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ABSTRACT

A locally optimum approach for estimating a nonrandom pa-
rameter lying in some small neighborhood of a known nom-
inal value is considered. Reference is made to a decentral-
ized estimation problem in the context of wireless sensor net-
works, and particular attention is paid to the design of the
quantizers used by the remote sensors.

1. INTRODUCTION

We consider a Wireless Sensor Network (WSN) engaged in
the task of estimating a nonrandom parameter ξ , assuming
that a nominal value of that (e.g., ξ = 0) is known in advance.
Specifically, it is assumed that each node (i.e., sensor) of the
network observes a random quantity xi drawn from a fam-
ily of probability density functions (pdfs) fξ (x) parametrized
by the unknown ξ . Observations are assumed iid (indepen-
dent and identically distributed) across sensors, and these are
transferred to a common fusion center (FC) that is devoted to
produce the final estimate ξ̂ . Actually, since xi are real val-
ued, we assume that the observations are first quantized and
then sent to the FC. Focus is made just on the quantizers’
design, assuming that these are scalar.

In Sect. 2, we draw parallels to the theory of Locally
Optimum Detection (LOD), and exploit its paradigms and
tools [1] in an inference context. As for the LOD, we end
up with a simple canonical form of the estimator (referred
to as the LOE, locally optimum estimator). Indeed, it turns
out that the density fξ (x) of the observations rules the be-
havior of a certain nonlinear function g(x) by which the local
observations are processed before being additively combined
to form the estimate.

We then recognize that the structure of the LOE is par-
ticularly suited to WSN applications and, in fact, in Sect. 3
we exploit the LOE paradigm to design the quantizers at the
remote nodes of the network. Furthermore, the LOE’s addi-
tive structure matches well with the separate quantization of
the xi’s, which is a design constraint in networks with sensors
that do not communicate each other.

In Sect. 4 the convergence of the LOE to its asymptotic
performance is checked, and a numerical investigation of the
LOE rate distortion characteristic is provided. In addition,
the quantization method is compared with standard compres-
sion techniques, where the final goal of the system is data
reproduction rather than estimation of a parameter embed-
ded in the observations. Concluding remarks are offered in
Sect. 5.

2. LOCALLY OPTIMUM ESTIMATE

Let n be the number of sensors in the network and fξ (x) the
actual density of the observations xi’s. We want to estimate
ξ from the observed {xi}n

i=1 and, as a distinct feature of our
approach, it is known that ξ lies in some small neighborhood
of a nominal value, say ξ = 0. Let us start from the logarith-
mic likelihood ratio between the actual density fξ (x) and its
nominal counterpart f0(x) that is obtained by setting ξ = 0:

L(x) = log
fξ (x)
f0(x)

=
n

∑
i=1

log
fξ (xi)
f0(xi)

.

Consider hence the behavior of L(x) for large n and for
ξ → 0. Borrowing a standard approach from the theory of
locally optimum detection [1], let us define γ = ξ

√
n, so that

when n increases without bound and γ is arbitrary but fixed,
ξ approaches 0 at a prescribed rate. Thus, for ξ approaching
0, we can expand the above expression in Taylor series about
the nominal value ξ = 0; this, accounting for the definition
of γ , yields

L(x) ≈
n

∑
i=1

∂ log fξ (xi)
∂ξ

∣∣∣∣
ξ=0

γ√
n

+
n

∑
i=1

∂ 2 log fξ (xi)
∂ξ 2

∣∣∣∣∣
ξ=0

γ2

2n
. (1)

Let us introduce now the locally optimum estimator
(LOE), whose connection with eq. (1) will become clear
shortly:

ξ̂LOE(x) =
1

nI(0)

n

∑
i=1

∂ log fξ (xi)
∂ξ

∣∣∣∣
ξ=0

=
1

nI(0)

n

∑
i=1

g(xi),

(2)
where the function

g(x) =
∂ log fξ (x)

∂ξ

∣∣∣∣
ξ=0

, (3)

is referred to as the score of the random variable x drawn
from fξ (x), computed at ξ = 0. The main property of the
LOE is now stated.
Proposition 1. It results that

√
n
(

ξ̂LOE(x)−ξ
) fξ∼ G

(
0,

1
I(0)

)
, (4)

where
fξ∼ G (a,b) means that, under fξ (x), the LHS converges

in distribution to a Gaussian with mean a and variance b. In
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the above

I(0) =
∫

f0(x)

[(∂ log fξ (x)
∂ξ

)2
]∣∣∣∣∣

ξ=0

dx

is the Fisher information per sample computed under the
nominal density f0(x).

Before proving the claim in eq. (4), let us stress its main
implications. First, as detailed below, for large n we can con-
fuse the second term in eq. (1) with its asymptotic value un-
der f0(x). Expression (1) accordingly becomes

n

∑
i=1

∂ log fξ (xi)
∂ξ

∣∣∣∣
ξ=0

ξ − ξ 2

2
nI(0),

whose derivative with respect to ξ is zero at ξ = ξ̂LOE(x): the
LOE is nothing but an ML estimator when the log-likelihood
is approximated around the nominal value ξ = 0.

Second, asymptotically, Eξ [ξ̂LOE(x) − ξ ] ≈ 0 and

VARξ [ξ̂LOE(x)]≈ n−1I−1(0), where Eξ and VARξ represent
statistical expectation and variance under distribution fξ (x).
Also, if the nominal Fisher information I(0) in eq. (4) were
replaced by the actual I(ξ ), computed under fξ (x), then the

above claim simply states that ξ̂LOE(x) is asymptotically op-
timal, in the usual Cramer-Rao sense [2]. From a practical
viewpoint, it is clear that the Fisher information I(ξ ) is close
to I(0) as consequence of the fact that ξ vanishes to 0.

Further, we would like to emphasize that the canonical
structure of the LOE is particularly appealing: eq. (2) re-
veals that the fusion center simply needs a transformed ver-
sion g(xi) of the individual remote observations, in order to
build up the estimator. This represents a simple and practi-
cal recipe for designing the data processing chain for estima-
tion problems that can be modeled in the described asymp-
totic setting. Clearly, in the case of decentralized estimation,
the transmission of the continuous valued quantities g(xi) is
usually inhibited by the finite capacity of the communication
channels between remote nodes and fusion center. Then, we
are faced with the problem of quantizing the g(xi)’s, before
transmission; the topic is addressed in the next section.
Proof of Proposition 1. An outline of the proof of (4) goes as
follows. Let n→ ∞.
a. Under f0(x), the term in the first line of eq. (1) is Lo-

cally Asymptotically Normal (LAN) with zero mean and
variance γ2I(0). That is to say

√
n(first line of eq. (1))

f0∼ G
(
0,γ2I(0)

)

(see [3]).
b. Under f0(x), the term 1

n ∂ 2 log fξ (xi)/∂ξ 2
∣∣
ξ=0 in the sec-

ond line of eq. (1) converges in probability to the constant
−I(0) (see, e.g., [4]).

c. (Fundamental theorem on the use of contiguity) Given
two families of distribution functions {w(n)(x)}∞

n=1 and
{z(n)(x)}∞

n=1, assume that the sequence of the associated
likelihood ratios {w(n)(x)/z(n)(x)}∞

n=1 converges under
z(n)(x) to a Gaussian distribution with mean µ and vari-
ance σ2. Then contiguity holds and under w(n)(x) the
likelihood sequence converges to a Gaussian with mean
µ +σ2 and variance σ2 (see [5]).

From (a) and (b), it follows that L(x) converges in distribu-
tion, under f0(x), to G

(−γ2I(0)/2,γ2I(0)
)
. Then, statement

(c), in view of Slutsky’s theorem [6], immediately implies
the following convergence in distribution:

L(x)
fξ∼ G

(
γ2

2
I(0),γ2I(0)

)
.

Now, combining the definition of the LOE estimator with the
likelihood in eq. (1) we easily get:

√
n
(

ξ̂LOE(x)−ξ
)
≈ L(x)

γI(0)

−
n

∑
i=1

∂ 2 log fξ (xi)
∂ξ 2

∣∣∣∣∣
ξ=0

γ
2nI(0)

− γ. (5)

As is more or less obvious, in the above equation as well
as in the initial likelihood (1), we have neglected any term
which can be safely assumed vanishing (in probability) for
large n. To this aim, we assume that all the conditions re-
quired for this to be rigorously true are fulfilled. In eq. (5),
it is recognized that (i) the first term converges in distribu-
tion to a Gaussian with mean γ/2 and variance I−1(0), and
(ii) the second term goes in probability to γ/2. The claim of
Proposition 1 now follows as a direct application of Slutsky’s
theorem [6].

3. DESIGN OF THE QUANTIZERS

Let us consider a WSN with remote nodes that collect the xi
to be sent to the common FC. From the previous section, it
follows that the remote nodes should send to the fusion cen-
ter a transformed version g(xi) of their observation xi, see
eq. (2). However, sensors of the network send data to the fu-
sion center by means of channels with finite capacity and, ac-
cordingly, the nodes must employ some kind of compression
of their continuous observations. In some WSN applications
the quantization may also be rather coarse, in the sense that
very few bits must be used.

In the following we assume that each sensor employs a
scalar quantizer Q, and that these quantizers are identical
across all the nodes (for symmetry). Let qi = Q(xi) be the
discrete valued data to be delivered to the FC, and let pξ (q)
be the associated probability mass function, discrete counter-
part of density fξ (x):

pξ (q) =
∫

x∈ℜq

fξ (x)dx,

with ℜq being the partition region yielding q as output. In
the same asymptotic setting described in the previous sec-
tion (i.e., γ = ξ

√
n, with n → ∞, and γ held fixed), our goal

is now to minimize the estimation error, measured in terms
of the MSE, with a constraint on the rate of the quantizers,
measured in terms of the number of quantization bits.

The arguments in the previous section can be repeated us-
ing as observables the qi’s in place of their continuous coun-
terpart xi’s. Then, from eq. (4) we know that there exists a
class of estimation problems (one for each n) for which the
asymptotic performance can be measured by the Fisher in-
formation of these discrete valued observations, computed at
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the nominal value of the parameter. This supports the natu-
ral idea that one can optimize the quantizers working in the
nominal case of ξ = 0. We formalize the issue in the follow-
ing assertion.
Proposition 2. Let γ = ξ

√
n, and assume n→∞ with γ fixed.

In the class of the LOE estimators, the optimization problem

min
Q:log2 ||Q||≤R

MSEq, (6)

where MSEq is the estimation mean square error using the
quantizer Q, reduces to

min
Q:log2 ||Q||≤R

ε(g(x),cq), (7)

where g(x) is the optimal nonlinearity given in eq. (3), and

cq =
∂ log pξ (q)

∂ξ

∣∣∣∣
ξ=0

=

∫
x∈ℜq

g(x) f0(x)dx
∫

x∈ℜq
f0(x)dx

, (8)

where the function ε is defined as

ε(g(x),cq) =
∫

f0(x)(g(x)− cq)2 dx.

Some comments are in order. Note that cq in eq. (8) is
the centroid (MMSE estimation, given q) of the optimal non-
linearity g(x), computed with respect to pdf f0(x). In other
words, cq is a quantized version of the optimal (unquantized)
nonlinearity. Thus, eq. (7) represents a classical optimiza-
tion problem in the context of quantization for reproduction
purposes: you have a continuous quantity g(x) and cq is its
(scalar) quantized version, and you want to minimize the (re-
production) mean square error E[(g(x)− cq)2] between the
original g(x) and the quantized counterpart cq, where the ex-
pectation is with respect to f0(x). Such an optimization prob-
lem, hence, can be solved by means of a standard Lloyd &
Max’s algorithm [7], which provides us with the best quan-
tizer Q achieving the minimum reproduction error, subject
to a constraint on the number of bits.

Basically, we have reduced the problem of optimal quan-
tizer design for inference purposes, to the standard problem
of optimal quantizer design for reconstruction purposes. In
this way, we are allowed to use the bulk of methods, tools,
and skills, in the area of quantization. In fact, in the next sec-
tion a well-known Lloyd & Max’s algorithm is exploited in
order to design the sensors’ quantizers.
Proof of Proposition 2. The proof of the equivalence be-
tween (6) and (7) is now outlined. First, consider the LOE
ξ̂q(x) computed using the quantized data qi. As for the un-
quantized case, we can define

ξ̂q(x) =
1

nIq(0)

n

∑
i=1

∂ log pξ (qi)
∂ξ

∣∣∣∣
ξ=0

,

where Iq(0) is the Fisher information per sample for the
quantized case. Following the same derivation steps as in
the unquantized case, we get, in the asymptotic regime,

Eξ [ξ̂q(x)−ξ ]≈ 0, VARξ [ξ̂q(x)]≈ 1
nIq(0)

.
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Figure 1: Mixture of Gaussians with the same mean and dif-
ferent standard deviations. Here we have ξ = 0.1, σ1 = 1,
σ2 = 3 and α = 0.7. Top panel: the density fξ (x). Bottom
panel: the optimal nonlinearity g(x).

The implication is that, instead of minimizing the MSEq, one
can maximize Iq(0), the Fisher information of the quantized
observations under the nominal value ξ = 0: there exists a
class of estimators that attain that asymptotic performance.

Further, the two alternative expressions of cq, as given in
eq. (8), reveal that cq is both the score of the discrete valued
random variable q and the centroid1 of g(x) with respect to
f0(x). This implies (averages are computed under f0(x)):

I(0) = E[g2(x)] = E[(g(x)− cq + cq)2]

= E[(g(x)− cq)2]+E[c2
q]+2E[(g(x)− cq)cq],

and the last addend is zero, as cq is an MMSE estimate of
g(x). Hence,

I(0) = E[(g(x)− cq)2]+E[c2
q] = ε(g(x),cq)+ Iq(0).

We have thus shown that: minimize MSEq ⇔ maximize
Iq(0)⇔ minimize ε(g(x),cq).

4. APPLICATIONS

We now consider examples of applications of the previous
theory to a decentralized estimation problem in a WSN.
Specifically, we are interested in the rate (No. of bits) dis-
tortion (estimation MSE) behavior in a WSN engaged in the
task of estimating ξ , knowing that ξ lies in some small neigh-
borhood of 0. Sensor ith observes xi and compute g(xi); this
latter is quantized by the Lloyd & Max’s algorithm [7], as de-
scribed earlier. Finally, the fusion center receives the quan-
tized sensors’ outputs and provides the final estimate, accord-
ing to the LOE approach.

4.1 Gaussian case
Consider first a Gaussian problem, in which the mean of
Gaussian observations is to be estimated, assuming known

1The second expression in eq. (8) can be easily derived from the former;
details are omitted. Recall also that the centroid is an MMSE estimate [7].
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Figure 2: MSE of the LOE compared to its asymptotic value
1/Iq(0), for a mixture of Gaussians. As in the previous plot,
σ1 = 1, σ2 = 3, α = 0.7, and two rates (No. of bits) are con-
sidered. Note that γ = 3 is held fixed so that when n in-
creases, ξ decreases as n−1/2.

variance. It is straightforward to show that the optimal
nonlinearity in eq. (3) is g(x) ∝ x : the optimal estimator
fuses the original (untransformed) observations xi and, as
a consequence, the attempt here is to recover at the FC
the {xi}n

i=1 with the best possible fidelity. The implication
is that estimation-oriented quantization is the same of that
reconstruction-oriented and no benefit can arise by the previ-
ous theory2.

4.2 Mixture of Gaussians
Consider a mixture of two Gaussian densities with the same
mean ξ and standard deviations σ1 and σ2, with relative
probabilities (coefficients of the mixture) α and 1−α , re-
spectively. Figure 1 depicts the pdf fξ (x) and the optimal
nonlinearity g(x), see eq. (3).

Figure 2 shows the convergence of the LOE’s MSE to
the asymptotic value of I−1

q (0), assuming that ξ scales as
1/
√

n, as prescribed by the asymptotic theory. Oppositely, in
Fig. 3, ξ and n are given, and the rate (No. of bits) distortion
(estimation MSE) characteristic is shown.

Now, we consider an estimation system in which the
quantizers are designed as described in Sect. 3, but the fu-
sion center does not employ the LOE. In other words, let us
assume that the previous theory is used to design the remote
quantizers, but it is not used at the FC to produce the final
estimates. Then, it makes sense to compare the Fisher infor-
mation contained in the quantized data {qi}n

i=1, and to use the
inverse of this as distortion proxy. We consider four cases.

Case 1. The Fisher information per sample Iq(ξ ), corre-
sponding to the quantized observations qi = Q(xi), is (nu-
merically) computed under the true pmf pξ (namely when
the xi’s come from fξ ).

Case 2. We compute (again, numerically) the Fisher in-
formation Iq(0) pertaining to the quantized qi’s, under the
nominal pmf p0 (we thus assume that the xi’s are drawn from
f0).

2We get similar insights in [8].
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Figure 3: MSE of the LOE compared to its asymptotic value
1/Iq(0), for a mixture of Gaussians. Here we have σ1 = 1,
σ2 = 3, α = 0.7 (as before), ξ = 0.1, and n = 103.

Reproduction-oriented quantization is aimed to recover-
ing the xi’s as accurately as possible at the fusion center. This
approach can be referred to as a blind method, in that the
quantization stage completely ignores the fact that the final
aim of the system is to estimate a parameter embedded in the
observations, rather than recovering the observations them-
selves3. Not unexpectedly, the blind approach can lead, in
some cases, to a large waste of system resources. We con-
sider two blind cases.

Case 3. The Lloyd & Max’s quantizer S that minimizes
the reproduction error is designed using the nominal distribu-
tion f0(x). The data xi’s are generated according to the true
pdf fξ (x) and quantized as si = S (xi); the related Fisher in-
formation is then computed numerically, and its inverse is
taken as distortion measure.

Case 4. We also consider the ideal case where the Lloyd
& Max’s procedure is still designed to minimize the repro-
duction MS error, but the design algorithm is run using the
true distribution fξ (x) (which is actually unknown). The
quantized variables, say ci = C (xi), are used to compute the
Fisher information per sample that is used in the compar-
isons4.

Figure 4 shows the rate distortion behavior of the system,
considering the four cases described earlier. Note the pres-
ence of a curve labelled as “time sharing”: this represents the
actual rate distortion curve that can be obtained by using dif-
ferent bit rates for prescribed fractions of time. Two values
of ξ are considered to investigate the effect of moving away
from the nominal point ξ = 0.

5. SUMMARY

In the classical theory of locally optimum detection, to test
for a vanishing small signal (e.g., a constant ξ ) is studied un-
der the assumption that the number n of (iid) observations
becomes increasingly large. This can be conveniently for-

3To be explicit, in this case one still uses the Lloyd & Max algorithm,
but this is run over xi rather than over g(xi).

4Note that, as opposed to cases 1 and 2, the quantizers used in cases 3
and 4 are different.
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Figure 4: Rate distortion characteristics for a mixture of
Gaussians. Here σ1 = 1, σ2 = 3, and α = 0.7. Left panel:
ξ = 0.1. Right panel: ξ = 0.3.

malized by assuming that ξ goes to zero at rate 1/
√

n. We
have investigated the similar problem of estimating a non-
random parameter ξ , assuming that a nominal value of that
(e.g., ξ = 0) is a-priori known, meaning that it is known that
ξ lies in some small, not exactly specified, neighborhood of
0. Setting ξ = γ/

√
n (γ constant) with n the number of iid

observations, we formalize the problem as a sequence of esti-
mation problems, one for each n, and consider the asymptotic
behavior for n→ ∞.

In this setting, the LOE (locally optimum estimator) is
introduced and its properties are investigated; then, in the
context of a WSN decentralized estimation, we exploit the
LOE paradigm to design the quantizers employed at the re-
mote nodes of the network. It turns out that (i) the LOE
can be obtained by solving the maximum likelihood equa-
tion, with the log-likelihood expanded around the nominal
point ξ = 0; and (ii) for the decentralized estimation sce-
nario, a meaningful way to design the quantizers consists in
optimizing the restitution levels by maximizing as objective
function the Fisher information computed under the nominal
value ξ = 0, thus yielding a simple and constructive way to
solve the decentralized estimation problem.

A contribution of our work is to (re)derive these two in-
tuitive design recipes in a suitable mathematical framework.
However, this is our first investigation of the issue and, as
such, we have only presented the basic ideas and tools. Part
of our ongoing work is focused on better defining the range
of applicability of the method and to assessing a comprehen-
sive comparison with alternative schemes.
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