2

,,1
2

,,1
2

,,1 tBstb
ijIijIijI += ; 
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and )()( 2

,,2
2

,,2
2

,,2 tBstb
ijIijIijI +=  (9) 

The parameters 2

,, ijIks  ( 2,1,0=k ) are computed in order to 
guarantee, on any bounded interval ijI ,  the orthogonality 
conditions of the functions as given bellow: 

0)(),( 2
,,

2
,, =tbtb

ijIlijIk  

for lk ≠ ; 2,1,0=k , 2,1,0=l  and all Ni∈  (10) 
We show that the shifting parameters computed according 
to equation (10) are constant values on each bounded 
intervals and at any resolution level j . Moreover 

2

,,2
2

,,0 ijIijI ss = . So, the parameters are rename as follows: 
22

, , kIk ss
ij
=  for 1,0 =k  and all Ni∈  

It is easy to show that the function )(2
,1 ,

tb
ijI  ensures 

naturally the continuity between consecutive intervals 
since: 

2
112

2

,,12

2

,,1 )()( stbtb
iiijIiiijI ==
+

 for all Ni∈  (11) 

If we swap between the two functions )(2

,,0 tb
ijI  and )(2

,,2 tb
ijI  

from one interval to another one, we thus construct two 
new continuous functions on the entire sequence. Indeed, at 
the end-points of the intervals ijI ,  and 1, +ijI , one can easily 
check that: 

2
012

2

1,,212

2

,,0 1)()( stbtb
iiijIiiijI +==
+++

 for all Ni∈  (12) 

The proposed orthogonal quadratic spline scaling basis of 
the approximation space jV  is therefore given as follows: 
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Since the orthogonal conditions are satisfied on disjoint 
intervals of the knots sequence, it easy to check that the 
orthogonal conditions of the scaling functions )(2

, tkjϕ  are 
ensured on the global sequence jS . 
The second step consists in normalizing each scaling 
function )(2

, tkjϕ  on the global knots sequence jS  
maintaining therefore the continuity of each scaling 
function. The orthonormal spline scaling basis, of the 
approximation space jV , is then represented by the 
following three scaling functions: 

2,
2

2,
2

2,1,
2

1,
2

1,0,
2

0,
2

0,
)()(;)()(;)()( jjjjjjjjj

NttNttNtt ϕϕϕϕϕϕ ===  

where kjN ,  are the normalization parameters at resolution 
level j . 

 
Figure 1: Orthonormal quadratic spline scaling basis at 

1,0=j  
For writing convenience reasons in our later developments, 
we introduce new normalization factors kjn , . The basis 
functions are renamed as follows: 

0,
2

,,0
2

,,0 )()( jijIijI ntbtB = ; 1,
2

,,1
2

,,1 )()( jijIijI ntbtB = , and 

2,
2

,,2
2

,,2 )()( jijIijI ntbtB =  

The new orthonormalization factors are introduced 
according to the parity index i  of the bounded interval ijI ,  
as follows: 

if i  is even: 0,0, j
i
j Nn = , 1,1, j

i
j Nn = , 2,2, j

i
j Nn =  

if i  is odd: 2,0, j
i
j Nn = , 1,1, j

i
j Nn = , 0,2, j

i
j Nn = . 

Figure 1 presents the quadratic spline bases of the 
respective scaling spaces 0V  and 1V  on the initial finest 
knots sequence [ ].8,7,3,2,0 432100 ====== tttttS  with the 
following shifting parameters 612.02

0 −=s  and 373.02
1 −=s  

as previously described. The dashed lines correspond to the 
function )(2

1,
t

j
ϕ , the solid lines concern the function 

)(2

2,
t

j
ϕ , and the marked lines (+) represent the function 

)(2

0,
t

j
ϕ  at each resolution levels. 
 
4.2. Quadratic orthonormal spline wavelet basis 
We concentrate now on the construction of the spline 
wavelet basis. Since the approximation subspace 0V  
contains 1W , any wavelet function 1

2
, )(

,1
Wt

iIk ∈ψ , can be 
decomposed, on each bounded interval iI ,1 , using the basis 
of the approximation space 0V  as follows: 

∑ ∑+

= =
=

12

2

2

0

2
,

,
,1

2
, )()(

,0,1

i

im n In
nm

kIk tBgt
ii

ψ , for all Ni∈∀  (14) 
The wavelet function is parameterized by six coefficients 
{ }nm

kg ,
,1  which must be computed. In previous work ([7]). 

the proposed solution suggests to build an orthonormal 
basis composed of 3  wavelet functions yielding the 
computation of 18 coefficients. However, the 
computational procedure becomes too heavy when the 
degree of the spline function increases. 
In this present paper, we propose to process on only one 
wavelet function { }Nit

iI ∈ ,)(2
,1 ,1

ψ , on each bounded interval 
iI ,1 . According to the multiresolution analysis, the wavelet 

functions must satisfy the following traditional conditions: 
(i) the spline scaling subspace is orthogonal to the wavelet 
subspace, for any resolution level ( 1≥j ): 

0)(),( 2
,

2
,,1 ,,

=tBt
ijij IkIψ  for 2,1,0=k , Ni∈∀   (15) 

(ii) the orthogonality of the wavelet basis at all and cross 
scales: 

ipjlII tt
plij

δδψψ =)(),( 1
,1

1
,1 ,,

 

for Ni∈ , Np∈ , 1≥j , 1≥l  (16) 
Some additional conditions are imposed to the wavelet 
functions in order to: 
(iii) ensuring the 0C  wavelet function regularity inside 
each bounded interval summarized by the following 
relation: 

∑∑ =

+

= −−−−
=

2

0 2

2
,

,12
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2
,
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for all Nk∈ , Ni∈ , and 1≥j  (17) 
(iv) guaranteeing the continuity of each wavelet function 
between adjacent bounded intervals, results in: 

)()(
)1(2

2
,12

2
,1 1,, ++

=
iIiI jijjij

tt ψψ  for all Ni∈  and all 1≥j  (18) 

The continuity between two adjacent intervals is ensured 
(condition (iv)), by means of one selected parameter (e.g. 
the coefficient ii nm

jg ,
1, ) which is updated when going from 

one bounded interval to the adjacent one. At any resolution 
level j , the initial value of the selected coefficient is set to 
be equal to a constant value which is evaluated in such 
away that the wavelet function is normalized on its all 
definition domain jS . The constructed spline wavelet 
function, belonging to the detail subspace jW , is therefore 
given as follows: 

∑∞

=
=

0

2
,1

2 )()(
,i Ij tt
ij

ψψ  for 1≥j  (19) 

Figure 2 presents the quadratic spline wavelet functions at 
two resolution levels 1=j  (graph (a)) and 2=j  (graph 
(b)) on the previous initial finest knots sequence 0S . 

 
Figure 2 Quadratic spline wavelet functions at 2,1=j  

5. ORTHOGONAL DECOMPOSITION 
ALGORITHM 

This section concerns the orthogonal decomposition of any 
signal )(ts  represented by its discrete samples irregularly 
spaced. We assume that this signal belongs to the basic 
spline space 0V . The approximation of the signal )(ts  at 
resolution level j , on each bounded interval ijI , , is 
denoted )(

,
ts

ijI . It belongs to the spline scaling space jV . 
According to the mutiresolution concepts presented earlier, 
one can decompose any signal belonging to the spline 
space 1−jV , according to the relation jjj WVV ⊕=−1  as 
follows: 

)()()(
,,,1

1

0
trtsts

ijijnij IIn I +=∑ = +−
 for all Ni∈ , 1≥j  (20) 

Where the detail signal ( jI Wtr
ij

∈)(
,

) can be expressed 
using the spline wavelet basis, on each bounded interval, as 
follows: 

∑ +

=
=

−

12

 2

2
,11, )()(

,,1

i

im I
i
jI tdtr

mjij
ψ  for all Ni∈  and all 1≥j  (21) 

Since the signal )(
,

ts
ijI  belongs to the spline scaling space 

jV , one can decompose it using the orthonormal scaling 
basis of the corresponding space jV  as follows: 

∑ =
=

2

0

2
,, )()(

,, k Ik
i

kjI tBcts
ijij

 for all Ni∈ , and Nj∈  (22) 

Thus, the approximated signal 1)(
,1 −∈

− jI Vts
ij

 is given by the 
following relation: 
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for all Ni∈  and all 1≥j  (23) 
where the weighted coefficients { }m

kjc ,  (respectively { }i
jd 1, ) 

are given by the orthogonal projection of )(
,

ts
ijI  

(respectively )(
,

tr
ijI ) on the spline scaling subspace jV  

(respectively jW ). After some manipulations, we show that 
at any resolution level j , the set of coefficients { }m

kjc ,  are 
closely related to the coefficients { }m

kjc ,1−  by means of the 
coefficients set { }),(

)1(22

,
, +ii

kl
nj jj tth  gather into the matrix 

ijI ,
H , 

on each bounded interval ijI , , as follows: 
ijijij III ,1,, −

= cHc  (24) 

The computation of the detail coefficients at any resolution 
level j , on the interval ijI , , are also given by the 
following relation: 

ijijij III ,1,, −
= cGd  (25) 

For lack of place, we don’t give the expressions of 
ijI ,

H  
and 

ijI ,
G . We present now the implementation of the 

multiresolution approximations, in the context of 
irregularly spaced data. The orthogonal decomposition, as 
seen earlier, processes on the approximation coefficients 

ijI ,
c  at each resolution level. Therefore an initialization step 
is required to find the first coefficients set 

iI ,0
c . Remember 

that the signal to be decomposed is represented only by its 
irregularly spaced samples )( its  with 0Sti ∈ . The 
computation of these first coefficients needs to have the 
continuous signal )(ts . We assume that this signal belongs 
to the basic spline space 0V  as introduced in section 1: 

{ }  ,  all  for );()( : 2,1

2

0

2
,,0 ,0,0,0

LaNi,tt ttBatffV
iii Ikiii IkIk ∈∈≤≤== +=∑  

Consequently, we propose to interpolate the discrete signal, 
on each bounded interval iI ,0 , using the non-uniform 
spline basis { }2

, ,0 iIkB  of the basic space 0V  according to the 
following relation: 

∑ =
=

2

0

2
,, )()(

,0,0,0 k IkIkI tBats
iii

 for all Ni∈  

Recall that the basic spline space 0V  is also represented by 
the orthonormal scaling spline basis { })(2

, ,0
t

iIk
ϕ . The 

orthogonal projection of the signal )(
,0

ts
iI , on the basic 

spline space 0V  allows the computation of the 
approximation coefficients 

iI ,0
c : 

)(),()(),( 2
,

2
,

2
,,0 ,0,0,0,0

tBtBtBtsc
iiii IkIkIkI

i
k =  for 2,1,0=k   

and all Ni∈ . The coefficients 
iI ,0

c  are thus provided as 
follows: 

∑=
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2
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2
,

2
,

2
,,,0 )(),()(),(

,0,0,0,0,0l IkIkIkIlIl
i
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iiiii

 

for 2,1,0=k  and all Ni∈  (26) 
The weighted coefficients values { }

iIka
,0,  have been 

extensively studied in previous works (see [7]). On each 
bounded iI ,0 , we propose to use the following values: 

)(
,0,0 iI tsa
i
= , 2)()()( 1,1 ,0 iiiiI tttstsa

i
−′+= + , )( 1,2 ,0 += iI tsa

i
 

The coefficient 
iIa

,0,1  requires the first derivative value of 
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the signal )(ts  evaluated at the knot it . Let us point out 
that the quality of the multiresolution approach depends 
closely on the calculation method from which the first 
derivative )( its′  is evaluated. We propose to construct a 
quadratic polynomial which passes through three 
consecutive samples )( 1−its , )( its , and )( 1+its . It is then 
easy to deduce the first derivative value on the knot it . The 
implementation results are presented by figure 3. 
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Figure 3 Orthogonal decomposition; ‘o’ irregularly discrete 

samples, ‘*’ approximated signals, ‘-’ residual signals 
The original signal, given by the graph (a), is represented 
by its 65 samples irregularly spaced marked by the symbol 
‘o’. So that we can interpret the results, we present the 
decomposition at resolution levels 4,3,2=j  corresponding 

respectively to the graphs (b), (c) and (d).The discrete 
approximated signals are represented by the symbol ‘*’. 
The detail signals are represented by solid lines. In this 
example the residual signals, at each resolution level, turn 
out to be very small in magnitude. The multiresolution 
analysis becomes more interesting for spline function 
degree greater than one (i.e. linear case). Indeed, for the 
linear case one can imagine easily that the residual signals 
becomes more important because the approximated signal 
is given by connecting two consecutive points by a line. 

6. CONCLUSION 

This paper explored the underlying mathematical 
framework of the one-dimensional multiresolution analysis 
based on non-equally spaced knots sequence. The 
specifications of the multiresolution spaces involve the 
construction of orthonormal non-uniform quadratic spline 
scaling and wavelet bases. We have shown that the 
orthonormalization procedure of the spline basis of the 
basic spline space affects the scaling and wavelet functions. 
We have proposed a new orthonormalization procedure 
which (i) reduces the number of spline wavelet functions to 
only one wavelet function, (ii) satisfies the continuity 
conditions of the scaling and wavelet functions on the 
considered knots sequence. Moreover the orthogonal 
decomposition is implemented using filter banks less 
complicated than the filter banks provided by the previous 
orthonormalization procedure. These first results lead us to 
investigate, in future work, the construction of spline 
scaling and wavelet basis for higher degrees of the 
piecewise polynomials. 
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