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ABSTRACT

This work deals with the problem of interferometric radar
phase (IP) estimation in the presence of multiple height
layover components. The focus here is on multibaseline
interferometric synthetic aperture radar (InSAR) systems
with a low number of phase centres and nonuniform array
geometry. Interpolated array (IA) approaches allow the
application of parametric spatial spectral estimation
techniques designed for uniform linear arrays (ULAs). The
need for obtaining a well conditioned IA transformation
matrix results in the estimation of a virtual ULA output with
a number of elements lower than or equal to that of the
actual non uniform linear array (NLA). Here we extend the
14 approach to allow a greater number of virtual elements
by means of a diagonal loading (DL) technique. The
simulated performance of the proposed technique is
compared with that obtained by means of another
interpolation algorithm, that is optimal in a mean square
error (MSE) sense, and with the Cramér-Rao lower bound
(CRLB) calculated for the NLA.

1. INTRODUCTION

Interferometric synthetic aperture radar (InSAR) is a
powerful technique to derive digital elevation maps
(DEMs) with high spatial resolution and accuracy.
Interferometry finds many applications in radar remote
sensing, for topographic mapping, geology, forestry,
hydrology, detection and classification of covered objects
[1]. A conventional InSAR system measures the phase
difference, the so-called interferometric phase (IP),
between two SAR images collected by the antennas at the
extremities of a single cross-track baseline. Unfortunately,
in presence of highly sloping areas or discontinuous
surfaces, this technique suffers from the layover
phenomenon [1]: the received signal is the superposition of
echoes backscattered from various terrain patches mapped
in the same range-azimuth resolution cell (see Figure 1).
Hence, the height map produced by the InSAR system is
affected by strong distortion.

However, multibaseline InSAR, i.e. a technique which
uses more than two SAR images, has been proposed to
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Figure 1- Geometry of the layover problem (example with two
layover sources) and of interferometric system.

resolve the multiple sources along the elevation angle, see
[2], [3] and references in [4]. An additional problem is the
speckle phenomenon, caused by the possible extended
nature of the backscattering sources; under some
assumptions, it can be well modelled as a complex-valued
multiplicative stochastic process [5]; its deleterious effects
can be counteracted with the processing of more than one
look. In [6] are proposed some solution to layover in the
multibaseline multilook framework; several methods,
including Capon, MUSIC, M-RELAX (multilook extension
of RELAX) and WSF (weighted subspace fitting, see
references in [4]), are tested showing satisfactory
performance when a uniform linear array (ULA) structure
is available.

Unfortunately, in practical situations the ULA structure
is rarely encountered, because of mechanical, structural or
flight/orbital considerations, not directly related to the
estimation requirements. The resulting nonuniform spatial
sampling produces anomalous strong sidelobes in the
elevation beam pattern and in the functional of spectral
estimation methods [3], and spurious peaks and peaks
misplacement can arise in presence of multiple sources [8].
As a consequence, the above mentioned approaches loose
their effectiveness; also, they have a higher computational
load when applied to nonuniform linear array (NLA) data.

Interpolated array (IA) approaches consist in estimating,
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via linear interpolation, the output of a virtual array,
typically with ULA (Vandermonde) structure, from the
output of the actual array of arbitrary geometry [7]. Two are
the reasons for the proposal of an IA approach in InSAR
[8]. Firstly, it conveys in the interpolation mechanism a
rough but correctly matched information about the overall
backscattering source locations; secondly, it enables the use
of the spectral estimation algorithms that for ULA
structures demonstrated good performance in terms of
estimation accuracy and computational efficiency.

The most commonly used IA approach is the
deterministic one described by Friedlander in [7]; in [8] it
has been applied to the InSAR problem for the first time.
NLA structures were considered obtained by thinning a full
ULA; both geometries have the same unambiguous range
(UR) for IP and hence height estimation. Unfortunately, the
maximum number of the virtual ULA elements which can
be reconstructed is equal to the number of the actual NLA
elements, because numerical ill-conditioning arises in noise
whitening after array interpolation when the virtual array
has more elements than those of the real one [7]. In the
InSAR scenario, this fact causes a reduction of the UR, i.e.
the virtual ULA does not allow to exploit all the
potentialities intrinsic in NLA geometry [8]. This might be
a problem in some specific multibaseline configurations
and layover scenarios

The novelties of this work are the following. Firstly, we
overcome the aforementioned ill-conditioning by
performing a diagonal loading on the autocovariance matrix
of the additive noise in the virtual ULA data, allowing it to
have more elements than the actual non uniform geometry.
Secondly, we apply the stochastic interpolation algorithm
proposed by Choi and Munson in [9] to InSAR
multibaseline array processing, ad extend it by loading, as
well. Moreover, we compare the performance obtained in
IP estimation by root-MUSIC applied to the virtual ULA
data estimated by means of both interpolation algorithms,
under different InNSAR scenarios and by varying the number
of elements of the virtual array. This analysis has been
developed numerically using Monte Carlo simulation.

2. DATA MODEL AND PROBLEM STATEMENT

Consider a multibaseline cross-track interferometric
configuration, composed of a NLA with K phase centres.
The baseline length B is defined as the distance between
the first and the last phase centres in the array, as shown in
Figure 1. Assume that N (azimuth) looks are available; for
the n -th look,n=1, 2, ..., N, the pixel complex amplitudes
collected by the array sensors from natural areas in
presence of layover can be modelled as

y(n) =3 za()ox (1) +v(n) ()
where y(n), a(¢,), x,(n) and v(n) are K -dimensional
complex vectors, z, is a positive scalar, © is the Hadamard
(elementwise) product and N, is the number of sources, i.e.

the number of terrain patches with different elevation
angles. Term 7, is the radar reflectivity or texture; it is

modelled as an unknown deterministic parameter.
Furthermore,
a(p)=[1 eMn® . et ] (2)

is the array steering vector of the i-th source, where d, is
the distance between the & -th sensor and the first one along
the baseline and ¢, is an unknown deterministic parameter
representing the IP for the i -th source in isolation, which is
related to a spatial frequency [4]. In the following, for the
sake of simplicity, we consider an integer NLA structure,
i.e. a structure obtained by thinning a K, element full ULA
with the same aperture. The NLA phase UR, which is
identical to that of the full ULA, is given by 2z(K, -1).
The IP is related to the elevation angle 9 and thus to the
terrain height 4, . In fact, ¢, =-47Bcos(é -4 )/4, where &
is the tilt angle of the baseline and A is the radar
wavelength. Moreover, as suggested in Figure 1,
h,=H —rcos(9), where H is the system height and r is
the range of the examined resolution cell. As a
consequence, from the IPs {@I}: the heights {h,.}ile of the
N, terrain patches can be reconstructed and undistorted
height maps of the land surface can be produced. Vector
x,(n) represents the speckle distortion affecting the i-th

backscattering source. It is modelled as a complex-valued
correlated Gaussian process, with zero mean, unit power,

and covariance matrix C, = E{xi (n)x!" (n)} . For performance
analysis only, we assume that the vectors {xi(”)}g have a

classical triangular shaped autocorrelation sequence [1]:
1-|d, -d|b /B, for |d, —d|<B/b,
[Ci]k,kﬁ = 0

3

otherwise
where b, =B, /B, is the normalized baseline relative to the

i-th terrain patch, which depends on the radar system
parameters and on the local terrain slope; B, denotes the
baseline orthogonal to the line of sight and B, denotes the
orthogonal critical baseline of the i-th component, i.e., the
value for which the speckle of the i-th component is
completely decorrelated at the extremities of the array. For
b, =0 we obtain the case with constant amplitude signals
along the array; b, is a basic measure of the spatial

decorrelation induced by locally flat terrain patches. It is
possible to take into account also the effects of volumetric
or temporal decorrelation, but they are not considered in
this work. Vector v(n) models the additive thermal noise, a
spatially white complex Gaussian process, with zero mean
and power o .

The goal here is to estimate the interferometric phases
{(pl.}:fl when a rough knowledge about the overall source
location is available, and {r}" and {C]" are
deterministic unknown parameters; Ng; and o are

assumed to be known.
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3. DIAGONAL LOADED INTERPOLATION

Before describing how the IA approaches work and
their possible extension, it is useful to comment on the
choice of the virtual ULA element number X, . It is worth

remarking that in InSAR data pre-processing, the
deramping procedure refers all the IPs to a selected
reference [4]. As a consequence, the resulting IPs are
located in a well-defined phase interval usually centred
around zero; if N, >2, the maximum width of this interval

can be expressed as 27(K, —1)(Ny—1)/Ny . Unambiguous

source IP estimates can be achieved if the UR of the virtual
array is greater than this interval; in formulas:

27(K, -1)>27(K, ~1)-(Ng 1)/ Ny (4)
which yields a bound for K, :
K, (Ns-1)+1
K, >M. 5)
NS

As a consequence, given K, and N, it may result that
K, =K, as in [8] is sufficient to exploit all the NLA

potentialities in terms of UR. However, greater values of
K, may be beneficial for the estimation accuracy. This

issue is further investigated in Section 4.
After deramping and once a value for K, has been

selected, we can carry on with the interpolation process. In
the IA approach developed by Friedlander in the early ‘90s
[7], the virtual array output is obtained by a LS fitting with
the coefficients selected so as to minimize the interpolation
error over a continuous phase interval, called sector of
interest (SOI), containing the true IPs of our application.
More in details, define a set of s (frequency) samples
uniformly spaced into the chosen sector, [¢, ¢, - ¢];

denote with a(g,) and

virtual and actual array, respectively [8]. Then, the output
vector of the virtual array can be obtained by a KxK,

a(¢,) the steering vector of the

transformation matrix H, by solving the least squares
problem
H, = argminHK —HfAHi (6)
Hp

where A =[a(4) a(g,)], A=[a(g) a(¢,)] and
|{l. indicates the Frobenius norm. Under the assumption
that s > K , the solution to the minimization problem stated
in (6) is given by H, :(AAH)f1 AA" . The K,xK,
autocorrelation matrix of the additive noise in the virtual
array data is given by o’HYH,, thus this noise should be

whiten if we want to estimate the IPs by means of a
superresolution method such as root-MUSIC [10] or WSF
[4]. Unfortunately, when K, > K the matrix HZH, is rank
deficient, thus it can not be inverted to design the whitening
transformation. To overcome this problem, we propose a
diagonal loading approach, carrying out the interpolation
and the noise whitening as follows:

v=(Q, +5:1) Hjy (7

where QF:(HﬁHF)l’2 and &, is a constant parameter,

properly selected to make invertible the root of the noise
autocovariance matrix, without noticeably worsen IP
estimation  performance (approximated  whitening).
Obviously, we can use &,=0 when K, <K (perfect
whitening).

The other approach to array interpolation that we
propose to apply in this work is a straightforward extension
to the NLA InSAR case of the interpolation algorithm
proposed by Munson and Choi in [9]. It was designed for
the reconstruction of a band limited signal from its
nonuniform samples. The only a priori knowledge on the
signal that is required is its power spectral density, which in
the simplest case reduces to the SOI information previously
defined. To explain how the algorithm works, it is
necessary to introduce two more vectors, k and k: k is a
K -dimensional vector which describes the NLA structure,
ie. its elements are [k| =d,/B, i=1,2, .. K; kK is
analogous to k, but it is referred to the K, element ULA.
As stated in equation (1), the vector y(n) can be expressed
as the sum of a signal vector y(n), which in particular

depends on the source IPs, and the thermal noise vector
v(n). To simplify the notation, we will omit the
dependence on index n» in the following. In order to
estimate the signal vector y,,, of the ULA described by k,
we want to determine a K, xK interpolation matrix H,,
minimizing the MSE:

H, = argHmin E{(XULA — oL )2} ®)

Xos =H,y. This
orthogonality principle and the solution of the well known
Wiener-Hopf equation [9]. However, the exact calculation
of matrix H,, requires knowledge of the autocorrelation

where minimization involves the

sequence of y,,,, which is not available in our application.

Knowledge of the SOI enables us to assume a flat signal
spatial power spectral density over the frequency region
corresponding to the SOI and null elsewhere; this is enough
to proceed on with the interpolation. With this assumption,

the solution to problem (8) is given by H, =D(B+7lI)"
[9], where D is a
[D]u =sinc[(k,—k,)p] and B is a KxK matrix with
[B],, =sinc[(k,—k)p], where A=SOl/(27); 7 is a

K,xK matrix of elements

regularization parameter which depends on o, resulting

from the solution of the Wiener-Hopf equation. Notice that
the previous formulas are valid only with a null SOI central
phase. The final result of the interpolation process is
Fus =H,x+H, v, where H,v is a coloured noise vector.

Similarly to what already stated about the diagonally loaded
Friedlander method, this noise can not be whitened when
K, > K , because the K, x K, noise autocorrelation matrix

o H, H! is rank deficient. To solve this problem, we apply
again a diagonal loading technique, which leads to the final
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form of the virtual ULA data expressed below:
iULA = (Qw + 5MI)71 H,y )
where Q,, = (HMHf; )”2 and ¢, is the selected loading

parameter. Again, we can use ,, =0 when K, <K .

Once the virtual ULA output has been estimated, the
root-MUSIC method for interpolated arrays [7] is employed
to estimate the source IPs. More in detail, they are
estimated as (K, —1) times the angle of the N roots of the

polynomial f(z)= aT(z")Q’léé”Q’la(z) closest to the unit
circle, where the K, x(K,-N) matrix G contains the

noise subspace eigenvectors of the interpolated sample
correlation matrix defined as  R=(1/N)Y." v(n)y"(n),

n=1

where y is either y or ¥, a(z)=[z° 2 and Q!
is the noise whitening matrix.
4. NUMERICAL ANALYSIS

The performance of the two IA methods has been
investigated by means of 10*Monte Carlo runs. Three-
element NLA structures ( K =3, dual baseline system) are
quite common in practical situations, thus we considered
the array which can be obtained thinning a full ULA with
K, =4 the smallest baseline is 1/3 of the overall baseline.

Using the notation introduced in the previous section, we
have k=[0 2/3 1]. We assumed N; =2, the maximum
handled by the chosen NLA; where not otherwise stated,

we also assumed a scenario with a difference between the
two interferometric phases equal to Ap =@, — ¢, =290° ; the

other parameters were set as follows: N =32, b =b,=02,
SNR, = SNR, =12dB, where SNR =17,/c?. According to
equation (5), the minimum K, which allows to estimate the
IPs unambiguously in this scenario is K, =K =3 in fact,
after the deramping procedure, the maximum distance
between IPs resulting from equation (4) is Ag,,, =540°
and the three-element ULA has a UR of 720°. Moreover,
we assumed the deramped source IPs symmetrical with
respect to the null phase, i.e. ¢ =-¢,. The Cramér-Rao
lower bound (CRLB) for the NLA was also calculated (see
[8] for details).

The SOI was centred around zero and its width was
selected equal to Ag,,,, =540° for both methods, in order to
make the comparison as fair as possible, assuming for them
the same a priori information about overall interferometric

phase location; the samples {¢,} = were uniformly spaced

=1
in the sector with a step of 3°. We run the simulations
setting K, =K =3 and K, =K, =4; vector k were equal to

[0 1/2 1] in the first case and [0 1/3 2/3 1] in the

second. In the following, IA indicates the Friedlander
method and MSE-IA indicates the Choi-Munson method,
both implemented with K, = K =3 ; prefix DL denotes the

use of diagonal loading, also implying K, =K, =4.
Moreover, we chose &,=6, =5; extensive numerical

results suggested that the estimation accuracy improves by
using loading parameters relatively high, still obtaining a
satisfactory whitening effect; it has also been observed that
the value of reagularization parameter 7 does not sensibly
affect the estimation performance of DL-MSE-IA.

Figures 2-4 investigate the estimation accuracy in terms
of RMSE obtained by IA and MSE-IA under different
InSAR scenarios, with or without diagonal loading; the
curves labelled IA are a correct version of those showed in
[8], where unfortunately the numerical results were slightly
affected by a bug in our MATLAB code.

Fig. 2 shows the estimation accuracy as a function of
Ag ; although DL-MSE-IA has the lowest RMSE with
close sources, DL-IA is the most efficient for larger phase
distances. DL-IA also gives the most accurate estimates on
a wide range of source signal-to-noise ratio (Fig. 3). We
observe a maximum threshold effect gain of 3 dB for
intermediate values of SNR, . In the same figure is reported

also the curve obtained by applying spectral MUSIC [10]
directly to the NLA data, showing that DL-IA gains more
than 3 dB on spectral MUSIC. Fig. 4 shows that increasing
K, has a beneficial effect also against the source

decorrelation; DL-IA is again the most efficient.
Fig. 5 reports the estimation accuracy as a function of
Ap for a different array, denoted with vector

k=[0 2/7 4/7 1], with Ng=3, SOI = 650°
ands,. =6, =5. In this case Ap=¢;-¢;, ¢ =—¢; and

0, =0.
estimation with this array. When the sources are very
spaced, the spurious peaks affect dramatically also the
estimation performance of interpolated arrays; as a
consequence, interpolating a K -element ULA could be
enough even if it does not preserve the full phase UR.
However, increasing K, still provides some benefits to the

Spectral MUSIC generally fails in the phase

accuracy of DL-IA for limited Ag .
To summarize, increasing K, generally provides more

accurate estimates; DL-IA seems to be almost always the
most efficient. Other simulations, not reported here for lack
of space, showed that DL-IA provides nearly consistent
estimates of the IPs for small normalized baselines. We
remark that the SOI chosen in this work is not optimized,
especially for DL-MSE-IA; in fact, narrower SOI can
improve the resolution capabilities of the method. However,
we considered the simplest way to convey the a priori
information about the source location to the interpolation
algorithm; numerical analysis proves the high efficiency of
DL-IA with this choice.

5. CONCLUSIONS

We tackled the problem of interferometric phase estimation
of InSAR signals in presence of layover for systems with a
low number of phase centres and NLA geometry. We
extended the deterministic interpolated array approach for
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Figure 2 — k= [0 2/3 1], estimation of ¢,. RMSE of interpolated array
methods as a function of Ag.
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Figure 4 — k = [0 2 3], estimation of ¢. RMSE of interpolated array
methods as a function of b,.

the reconstruction of a virtual ULA with a number of
elements greater than that of the actual NLA, by means of
a diagonal loading approach (DL-IA). We compared its IP
estimation performance with that obtained by another
interpolation method, the MSE-IA, based on the
minimization of the interpolation MSE; the comparison was
carried out under different InSAR scenarios and for
different values of K,, the number of virtual ULA

elements. In both cases, IP estimation has been performed
by means of root-MUSIC. The numerical analysis showed
that selecting K, greater than the maximum classical value

brings a beneficial effect on estimation accuracy. Also, the
unambiguous height range of the NLA is preserved.
However, when the layover components are very spaced —
a case which is not so common — accuracy is not good. DL-
IA is the most accurate [P estimator in most of the
simulated scenarios we considered, and it is always pretty
close to the CRLB calculated for the NLA.
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