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ABSTRACT
In this paper, we present a mathematical derivation

demonstrating that feature representation obtained by us-
ing the Independent Component Analysis (ICA) is an ef-
fective representation for non-Gaussian signals when being
both clean and corrupted by Gaussian noise. Our findings
are experimentally demonstrated by employing the ICA for
speech feature extraction; specifically, the ICA is used to
transform the logarithm filter-bank-energies (instead of the
DCT which provides MFCC features). The evaluation is pre-
sented for a GMM-based speaker identification task on the
TIMIT database for clean speech and speech corrupted by
white noise. The effectiveness of ICA is analysed individu-
ally for signals corresponding to each phoneme. The experi-
mental results show that the ICA-based features can provide
significantly better performance than traditional MFCCs and
PCA-based features in both clean and noisy speech.

1. INTRODUCTION

In current speech and speaker recognition systems, mel-
frequency cepstral coefficients (MFCCs) are the most widely
used representation of speech. However, there has been
much effort to find a better representation of speech signals.

The Independent Component Analysis (ICA), which has
been introduced in the context of blind signal separation, lin-
early transforms data to be statistically as independent from
each other as possible. The ICA has recently been applied
also for speech feature extraction. The authors in [1] used
ICA in the time-domain to replace the Fourier transform. The
authors in [2] showed that ICA applied in the log spectral do-
main provides features similar to cepstral coefficients. In [3]
[4] the ICA was used on the log filter-bank-energy feature
vector for speech recognition. In the above research, there
was little attention devoted to the motivation for the use of
ICA for feature extraction – indeed, this has usually been ad-
dressed only by stating the ability of the ICA to exploit not
only the second-order but higher-order statistics. Besides,
the experimental evaluations have been demonstrated only
on clean speech with usually only little improvement over
the traditional MFCCs.

In this paper, we present a mathematical derivation that
shows that ICA-based independent features are an effec-
tive representation of non-Gaussian signals when being both
clean and corrupted by Gaussian white noise. The deriva-
tion is based on calculating a mismatch between the density
distribution of the original clean data and observed data rep-
resented by our model. In order to experimentally demon-
strate our findings, we employed the ICA in the log mel-
scaled spectral domain for speech feature extraction, i.e. ICA

replaces the traditionally used DCT in the MFCCs calcula-
tion. The experiments are performed for a speaker identifi-
cation task on the TIMIT database using the Gaussian Mix-
ture model (GMM). The performance is analysed for clean
speech and speech corrupted by white noise. The experi-
ments are first performed with using all signal-frames and
then the effectiveness of ICA on signals corresponding to
individual phonemes is explored. The experimental results
show that the ICA-based features provide significantly bet-
ter performance than the traditional MFCCs and PCA-based
features for both clean and noisy speech when using signal-
frames corresponding to vowel and semi-vowel categories.
For instance, when using signal-frames corresponding to a
subset of vowels, the best speaker-identification accuracy for
speech corrupted by white noise at 10dB obtained by the
ICA-based features was 50%, while the traditional MFCCs
gave only 30% accuracy.

2. THE EFFECTIVENESS OF ICA-BASED
REPRESENTATION

In this section we demonstrate that the ICA-based fea-
tures are an effective representation for non-Gaussian sig-
nals.

In standard signal representation, the input signal is pro-
cessed within a linear framework, which can be modelled in
terms of a linear superposition of basis functions φi mixed
with weights ai which will be used as features. If we assume
some additive Gaussian white noise v, the signal model will
be:

x = ∑
i

aiφi +v (1)

The probability density function of the signal x from a partic-
ular choice of a is given by p(x|Φ,a) = pv(x−Φa), where
pv(x−Φa) is the density of noise evaluated at x−Φa. Note
that for clean signal, the noise can be treated as Gaussian dis-
tribution with zero variance, hence the distribution function
would be a delta function.

The effectiveness of the representation can be analysed
by assessing how well the density distribution of noisy signal
represented by the model p(x|Φ) matches the density distri-
bution p∗(x) of the original clean signal. As a measure of the
mismatch, we apply Bhattacharyya distance (BD) between
the two distributions (the distance is zero when the two dis-
tributions are identical):

BD = − ln
∫ √

p∗(x)p(x|Φ)dx = − ln〈
√

p(x|Φ)
p∗(x)

〉 (2)
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where 〈〉 denotes expectation. By Jensen’s inequality
f (E(y))≤E( f (y)), and because p∗(x) is fixed, so minimiza-
tion of the distance equals to the maximization of expectation
〈ln p(x|Φ)〉:

min(BD) ⇔ min
Φ

〈−1
2

ln
p(x|Φ)
p∗(x)

〉 ⇔ max
Φ

〈ln p(x|Φ)〉 (3)

where p(x|Φ) =
∫

p(x|Φ,a)p(a). Unfortunately, the evalu-
ation of p(x|Φ) requires integrating over all possible values
of a, which is in general intractable. In order to simplify
the calculation, assuming that the function inside the integral
(i.e. p(x|Φ,a)p(a)) has a maximum, then the integral may
be approximated by evaluating the function at its maximum
[5]. Therefore, our goal then becomes:

min(BD) ⇔ max
Φ

〈ln
∫

p(x|Φ,a)p(a)〉
⇔ max

Φ
(max

a
〈ln(p(x|Φ,a)p(a))〉) (4)

where the term 〈ln(p(x|Φ,a)p(a))〉 = 〈ln p(x|Φ,a)〉 +
〈ln p(a)〉.

Let us first consider the term 〈ln p(a)〉. According to
[6], the maximization problem can be solved within the blind
framework. One possible density function approximation of
coefficients ai can be constructed in the following way:

p̃+(ai) = exp(α1 − log(coshai)) (5)

p̃−(ai) = exp(α2 + log(coshai)−a2
i /2) (6)

where α1,α2 are constants and p̃+ and p̃− is a supergaus-
sian and subgaussian density, respectively. Let us denote
E{G(a)} = 〈G(a)〉 = 〈ln p(a)〉. In basic ICA model, the
original observations can be expressed by the linear function
of some independent components, i.e. x∗ = Ms, where s are
the independent components which are assumed to be fixed
in our case, M is a mixing matrix. By our model x∗ = Φa,
so we have a = Φ−1Ms. Let us denote Φ−1M by q, and
E{G(a)} by H(q). Without loss of generality, it is enough
to analyze the function’s stability of the point q = e1, where
e1 = (1,0, · · · ,0). According to [6], the Taylor extension by
making a small perturbation ε = (ε1,ε2, · · ·) at point e1 can
be approximated in the form of:

H(e1 + ε) ≈ H(e1)+
1
2

E{g′(s1)− s1g(s1)}∑
i>1

ε2
i (7)

where g and g′ is the first and second derivative of G. The
use of Eq.5 and Eq.6 guarantee that E{g′(s1)− s1g(s1)}< 0.
Therefore, Eq.7 implies that the maximization of 〈ln p(a)〉
will finally converge at the point where the components of a
are independent.

Now, we consider the term 〈ln p(x|Φ,a)〉. Similar proce-
dure as above leads to the approximation of 〈ln p(x|Φ,a)〉 in
the form of Eq.7. As shown earlier, p(x|Φ,a) = pv(x−Φa),
where pv is the density of noise. Considering a Gaus-
sian noise, it can easily be shown that the term E{g′(s1)−
s1g(s1)} = 0. So, there is no extremum at all for the term
〈ln p(x|Φ,a)〉.

Based on the above, we can draw the conclusion that for
our model, the function 〈ln(p(x|Φ,a)p(a))〉 has a maximum
at the point where the coefficients a of the basis functions Φ

are independent. As such, the minimum mismatch between
the distribution of clean non-Gaussian signal and corrupted
by a Gaussian noise is achieved by independent representa-
tion a. The basis functions Φ, whose coefficients are inde-
pendent from each other, can be obtained by optimization of
a criteria, such as, kurtosis [7], negentropy [6] or mutual in-
formation [8]; these are referred to as ICA algorithms.

3. SPEECH FEATURE EXTRACTION: ICA-BASED
TRANSFORMATION OF LOG

FILTER-BANK-ENERGIES

The theoretical results presented in the previous section
could be demonstrated by employment of the ICA in vari-
ous stages of speech feature extraction. This section briefly
describes the employment we adopted in this paper.

A block diagram of a typical frame-based speech feature
extraction is depicted in Figure 1. This consists of dividing
the speech signal into frames, computing the short-term mag-
nitude spectra and estimating the envelope of the spectra by
using mel-scaled filter-bank analysis. This is usually com-
pressed by logarithm function, giving a vector of logarithm
filter-bank-energies (logFBEs). Then, a linear transforma-
tion is usually applied in order to decorrelate the vector of
logFBEs.

Input Speech
Signal

� Preprocessing,
Windowing

� FFT � Mel filter-banks

�

log(||2)�Transformation�Feature Selection�Speech
Features

Figure 1: Block diagram of a typical frame-based speech fea-
ture extraction process.

3.1 ICA-based transformation of log filter-bank-
energies

Traditionally, the discrete cosine transform (DCT) is ap-
plied in the transformation step in the Figure 1, producing
mel-frequency cepstral coefficients (MFCCs). Motivated by
the theoretical results presented in Section 2, we explore the
use of ICA as a replacement of DCT. To extract independent
feature vectors, ICA algorithm is applied to a set of noise-
free training logFBE vectors x to obtain independent features
a and the unmixing matrix W. The matrix W is the inverse
of mixing matrix Φ, i.e. the columns of Φ are the ICA ba-
sis functions. The trained unmixing matrix W is applied on
each frame logFBE feature vector x of the testing data to
yield the features used for recognition, i.e.,

a = W ·x (8)

Since the input signal x is usually pre-whitened by PCA al-
gorithm prior to performing the ICA algorithm, the matrix
W in Eq.8 consists of two matrices (i.e. PCA and ICA ma-
trix).

Note that Gaussian noise added to a signal-frame in
the time-domain will not be equivalent to Gaussian in the
logFBE vector. However, for a given filter-bank channel the
logFBEs over frame-time are, based on the central limit the-
orem, distributed close to Gaussian.
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3.2 Feature Selection

The feature representation of signal may be based on us-
ing only a subset of features, i.e. the dimension of the trans-
formed feature vector a (obtained by Eq.8) may be lower
than original vector x. Two feature selection methods were
used.

3.2.1 Based on the variance described by PCA basis

Typically, the observed data are whitened by PCA before
the application of ICA training algorithm. As such, the fea-
ture selection can be performed based on the amount of vari-
ance reflected by the eigenvalues, which is a standard method
used in data analysis.

3.2.2 Based on the L2-norm of ICA basis

The feature selection can also be based on the L2-norm
of the ICA basis vectors. The L2-norm of a basis vector ex-
presses the contribution of the basis to the speech signals and
by selecting those basis vectors with high L2-norm, the re-
construction mean squared error will be minimized. Figure 2
shows the ICA basis vectors ordered based on the L2-norm.
The value of the norm of each basis is depicted on Figure 3.
It can be seen in Figure 2 that, unlike the DCT basis, many
of the ICA basis are localized.

0 10 20
0.5

1

1.5

2

0 10 20
−1.5

−1

−0.5

0

0 10 20
−0.5

0

0.5

1

0 10 20
−0.5

0

0.5

1

0 10 20
−0.5

0

0.5

1

0 10 20
−1

−0.5

0

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−1

−0.5

0

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

1

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.2

0

0.2

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.2

0

0.2

Figure 2: ICA basis functions ordered based on the L2 norm
(by rows from left to right).
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Figure 3: The L2 norm of the ICA basis functions.

4. EXPERIMENTS AND RESULTS

The experimental evaluation of the ICA-based features
was performed for a speaker identification task.

4.1 Experimental set-up

The experiments were performed on the TIMIT database,
downsampled to 8kHz. The 100 speakers (consisting of 64
male and 36 female) from the test subset were selected. The
ICA transformation matrix was estimated on the clean speech
by using the JADE algorithm [7]. The training set consisted
of eight sentences (‘si’ and ‘sx’) for each speaker and testing
was performed using two sentences (‘sa’).

The speech signal was divided into frames of 30 ms with
an overlap of 10 ms between frames. Both preemphasis
and Hamming window were applied to each frame. For
each frame, Mel-scaled filter bank analysis with 24 chan-
nels was performed. These were transformed by using the
DCT to obtain the traditional MFCC features and by using
the PCA-based and ICA-based transformation. In each case,
the final feature vector consisted of 18 components with first-
order deltas resulting in a 36-component feature vector. The
speaker recognition system is based on 256 mixtures Gaus-
sian mixture modelling (GMM), which was constructed us-
ing the HTK software [9]. The GMM for each speaker was
obtained by using the MAP adaptation of a general speech
model, which was obtained from the training data from all
speakers. For recognition, the testing set was corrupted by
Gaussian white noise at global SNR equal to 20dB and 10dB,
respectively.

4.2 Experimental results

First experiments were performed by using features ob-
tained from all the frames of the signal. The experimental
results for clean speech and speech corrupted by white noise
are presented in Table 1. The results obtained with the ICA-
based features selected based on the norm of the ICA basis
are presented (these results differed by a maximum of 0.5%
to those selected based on the PCA eigenvalues). It can be
seen that in the case of clean speech, the ICA- and PCA-
based features performed similarly; they both obtained bet-
ter recognition accuracy than using the MFCCs. In the case
of noisy speech, the ICA-based features well outperformed
both the MFCCs and PCA features.

Table 1: Speaker-identification accuracy obtained by using
MFCC, PCA- and ICA-based features for clean speech and
speech corrupted by white noise at various SNRs when using
all signal-frames.

Speech type Features
SNR [dB] MFCC PCA ICA

clean 95.5 99.0 98.0
20 57.5 59.5 63.0
10 11.0 8.5 16.0

Next experiments were performed to explore the ef-
fectiveness of ICA on signals corresponding to individual
phonemes, i.e. the speaker-identification is based on us-
ing only the signal-frames corresponding to each individ-
ual phoneme. The results are presented in Table 2 (note
that some phonemes occurring rarely in the data are not in-
cluded). Let us first analyse the results for clean speech. As
can be seen from Table 2, all the feature representations pro-
vided similar performance when using stops and fricatives.
On the other side, the ICA features gave significant improve-
ment (both over the MFCCs and PCA) for phonemes that
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Table 2: Speaker-identification accuracy obtained by using signal-frames corresponding to each individual phoneme. Clean
speech and speech corrupted by white noise at SNR=10dB.

Phoneme Clean Speech Noisy Speech
category label example MFCC PCA ICA MFCC PCA ICA
Stops t top 18 22 15 1.7 1.7 5

dx butter 18.4 22 23 3 4 8
k kick 14 15 16 3 2 1
g gag 8 12 14 4 1 2

gcl (g closure) 43 43 42 3 1 3
kcl (k closure) 40 48 51 1 0 4

Nasals m mom 24 28 33 4 2 4
n non 60.6 69 65 1 5 7

Fricatives dh they 15 16 7 1 3 1
s sis 42 57 45 4 2 3
sh shoe 33 30 17 3 1 2

Semivowels, l led 32 46 46 8 6 12
Glides r red 49 39 51 5 8 14

y yet 24 26 20 2 4 5
hv ahead 7.5 8.6 9.7 5.4 4.3 3

Vowels iy beat 67 74 78 16 11 19
ih bit 30 43 48 4 7.4 9.6
eh bet 21.7 29 36 9.6 16 16
ae bat 52 63 66 24 22 34
ix roses 51 54 60 6 11 18
ux toot 17.4 23 34 5.4 6.5 6.5
ao about 35 39 40 8 9 14
aa cot 22.4 41 34 14 18 18
ay bite 27.6 31 31 9 12 9.2
oy boy 23.8 29 38 15 8.8 15
ow boat 32.7 36 37 15 21 19

belong to the vowel, nasal and semi-vowel categories. Now,
let us look at results for noisy speech. It can be seen that, re-
gardless the feature representation, all phonemes but vowels
(and some semivowels) provide very poor recognition per-
formance. This is probably because the signals for these
phonemes are typically of much lower energy than vowels,
and as such they are more affected by the noise. For the
vowel category, the results in Table 2 show that the ICA-
based features provide significantly higher recognition per-
formance than both MFCCs and PCA-based features. These
results confirm our theoretical derivations.

Motivated by the results of Table 2, we performed exper-
iments when using signal-frames corresponding to a subset
of specified phonemes. These experiments show the speaker
identification accuracy that could be obtained when the used
phonemes are correctly identified. The following set of 18
phonemes, ordered based on the performance they provided
on noisy speech as presented in Table 2, were chosen: {‘ae’,
‘iy’, ‘ow’, ‘aa’, ‘ix’, ‘eh’, ‘oy’, ‘ao’, ‘r’, ‘l’, ‘ih’ , ‘ay’,
‘n’, ‘ux’, ‘axr’, ‘y’, ‘w’, ‘m’}. The experiments were per-
formed by using signal-frames corresponding to phoneme
subsets from the above list which includes first n phonemes,
i.e. phoneme subset one corresponds to using the signal-
frames of ‘ae’ only, subset two includes ‘ae’ and ‘iy’, etc.
The experimental results for speech corrupted by white noise
at SNR=10dB are shown on Figure 4, in which the x-axis in-
dicates the phoneme subset used. It can be seen that the ICA-
based features significantly outperform both the MFCCs and
PCA-based features. The best recognition performance ob-

tained by ICA was 50%, while the PCA and MFCCs obtained
only 27% and 30%, respectively.
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Figure 4: Speaker-identification accuracy for speech cor-
rupted by white noise at SNR=10dB when using signal-
frames of specified sub-set of phonemes.

5. CONCLUSION

In this paper, we presented a mathematical derivation
that demonstrated that the Independent Component Anal-
ysis (ICA) provides an effective feature representation for
non-Gaussian signals when being both clean and corrupted
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by Gaussian noise. The derivation is based on calcula-
tion of a mismatch between the density distribution of the
original clean and noise-corrupted signal represented by our
model. Theoretical findings were experimentally demon-
strated by employment of the ICA for speech feature ex-
traction – specifically, we used the ICA to transform the
logarithm filter-bank-energies (i.e. the ICA replaced DCT
used in calculation of the standard MFCCs). The obtained
ICA-based features were employed in a GMM-based speaker
identification system. The experimental evaluations were
performed on the TIMIT database on clean signal and sig-
nal corrupted by white noise. We explored the effectiveness
of the ICA on signals corresponding to individual phonemes.
The experimental results showed significant improvement
by using the ICA-based features in comparison to both the
MFCCs and PCA features for both clean speech and speech
corrupted by white noise. The best identification accuracy
for speech corrupted by white noise at 10dB (by using signal-
frames corresponding to a selected subset of phonemes) was
50% when using the ICA-based features, while only 30% and
27% when using the MFCCs and PCA-based features, re-
spectively. In our future work, we will investigate the effect
of ICA-based feature representation for signals corrupted by
a non-Gaussian noise.

This work was supported by UK EPSRC grant
EP/D033659/1.
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