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ABSTRACT 
A task of lossy compression of noisy images providing ac-
cessible quality is considered. By accessible quality we 
mean minimal distortions of a compressed image with re-
spect to the corresponding noise-free image that are ob-
served for the case of optimal operation point (OOP). The 
ways of reaching OOP for noisy images are discussed. It is 
shown that this can be done in automatic mode with appro-
priate accuracy. Investigations are performed for efficient 
DCT-based AGU coder for a set of test images. We also 
demonstrate that the proposed approach can be applied to 
automatic selection of compression ratio for lossy compres-
sion of noise-free images.   

 

1. INTRODUCTION 
 

Image compression has been an area of intensive research 
in recent two decades [1]. Compression of noisy images is 
of particular interest for such applications as medical imag-
ing [2], remote sensing data coding [3,4], monitoring sys-
tems [5,6], etc. Compression of images obtained by digital 
cameras operating in poor illumination conditions is one 
more application for which original images can not be con-
sidered to be noise-free.  

Note that a lossless compression of noisy images for the 
considered applications is commonly useless. The achiev-
able compression ratio (CR) is usually only slightly larger 
than unity. Thus, lossy techniques comprise a basic tool in 
noisy image compression. 

Lossy compression being applied to noisy images has sev-
eral peculiarities. First, suppose that compression of an im-
age is performed not with the basic purpose to further trans-
fer it via communication channel with a limited bandwidth, 
but with the purpose of storing (archiving) an image keep-
ing in mind that later it will be decompressed, visualized 
and/or interpreted. Such a situation is typical, e.g., for ultra-
sound medical images, multi-temporal remote sensing data, 
etc. Then the primary goal is to provide an image quality 
appropriate for its analysis (interpreting) in future rather 
than to ensure maximal or desirable compression ratio (CR) 
(in the later case, a useful information can be inevitably lost 
in decompressed data).  

Second, a quality of compressed noisy image is worth char-
acterizing not with respect to the original one but with re-

spect to a noise-free one. Because of this, in performance 
analysis of techniques for noisy image lossy compression 
people commonly use the corresponding quantitative crite-
ria [2,5-10]. The most often used criterion derived in this 
manner is the peak signal-to-noise ratio (PSNR). Let us 
further denote it as PSNRnf. But PSNRnf can be calculated 
only for test images to which noise is artificially added. At 
the same time, for real life noisy images, PSNR for com-
pressed data can be calculated only with respect to original 
noisy images (such PSNR is below denoted as PSNRor).  

Third, alongside with decreasing a compressed image size 
compared to the original image,lossy compression performs 
noise reduction [2-9]. This is a useful phenomenon since 
noise in images does not contain any valuable information 
about sensed terrain or imaged scene. However, simultane-
ously with a noise reduction, lossy compression introduces 
distortions of useful information contained in original im-
ages. In [5,8,10] it has been demonstrated that there exists 
such a point of dependence of PSNRnf on CR (bpp) for 
which PSNRnf is maximal (this CR or bpp is called “the 
optimal operation point”). Some details proving this are 
given in Section 2.  

In practice, it is reasonable to perform lossy compression of 
noisy images with CR corresponding to OOP in order to 
provide accessible quality of compressed images. The pro-
cedure of OOP determination is to be simple and automatic.  

Note that OOP value depends upon noise and image charac-
teristics. In [5,8], recommendations how to reach OOP have 
not been given. An automatic procedure for accessing OOP 
has been proposed in our paper [10] (see Section 2 for some 
details). However, this procedure requires several iterations 
to compress and decompress an image and, generally 
speaking, it can be applied to any kind of coder. Below, in 
Section 3, we  show  how  to  access  OOP for transform 
based coders, e.g. AGU coder [11], without any iteration. 
The corresponding study is performed for the five test im-
ages corrupted by an additive Gaussian noise with three 
different variances.  

Moreover, in Section 4 we demonstrate for the same set of 
test images that the proposed automatic procedure can be 
used for noise-free image compression. Thus, the proposed 
procedure is universal in the sense that it allows one to find 
OOP when compressing noisy images and produces an ap-
propriate quality for a noise-free image compression.  
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2. PECULIARITIES OF NOISY IMAGE 
COMPRESSION  

 

Suppose we have a noise-free test image { }ijI , the same im-

age { }n
ijI  corrupted by an additive Gaussian noise with zero 

mean and variance 2σ  and the image { }d
ijI  after compress-

ing and decompressing { }n
ijI  by some coder. Then  
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Now let us consider as an example [10] the dependences of 
PSNRnf and PSNRor on bpp for the test gray-scale image Lena 
in conventional 8-bit representation for σ2=200 (see Fig. 1).  
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Figure 1 - Dependences of PSNRnf and PSNRor on bpp 

One can see that PSNRor decreases with a reduction of bpp 
(i.e., with an increase of CR) for both JPEG2000 [12] and 
AGU [11] coders. At the same time, both curves of PSNRnf 
versus bpp have maxima for bpp≈0.24 that can be considered 
as OOP. In the neighborhood of OOP the coder AGU (avail-
able from http://www.cs.tut.fi/~karen/agucoder.htm) outper-
forms JPEG2000. Recall that AGU is based on DCT in 
32x32 pixel blocks, the use of sophisticated probability mod-
els for coding of quantized DCT coefficients and on applying 
of decompressed image post-filtering for de-blocking [11]. 
We further concentrate on considering automatic procedure 
of accessing OOP just for this coder.  Note, that the proposed 
approach is applicable also to other transform based coders.   

In [10], by the joint analysis of the plots PSNRnf(bpp) and 
PSNRor(bpp) it has been established that the maximal PSNRnf  
was observed for such bpp when PSNRor became equal  to 
T=10log10(2552/σ2). In particular, for σ2=200 (see plots in 
Fig. 1) one has T=25.12dB and for PSNRor=T (when the 
curve PSNRor(bpp) crosses the level T), OOP for the curves 

PSNRnf(bpp) is observed (bpp≈0.24). Then, to calculate T one 
has to a priori know or to pre-estimate σ2. The latter can be 
done with an appropriate accuracy in automatic mode at the 
first stage. In particular, the approaches proposed in our pa-
pers [13, 14] can be used. The second stage is to automati-
cally determine bpp (CR) for OOP by analysing the curve 
PSNRor(bpp). For this purpose, in [10] it was proposed to 
obtain several values for this curve and then, by using linear 
interpolation, to determine OOP when PSNRor(bpp) crosses 
the level T. Obviously, for this purpose one needs to com-
press and decompress an image several times. Commonly, 
from 3 to 6 iterations are enough and this requires some time. 
To get around this shortcoming, in the next Section we pro-
pose a new approach for transform based coders to perform 
compression with accessing OOP at once (without any itera-
tions and without decompression at all).  

3. PROPOSED APPROACH TO AUTOMATIC 
ACCESSING OOP FOR AGU CODER 

Note that for the most of transform base coders, in particu-
lar, AGU coder, CR (and, respectively, bpp) is controlled 
(varied) by changing a quantization step QS. In fact, for this 
coder the curve PSNRor(bpp) in automatic determination of 
OOP [10] is replaced by the curve PSNRor(QS) and for OOP 
the corresponding QSOOP is obtained by interpolation of this 
curve.  

Let us demonstrate that accessing OOP for AGU coder can 
be performed simpler. Suppose that one has σ2 or its appro-
priately accurate estimate. Consider the plots of MSEnf vs. 
QSn where QS=σQSn. Such plots are presented in Figures 
2…6 for the 512x512 grey scale test images Baboon, Bar-
bara, Goldhill, Lena, Peppers. The plots have been obtained 
for three values of σ2, namely, 50, 100, and 400. The corre-
sponding MSEnf are denoted as MSE50, MSE100, MSE400.  

Note that minimal values of MSEnf for the curves MSEnf(QSn) 
correspond to OOPs. It is easy to see that such minimums are 
observed for almost all test images and for all considered 
values of σ2. The only exception is the test image Baboon 
corrupted by noise with σ2 equal to 50 and 100 (Fig. 2). 
Moreover, for all curves having minimums, these minimums 
take place for QSn≈4.5. This phenomenon allows to propose 
the following automatic procedure for accessing OOP for 
AGU coder: estimate σ2 by the method [13] or [14] → calcu-
late QSOOP=4.5σ → apply compression with QSOOP. 
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Figure 2 - Dependences MSEnf(QSn) for the test image Baboon  
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Figure 3 - Dependences MSEnf(QSn) for the test image Barbara 
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Figure 4 - Dependences MSEnf(QSn) for the test image Goldhill 
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Figure 5 - Dependences MSEnf(QSn) for the test image Lena 
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Figure 6 - Dependences MSEnf(QSn) for the test image Peppers 

 
The fact that QSOOP=4.5σ has its intuitive explanation. Recall 
that compression of noisy images performs similarly to im-
age hard threshold denoising [9,10] in the sense that zero 
values are assigned to spectral coefficients that have small 
absolute values (and basically correspond to noise) after 
quantization. Commonly it is considered that the optimal 
hard threshold is at about 2.7σ and then QS should be at 

about 5.4σ. But larger QS introduce larger distortions to spec-
tral coefficients with relatively large absolute values due to 
increase of quantizations errors. Thus, a compromise be-
tween improving of noise reduction and increasing of distor-
tions introduced with increasing of QS should exist. Luckily, 
it is observed for practically the same QSn≈4.5 irrespectively 
to an image to be compressed and noise variance.  

Consider a particular example of the test image Barbara cor-
rupted by an additive Gaussian noise with σ2=100 (this image 
is presented in Fig. 7). The compressed image with 
QSOOP=45 is shown in Fig. 8. As seen, despite the image has 
been compressed by more than 16 times, PSNRnf has in-
creased by 2.8dB. This is due to noise suppression provided 
by compression and this effect is well seen from visual com-
parison of images in Figures 7 and 8. Note that efficient de-
noising for the considered test image and noise variance pro-
duces PSNRnf ≈ 33.5 dB [15]. The difference in PSNRnf for 
compressed and denoised images is explained by quantiza-
tion errors (distortions) introduced by compression. 

 
Figure 7 - Noisy image Barbara, σ2=100, PSNRnf =28.13 dB 

 
Figure 8 - Compressed image Barbara with QSOOP=45, the obtained 

bpp=0.48, PSNRnf =30.95 dB 
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4. NOISE-FREE IMAGE COMPRESSION 

Consider a practical situation when one does not know a pri-
ori is an image (to be compressed) corrupted by a noise or it 
is noise-free. Then, applying an automatic procedure of noise 
variance evaluation (e.g.,[13] or [14]), one anyway gets some 
estimate of noise variance which commonly differs from zero 
even if an image under interest is noise-free. In other words, 
the techniques [13], [14] produce slightly biased estimations 
of variance although they are more accurate than many other 
existing methods.  

To analyze what happens in this case with a performance of 
the procedure of automatic selection of QSOOP and compres-
sion of images, we have carried out the following study. For 
the considered test images, the values of estimates of σ2 ob-
tained in [13], [14] were taken for determination of QSOOP 
and the corresponding compression was done. After this, we 
determined PSNRnf  and bpp for the compressed images (note 
that in this case PSNRnf =PSNRor). The values of PSNRnf  and 
bpp are presented in Table 1. Moreover, for the obtained bpp 
values, compression of noise-free images by JPEG2000 [12] 
was performed and the corresponding values of PSNRnf were 
calculated. They are also presented in Table 1.  

Table 1. Performance analysis for noise-free image compres-
sion by AGU and JPEG2000.  

Image Estimate 
of σ2  

bpp for 
QSOOP 

AGU, 
PSNRnf, dB 

JPEG2000, 
PSNRnf, dB 

Baboon 14.16 1.92 35.12 34.23 
Barbara 2.87 1.57 42.69 41.72 
Goldhill 2.75 1.91 42.13 41.35 

Lena 5.50 0.95 40.28 40.03 
Peppers 5.31 1.33 39.97 39.64 

 
As seen, the largest estimate of σ2 is obtained for the test im-
age Baboon that is the most textural. A bpp value for it is the 
largest. The provided PSNRnf  values are different for all im-
ages. For AGU coder they are always better than for 
JPEG2000. The most important thing is that the provided 
values of PSNRnf are within such a range (they are larger than 
35 dB for AGU and 34 dB for JPEG2000) that distortions 
introduced by compression are practically not observed visu-
ally in decompressed images. Thus, we can state that the 
proposed automatic procedure originally designed for lossy 
compression of noisy images performs appropriately well for 
compressing noise-free images.  

5. CONCLUSIONS 

An effective automatic procedure for lossy image compres-
sion accessing OOP based on automatic evaluation of noise 
variance and determination of the quantization step for trans-
form based coders is designed. It is demonstrated that this 
procedure provides a good compromise between compressed 
image quality and compression ratio. Moreover, it is also 
applicable if original images are noise-free.  
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