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ABSTRACT

In this paper, a new block adaptive filtering algorithm, based on
the Conjugate Gradient (CG) method of optimization, is proposed.
A Toeplitz approximation of the autocorrelation matrix is used for
the estimation of the gradient vector and the correlation quantities
are updated on a block by block basis. Due to this formulation, the
algorithm can be implemented in the frequency domain (FD) using
the fast Fourier transform (FFT). Efficient recursive relations for
the frequency domain quantities updated on a block by block basis
have been derived and an appropriate decoupling of the direction
vector has been applied. The applicability of the new algorithm
to the problem of adaptive equalization is studied. The proposed
algorithm exhibits superior convergence properties as compared to
existing CG techniques, offering significant savings in computation
complexity.

1. INTRODUCTION

Adaptive filtering algorithms has been an area of active research
over the last decades due to their wide applicability in many signal
processing and communication applications. The performance of
an adaptive algorithm can be measured by a number of factors such
as accuracy of steady state solution, convergence speed, tracking
abilities, computational complexity, numerical robustness, etc [1].
In many real time applications the issues of complexity and conver-
gence speed play a crucial role, therefore many different techniques
such as partial updating schemes [2], IIR adaptive filtering [3], and
Frequency Domain Adaptive Filtering (e.g [1], [4]) have been em-
ployed to reduce the computational complexity, and to accelerate
the convergence.

The aim in partial updating schemes, is to reduce the compu-
tational complexity of an adaptive filter by adapting a block of the
filter coefficients rather than the entire filter at every iteration. In
non stationary environments, partial updating adaptive filters might
be undesirable as they do not guarantee convergence. The use of IIR
adaptive filters dramatically reduces the computational complexity
since a good performance can be achieved by estimating a small
number of parameters. However, the numerical behavior of IIR
schemes in certain implementation platforms is still an issue under
investigation. Frequency domain adaptive filters (FDAF) turn out
to be a good solution in several practical applications due to their
computational efficiency and their good convergence properties.

Most of the existing FDAF algorithms are of the gradient type,
that is, their time-domain counterparts are based on some variations
of the Least Mean Square (LMS) algorithm. On the contrary, to the
best of our knowledge, no work has been done toward developing
frequency domain implementations of adaptive algorithms based on
the Conjugate Gradient (CG) method. The family of algorithms
that are based on the CG method of optimization provides conver-
gence comparable to RLS schemes at a computational complexity
that is intermediate between the LMS and the RLS methods. In
existing literature, depending upon the CG algorithm under con-
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sideration the cost of sequential processing of the data grows sub-
exponentially or quadratically with the filter order.

In this paper, a new block adaptive CG algorithm implemented
in the frequency domain is developed. The complexity of the algo-
rithm is considerably reduced by employing the FFT algorithm, to
update the Toeplitz approximation of the autocorrelation matrix and
the cross correlation vector via fast correlation implementation, and
to calculate matrix vector products. Furthermore, the convergence
of the algorithm is remarkably improved as compared to existing
CG adaptive algorithms [5], by appropriate decoupling the succes-
sive direction vectors. The application of the algorithm to Channel
Equalization is also pointed out. The resulting algorithm exhibits
similar convergence with the RLS algorithm and a computational
complexity that is proportional to the logarithm of the filter order
per time step.

The paper is organized as follows. In Section 2, the problem
is formulated, the conjugate gradient method of optimization is de-
scribed and ways to implement the algorithm efficiently in adaptive
filtering context are also reported. In Section 3, the new block CG
algorithm and its frequency domain implementation are derived. In
Section 4 the adaptive channel equalization case is treated. Finally
simulation results are provided in Section 5, and the work is con-
cluded in Section 6.

2. SOME PRELIMINARIES
2.1 Problem Formulation

Before proceeding further, let us first define the notation used
throughout the paper. In the time domain, vectors and matrices are
denoted by bold lower case and bold upper case letters, respectively.
In the frequency domain, vectors are denoted by calligraphic upper
case letters.

Let us now assume that we are given the input {x(n)} and a
desired output {u (n)} of an unknown system. The unknown system
is assumed to be a time varying linear system and the task is to
obtain at each time 7 an estimate w (n) = [wy (n),---,wy (n)]” of
the system. This estimate is computed so that its output y (n) given
by

M
y(n):;vVi(n)X(n—i)

tracks in an optimal way the desired output u (n) of the unknown
system.

2.2 The Conjugate Gradient Algorithm

The Conjugate Gradient (CG) Method is an iterative method for
finding the minimum of a quadratic cost function. The objective of
the method here, is the minimization of a cost function defined as

V(W) =E [lu(m)] -bw-wib+wiRw (1)

where R = E [x* (n)x” (n)] is the M xM correlation matrix of the
system input x (n), and b = E [u(n)x* (n)] is the cross-correlation
vector between the desired output u (n) of the system and the input
x(n). Vector x (n) is defined as [x(n),---,x(n—M+1)]".
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INITIAL CONDITIONS:
w(0)=0,9(0) =b,p(1)=g(0),k=1
WHILE k < kmax

Pl (k)gk—1)
=" rp () @
w(t) =w(k— 1) +a(®)pk) 3
(k) = g(k—1)—a(k)Rp (k) @)
- Or10)
PO = gk —1) ®
p(kt1)=g()+B K p® ©

END

Table 1: Basic CG Algorithm

The CG method originates from the so-called conjugate direc-
tion (CD) method [6]. The main idea in the CD method is to obtain
a set of linearly independent direction vectors which are conjugate
with respect to R so that the vector w” that minimizes (1) can be
expressed as a linear combination of these vectors. The weights of
the linear combination are calculated by imposing R-conjugation
between the direction vectors. The set of the R-conjugate direction
vectors are generated by a set of M linearly independent vectors. In
the CG method these M vectors are the successive gradients of the
cost function (1), obtained as the method progresses.

The basic CG algorithm consists of equations (2)-(6) summa-
rized in Table 1, where a (k) is the step size that minimizes the
cost function V (w(k)) defined similarly as in (1), B (k) provides
R-orthogonality for the direction vector p (k), and g (k) is the nega-
tive of the gradient vector of the cost function at w (k) defined as

2(k)=b—Rw(k) = 3 [VV (w(K))]. ™

Previously developed CG adaptive algorithms execute several
iterations of the CG algorithm of Table 1 to solve the system of
equations Rw = b, per sample or per block update of R,b [7]. In
the case of sample by sample update of R, b, some modifications
have been proposed in order to allow the CG algorithm to run one
iteration per incoming sample, but still maintain performance com-
parable with RLS or LMS-Newton [5]. However, the matrix-vector
multiplication Rp (k) that is required in each iteration increases
the total complexity to O (Mz) multiplications per output sample.
Therefore, the way that R and b are estimated directly influences
the performance and the complexity of the algorithm.

In the section that follows, some modifications that allow the
algorithm to run just one iteration per incoming block of input data
are proposed. R is approximated by a Toeplitz matrix constructed
by a time averaged estimator of the autocorrelation sequence
ro, 11,y of {x}ie. r(n) =X, A"ix* (i) x (i — k). Thus,
since the matrix vector multiplications can be computed by circu-
lar convolutions, the FFT is used throughout the computations and
the total complexity is reduced to O(MlogM) multiplications per
output block of data samples. Moreover, the convergence speed of
the resulting Frequency Domain (FD) algorithm is considerably in-
creased by properly decoupling the successive direction vectors.

3. BLOCK FREQUENCY DOMAIN CG ALGORITHM
3.1 Block CG Algorithm Derivation

In this section, the main task is to derive the block updating equation
of the weight coefficient vector, based on the basic CG algorithm.
Initially, it is essential to focus on obtaining the block update recur-
sion of the autocorrelation and the cross correlation vectors by using
the autocorrelation method of data windowing [1]. Let us first write
the symbol-by-symbol update recursion of the vectors r(n), b (n)

as follows:
r(n)=Ar(n—1)+x*(n)x(n)
b(n)=Ab(n—1)+u(n)x" (n)

where {x(n)}, {u(n)} denote the system’s input and desired output,
respectively. Based on the above recursions, it is straightforward to
show that

L—1

r(n)=Alr(n—L)+ ;}lix* (n—i)x(n—1i) 8)
L—-1
b(n)=Alb(n—L)+ Y Au(n—i)x* (n—i) )

i=0

This expression represents a single update of the auto - correla-
tion and cross-correlation vectors from time n—L+1 to time n based
on the L data samples accumulated, and is thus called a block up-
date. For simplicity and efficiency we are interested in the case of
L = M. Without loss of generality we can substitute n=kL in (8),
(9), where k is a block time index. By factoring the argument kL on
the left hand side of (8), (9) and dropping the explicit dependence
of correlation vectors on L we have the following equivalent block
updates:

r(k)=AMr (k—1) +rg (k) (10)
b (k)=AMb (k- 1) +bg (k) (11)
where
M—-1

rg(k)=Y A" (kM —i)x (kM —i) (12)

i=0

—1
be (k)=Y Alu(kM —i)x* (kM — i) 13)

i=0

To finish up with the correlations update equations, we recall that
matrix R (k) is a Toeplitz symmetric matrix constructed by the ele-
ments of vector r (k), and T (r, (k)) is a Toeplitz symmetric matrix,
constructed by the elements of vector rg (k).

Let us now assume that vectors fr (k),b(k)} are fixed from
block to block. Then a block recursive formula of vector g (k) can
be found by using (3), (7), (10) and (11) resulting in

g(k)=b (k) — R (k) w (k) = 2Mg (k— 1) +bg ()
—a(k)R(k)p (k) =T (rg (k) w(k—1)
=g (k—1)—a(k)R(k)p (k) (14
where p (k) is the direction vector related with vector g (k) via eq.
(6), and
g (k—1)=AYg(k—1)+bg (k)
—T (rg (k) w(k—1).

In the basic CG algorithm, a (k) is a step size used in the update
of the weight vector as shown in (3). It is usually chosen so that
V(w(k—1)+4a(k)p(k)) is minimized. In other words, a (k) can be
computed by setting the gradient of the cost function with respect
to a (k) equal to zero:

VaV (w(K)=0=p! (K)g (k) = 0 =

wp PO ()
p7 (R (K)p (K]
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Finally, the factor 3 (k) that provides R-orthogonality between
the vectors p (k), cannot be obtained by directly applying equation
(5), since a non-constant R is used at each iteration. One way to
tackle this problem is to periodically reset the direction vector to the
negative of the gradient vector p (k) = g (k) in order to ensure the
convergence of the algorithm [5]. Alternatively, the Polak-Ribiere
method can also be used [6]. In such a case, f§ (k) can be computed

by
_(gk)—gk—1)"g (k)
B = W)

Having computed f (k), the direction vector p (k) and the weight
coefficient vector are updated by using (6) and (3), respectively.

3.2 Frequency Domain Implementation

The block update terms in the right side of the equations (10), (11)
are linear correlations. Specifically, the quantity in (12) is a linear
correlation between the input signal and the input signal vector and
the quantity in (13) is a linear correlation between the desired signal
and the input signal vector. Therefore, it is possible to efficiently
implement each of these sums in the frequency domain by using the
overlap-save sectioning method[4].
If we define the following frequency domain quantities

T
%(k):F[O,~-~,O,?LM’1x(kM—M+1),-~-,x(kM)} (15)

%(k):F[0,.~-,o,7LM*1u(kM—M+1),.-.,u(kM)}T (16)
v (k)=diag {F [x (kM —=2M + 1) ,--- ,x (kM — M),
x(kM—M+1),...,x(kM)]T} (17

where F is the DFT matrix of order 2M, then we may write:

{TE X(k)} —F ' (k) 27 (k) (18)
{ng(k)} =F 7" (k) 2 (k) (19)

Symbol x denotes a ’don’t care” M x 1 vector.

It should also be noticed that matrices R (k) and T (rg (k)
are Toeplitz. Thus we may implement the products R (k)p (k),
T (rg (k)) w(k— 1) efficiently in the frequency domain by embed-
ding R (k), T (rg (k)) into 2M x2M circulant matrices

ce(t) = [ SR crw=|

where it is sufficient here to define the first column of Cg (k)
as ¢ (k)= [r (k) ;O;rﬂ‘/!:il:l] (k)] and the first column of Cr (k) as

T (rg (k) S (k)
§'(k) T (rg (k)

cr (k)= [rg (k) ;O;rg[*M:_l:]] (k)] with the help of some Matlab no-
tation. Vectors rE‘M:ilzl] (k), rgE‘M:ilzl] (k) consist of the M—1 last
elements of r* (k), r} (k) respectively, in reverse order. The matri-

ces Cg (k), Cr (k) can be diagonalized by using the DFT matrix,
and their spectral decomposition is given by

Cr (k) =F 'Dr (k)F, Cr(k)=F~'Dr (k)F

where Dy (k),D7 (k) are 2M x2M diagonal matrices containing the
eigenvalues of Cg(k), Cr (k) respectively. The eigenvalues of
Cr (k) are equal to the DFT values of the first column of Cr (k), i.e.,
Dr (k)=diag{Fer (k)}. The eigenvalues of Cg (k) may be com-
puted in terms of the eigenvalues of C7 (k). Specifically, based on
(10), the following recursion can be easily derived

Dg (k) = AMDg (k—1)+Dr (k). (20)

The matrix vector product R (k) p (k) can be computed by the fol-
lowing equation

{ R (k)p (k) ]: { Iy gz }F"DRF[ p (k) }

(U} Oy (U}

The product 7 (rg (k)) w (k — 1) can be expressed in a similar way.
Thus we may augment the coefficient update (3), the update of
the vector g (k) (14) and the direction update (6) schemes as

o L e ]
{g(k 1 [g('f)M )} et [R @ (k)}

Oy |
N {bf)(k)} B [T (rg (k) w(k— 1)}

M 0y

{p(kﬂ ::{g(k)] LB {p(k)}

0y (UY; 0y

=
I
—_

~—

Taking the DFT of both sides of the above equations we have
W (k)y=H (k—1)+a(k) P (k) (21)

G (k)=A"%G (k1) —a(k)F {R(fg » <k>}

+FG {ng(k)] _F [T (e (k)O)MW (k=1 )} 22)

P (k+1)=9 (k) + B (k) Z (k) (23)

where matrix G is a time domain constraint matrix defined as
G=[I)7,0p], with 037 being an M x M matrix of zeros.

To finish up with the update equations we observe that the time
domain step-size a (k) and the time domain factor f (k) can be com-
puted by already available frequency domain vectors as

gy [
P (0g k=1) _ | Ou] | Ou
a0 = O RE () [p (k)} H {R (k)p(k)]

0y 0y

{p (k)r F'F {g’ (k— 1)}

0| M 0o | PG (k1) 4
e R ROPK)] R (k)p (k)
] g
where
G (k—1)= MG (k—1)+FG [ng(")} _F {T (r (k)O)A;V(k* 1)}
and
B (k) = (@ (k) —% (k—1))"9 (k) 25)

g (k—1)9 (k—1)

Convergence acceleration

The convergence speed of the whole scheme might be improved
by using in update equations (21), (22), and (23) matrix step sizes
instead of scalar ones a (k) and B (k), respectively. These matrices,
denoted as M, (k) and Mg (k), would have a diagonal structure,
thus allowing a decoupled update at the different frequency bins.
The diagonals of those time varying matrices contain, the step sizes
am (k) = a(k) /Py, (k) and the factors B, (k) = B (k) /Py (k), m =
0,---2M — 1, respectively. P, (k) corresponds to an estimate of the
signal power in the m'" bin, and may be computed as in [8]

P (k) = APy (k= 1)+ (1= ) |V s ()2
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INITIALIZATION:
P (0)=8,TI, #(0)=[0,0,---
MATRIX DEFINITIONS:

~ Iy Oy
Oy Om
F =2M x2M DFT matrix

FOR EACH NEW BLOCK k:

Pm(k):Appm(k*1)+(lflp)|7/m,M(k)‘2
M, = diag{ [P 0+ Ppy (0] }
P (k) =My P (k)
%(k) [ 0, ML (kM —M+1) -, x (kM)] "
U (k) =F [0,--,0,AM Ly (kM —M+1),--,u(kM)]"
“//(k):dzag{F[x(kM M), (kM)]T}
xy (k) =GF 7 (k) 2 (k)
er (0= [2] (0,024, (0)]"

o

(

7 (k) =diag {Fer (k)}

DR (k) = AMDg (k— 1) +Dr (k)
=FGEFDRF!GF ' 2 (k)

, =FGFDrF !GF~ '/ (k—1)

G (k—1)=AMG (k—1)+FGF v (k)2 (k) - 7,

a(k) = } ()"/(kfl)
2"(k) 7

W (k)= (k—1)+a(k) 2 (k)
G(k)=9"(k—1)~ H()f1
B k)= (ngl(k (lk)‘fl(>k> f;(k)
P (k+1) =19 (k) + B (k) Z (k)]
k=k+1

END

Table 2: FD-CG Algorithm

It is easily seen that using M, (k) and Mg (k) is equivalent with the

premultiplication of each direction vector & (k) with a diagonal
matrix M, whose elements are given by:

M, = diag { [P (k). Pyt (K)] }
The latter step sizing approach is the one used in the algorithm sum-
marized in Table 2.

3.3 Complexity Issues

The computational complexity (real multiplications) of the algo-
rithm of Table 2 is now summarized for comparison with the non
block time domain modified CG [5] and the classical Frequency
Domain Adaptive Filtering (FDAF) algorithm based on the overlap
save sectioning method [4].

The modified CG with M complex weights requires 1602
real multiplications for the computation of the matrix-vector prod-
uct R (k)p (k), 16M real multiplications to compute the step-size
and the factor f (k) and another 22M real multiplications to up-
date the coefficient, the gradient and the direction vector. Thus,
16M3 +38M? are required for every M output samples. The linear

Complexity Ratios Filiter Size M
64 128 256 1024
FDCG
Modified CG 0.0037 | 0.0010 | 0.0003 2e-5
FDCG
Overlap—save FDAF 3.4964 | 3.4531 | 3.4167 | 3.3591

Table 3: Computational Complexity Ratios

convolution overlap-save FDAF requires 10M log, (2M) +24M real
multiplications per M output samples.

The proposed algorithm requires 30M log, (2M) real multipli-
cations for the computation of 15 2M-point FFT’s. The computation
of the partial products ¢, _#5 requires 16M real additional mul-
tiplications. Furthermore, another 24M additional multiplications
are required for the computation of (15), (16), (18), (19), (20) and
finally 68M multiplications are required to calculate the step-size,
the factor that provides R-conjugacy and to update the coefficient,
the gradient and the direction vector. Therefore, the proposed algo-
rithm requires 30M log, (2M) + 108 M real multiplications for every
M output samples. The complexity ratios are summarized in Table
3. Clearly, the complexity of the algorithm of Table 2 is of the
same order as the overlap-save FDAF, since the complexity ratio of
the two algorithms remains the same as the filter length increases.
On the other hand, the proposed FDCG algorithm offers significant
savings as compared to Modified CG.

4. APPLICATION TO CHANNEL EQUALIZATION

In this section, the applicability of the new algorithm to adaptive
channel equalization is pointed out. We are particularly interested
in mobile wireless communication systems. Channels that are en-
countered in such systems may have long Impulse Responses (IR)
and change significantly in time. Therefore the involved equalizer
should be able to track the channel variations and also have a fast
convergence so as a reduced training sequence to be adequate.

4.1 Linear Equalization Case

The main part of a linear equalizer is a transversal filter that com-
bines linearly a number of consecutive channel output samples to
provide an estimate of the current symbol. The algorithm of Table
2 is directly applicable to the LE case after taking into account the
following remarks:

e The equalizer’s coefficients correspond to the unknown param-
eters of the system w; (k) that has to be identified.

e Sample x (kM) denotes the channel output at time kM, and sam-
ple u (kM) is either a training symbol (during the training mode),
or a decision (during decision directed mode). In the latter case,
u (kM) will be given by

{Zw, kMJerz)}

where f{-} stands for the decision device function and M| — 1
stands for the number of samples that the filter output is delayed
with respect to its input in order to provide the desired response
to the equalizer.

Thus, the algorithm of Table 2, can be directly applied to the linear
equalization case, provided that we replace 2" (k) with the vector
Z (k+M; — 1) and ¥ (k) with the vector ¥ (k+M; —1).

4.2 DFE Case

The algorithm of Table 2 might also be applied to the adaptive de-
cision feedback equalization problem. The output y (r) of a step by
step DFE equalizer at time n in a vector form is given by

y(n)=wmn)xX (n+M—1)
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Figure 1: Channel A - LE(128,64)
where

wo =[] 2=

Let us now denote the DFE equation by using the orthogonal prin-
ciple:

, H
R'w=b, RY — Lﬁmﬁ) ]

As we can see, the input autocorrelation matrix RY is no longer
Toeplitz as in the linear equalization problem. However, by ap-
proximating the cross-terms with zero matrices the FF and the FB
filters are decoupled and can be treated separately. Thus, the vec-
tors wyr (n) and Wy, () can be updated on a block by block basis
by applying a CG scheme as the one described for the LE case.

Unfortunately, there is an inherent “causality” problem in the
above block formulation. Some unknown decisions need to be used
for the update of the FB filter coefficients. This problem can be
overcome by using tentative decisions in place of the unknown ones
within each block [9].

5. SIMULATION RESULTS

To illustrate the performance of the algorithm we provide some sim-
ulation results. The experiments were carried out on two different
wireless channels, named as channel A and channel B [10]. Chan-
nel A contained 6 multipath components with amplitudes 0.7490,
1, 0.2290, 0.3160, 0.0550, 0.1580 respectively, and the correspond-
ing time delays with respect to the main peak were T, 27, 257,
37T, 28T, 57Ty, respectively. The multipath component phases
were chosen randomly. Channel B, contained another 4 components
with amplitudes 0.9333, 0.5012, 0.5129, 0.5370 and time delays 7,
87Ty, 15Ty, 227, respectively. The multipath component phases again
were chosen randomly. The input sequence consisted of QAM-16
symbols. Its equalizer’s length was set equal to 128 and the fil-
ter output is delayed by 64 samples. In the tests we conducted the
equalizers operate in training mode. In the first experiment, the
equalizer’s coefficient vector was set initially equal to the zero vec-
tor for all the algorithms. In figure 1, we provide the ensemble
averaging for the learning curve over 100 independent trials of the
experiment for the FDCG algorithm, the overlap-save FDAF, the
Modified-CG and the RLS algorithm. In the second experiment, in
order to test the ability of the algorithm to forget old data and hence
track, the channel was suddenly changed at time instant 5000. Fig-
ure 2 shows the performance of the algorithms when the parameters
of the unknown system change abruptly. It can be seen that in both
cases (convergence, tracking) the FDCG algorithm exhibits supe-
rior convergence rate as compared to the Modified CG algorithm
[5] and to the overlap-save FDAF algorithm [4].

7 T T T
- = RLS-A1=0.999 - § = 0.004

——FDCG - X=0A998—7Lp =0.5

— — — Overlap—save FDAF —2=0.998, u=0.1

-+ Modified CG - A =0.999, n=0.88

MSE (dB)

20 40 60 80 100 120 140
Number of QAM-16symbols (x100)

Figure 2: Channel B - Channel A - LE(128,64)

6. CONCLUSION

A new block adaptive CG algorithm implemented in the frequency
domain is developed. The correlation quantities are updated by em-
ploying the overlap-save sectioning method. Due to the Toeplitz
approximation of the autocorrelation matrix, the FFT algorithm is
employed for the computation of the matrix vector products that
arise. The algorithm enjoys superior convergence properties of ex-
isting adaptive algorithms based on the CG method. Its computa-
tional complexity is proportional to the logarithm of the filter order.
The performance is further enhanced due to frequency domain im-
plementation and the decoupling of the direction vector. A suitable
signal power initialization/update, the applicability of the new algo-
rithm to the DFE case and its tracking behaviour in Rayleigh chan-
nels are some of the issues that are currently being investigated.
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