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ABSTRACT lation in this paper, but the results can be readily extended to

This paper investigates channel estimation and equaliz&ther modulation methods as well.
tion for the relay node of a cooperative diversity system
based on superposition modulation. Exploring the superpo- 2. SYSTEM MODEL

sition structure of the fransmission data, we propose a NoVglithout losing generality, we always assume node A trans-
channel estimator for the relay node. Without any pilot Sejits and B receives at a time slotf A successfully decodes

quence, the proposed estimator can converge to the idégle gata from B during the time slot 1, it transmits a packet
case as if the transmission data is known to the receivegs v superimposed symbols as:

We also re-derive the soft-input-soft-output MMSE equalizer
to match the superimposed data structure of the cooperative Xpi=V1-V2-spi+Y-sB i1, (1)
scheme. Finally computer simulation results are given to ver-
ify the proposed algorithm. wheresp andsg are the data vector for A and B respectively,
the subscripi represents the time index, afd< y< < 1.
1. INTRODUCTION Otherwise if A fails to decodeg i_1, it only transmits its

. . . . own data packet.
Among various cooperative diversity schemes those that use Since this paper mainly considers the relay node, we only

non-orthogonal subspaces are of particular interest due : ; e
their high spectral efficiency [1, 2]. This paper focuses on z%qu the received signal vector at node B which is given by

particular non-orthogonal decode-and-forward scheme based yei=Hi-xa +n;, 2)
on superposition modulation described in [3], where a system ’ '
with two source nodes, A and B, is considered, each trangvhereH; andn; are the Sylvester channel matrix and noise
mitting data in turn to one destination node, and the transvector from A to B respectively. For later use, we express
mission node transmits a superposition of its own data anga, i = [Xa, i(n),...,Xa i(n—M+1)]", and similarly for other
the data received from the other source node during the praectors whenever necessary.
vious slot. Itis clear from (1) thaka i(n) is an PAM signal with four

A key point of this scheme is for the relay node to reliablyconstellation points. Because, for reliable detection, the con-
detect the transmission data. In the original protocol [3], thestellation points should be separated as far as possible [6], the
channel is assumed to be flat fading and known, which is ng@ptimumy must let the four constellation points be equally
the case in most scenarios. Channel estimation and equalpart. Based on this observation, some simple derivation im-
ization are thus necessary. Although pilot symbols are usunediately leads to
ally required for the channel estimation, they can be saved ygpt: 0.2. (3)
at the relay node by exploring the superposition structure of

the transmission data where part of the data is known to th 0;;"3 yrzeiug ZmaHtches well Wh'th ? statemlent n [g] that
receiving node. This falls into the general area of the superz-~ /2 V" X U.e. MOWEVET SUCH optimury only COnsiders

imposed training (see [4] and the references therein). Mangﬁetgengral SV"."dbO' ?jett?]ctlop]. _Whebn the whole c%operatlve
related algorithms have been proposed, most of which atyStem IS considered, the choicejobecomes much more
complicated since it also depends on the condition of the re-

tempt to minimize the influence of the information data on h Is. The detail of this topic is b d th f
the training sequence by exploring some periodic propertiedy cNanneis. The detail ot tis topic 1S beyond the Scope o

of the training data. Such approaches, unfortunately, can n IS paper.

be applied for the superposition-based cooperative system,

since we now have little control of the “training sequence” 3. TURBO LS CHANNEL ESTIMATOR

which is in fact the information data of a source node andn this paper, we assume the channel is quasi-static (slow

generally not periodic. fading), i.e. remains unchanged within one packet. We also
In this paper, we propose a novel turbo least-square (LS3ssume that, with guarded interval, no inter-packet interfer-

channel estimator by using the a priori information fed backence occurs. So the time indéis dropped whenever no

from the decoder to iteratively improve the channel estimaconfusion is caused.

tion. In the working SNR range, the proposed estimator con-  For notation purposes, the channel estimation input is ex-

verges to the ideal estimator as if all the transmission data afgressed ae = [c(n),...,c(n— M+ 1)]™. The LS channel es-

known. We also re-derive the soft-input-soft-output (SISO)}timator is then given by

MMSE equalizer [5] for this particular superimposed data .

structure. For clarity of exposition, we assume BPSK modu- h= (CC”)*1 -Cys, 4)
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where C = [c(n),...,c(n — Ny, + 1)]", <¢(n) = the error propagation can be effectively suppressed. To be
[c(n),...,c(n—N_. +1)]", Ny, and N_ are the lengths specific, wherSNR — o, we haveLLRey(sa(n)) — % and

of yg and the LS estimator respectively, and from (2) weE[sa(n)] = sa(n). WhenSNR— —co, on the other hand, we
haveNy, =M — Ny + 1 andN is the channel length. The  haveLLRex(sa(n)) — 0 and Esa(n)] = 0. Therefore, (7) is
simplest method to explore the superimposed data structugegood realization of (6).

for the channel estimation is to regasg as the training In most cases, the noise power is also unknown and can
sequence and as the interference, or to let= y-sg in  be estimated as
(4). The performance is, obviously, severely limited by the

so-called “co-packet interference” frogi1 — y2 sa.

Since an equalizer is usually required for a selective Nyg
fading channel, similar to the decision feedback equalizer A ) ) ) )
(DFE), we may feed back the hard decision of the equalizewhereH is the estimated channel matrix. It is obvious that
output,§a, to the channel estimator to suppress the co-packd®) depends on not onl but alsoc. Thus if onlysg is used

o Fcoyel
52— eyl ©)

interference so that for the channel estimation, then even with= H, the noise
5 - power estimation is still limited to the co-packet interference
c=Yy-sg+1-y*-8a. (5)  from sa. The turbo channel estimator, however, can solve

. . . . . this problem well because it has not only a better estimation
The channel estimator and equalizer operate in an iterative, ~

way. Initially, 5 = 0 and onlysg is applied for the chan- 97 H. buLaIso !es§ co-packet interference by includirgnF

nel estimation. The estimated channel is then used by tH ¢ s showniin (7).

equalizer whose output, after the hard decision device, is fed

back for the next channel estimation. Although ideally such 4. SISO MMSE EQUALIZER WITH

an approach converges to t.he case as if kgthnd sa are SUPERIMPOSED DATA

known to the LS estimator, it may suffer from serious errorin this paper, we are particularly interested in the linear SISO
propagation when, for example, the channel SNR is low oMMSE equalizer due to its simplicity and nature connection
the co-packet interference is large due to a smafin ideal o the turbo structure [5]. After the channel estimation, the

input to such an iterative LS approach has the form of known datasg must be removed either before or after the
5 cn equalization, which are, for clarity of exposition, denoted as
c=y-sg+V1-y?-1(3a), (6)  “pre-cancellation” and “post-cancellation” respectively. Al-

though it looks straightforward, the “pre-cancellation” ap-
proach suffers performance loss in SNR. To illustrate this

Since the original superposition-based cooperative diverghenomena, we first assume the channel is perfectly known.
sity belongs to ?he gengralrk)acode—and—forwarcfcheme a Then if sg is removed before the equalization, the equalizer
decoder is usually followed after the equalizer. Inspired bynPUtis givenbyy’ = yg—yH-sg = \/1— y*H-sa+n, and
the excellent performance of the turbo equalizer, we propos&'® eduivalent channel SNR becomes
a so-called turbo LS estimator so that

wheres, is an estimate ofa, f(Sa) — sa whensa is close
tosa andf(sa) — O otherwise.

1y
c=y-sg+/1—y? E[sal, (7 SNR="52— (10)
where Hsa(n)] = 1-P(sa(n) =1) 4+ (—1) - P(sa(n) = —1), To the contrary, if the equalizer directly operatesygnand

removessg after the equalization, the channel SNRLjr2.
P(sa(n)) — 1+sa(n)-tanh(LLR(sa(n))/2) (8 Thisclearly reveals the SNR loss from the “pre-cancellation”
2 ’ approach, where the exact value of loss depends Wvhen
the channel is not perfectly known, the analysis is more com-
plicated since the channel estimation error becomes another
source of “noise”. However, in a working SNR range, the
"broposed turbo channel estimator gives very small error and
the above conclusion still approximately holds. When the
SNR is low, on the other hand, the BER performance dete-

i Equalizer [o(D)yme P | LR A e — riorates seriously, making little difference between the “pre-
- and post- cancellation” approaches. Therefgrshould al-
(h, %)

andLLR(sa(n)) = In[P(sa(n) = 1)/P(sa(n) = —1)] which
is the log-likelihood fed back from the decoder. The over-
all structure of the turbo channel estimator is illustrated i
Figure 1, where initiallyLLR gx(sa(n)) = O for all n.

- ways be removed after the equalizer, and it is then necessary
e R to re-derive the SISO MMSE equalizer to match the super-
imposed data structure.

The detail of the equalizer is shown in Figure 2, where
w(n) is the equalizer vectoh(n) is a DC termA is the de-
cision delay,ys; (n) = yH - sg which corresponds to thes
part inyg andH is the estimated channel matrix. In par-
ticular, Xa(n— A) is the equalizer output, or the estimation
of xa(n—A). Subtractingka(n—A) by w"(n)ys;(n) gives
pa(n—A), the estimation ofa(n—A). Finally the LLR gen-
grator calculates the extrinsic informatidrb,Rex(sa), based
1Extra zeros need to be padded:tawhenN, > Np. on the Gaussian assumption.

Channel

Estimator

Figure 1: The turbo LS channel estimator.

Because only the extrinsic informatith R ¢y is fed back
from the decoder, and also due to the deinter-/inter-leave
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e iReafomfedeoder only sg is used for the channel estimation, the proposed turbo
| ‘ LS channel estimator is applied, baif andsa are used for
vl | whayata) +on) [ IE) SO Sk ~-ury  the channel estimation, and the channel is perfectly known,
. - — } ' which are denoted as “L&s”, “LS-turbo”, “LS-both” and
W) ay() 3 “Known-channel” respectively. For all of the cases, the turbo
SISO MMSE Equalizer | equalization is applied and the iteration number is séd.as

All the results below are obtained by averaging ovg300
independent runs.

At first, we sety? = 0.2 as was suggested in Section 2,
Figure 2: The SISO MMSE equalizer with superimposedand letsg be removed after the equalizer. Figure 3 shows
data. the mean-squared-error (MSE) of the channel tap estimation
which is defined a#ISE(h) = E|/h — h|?/|h|?. Itis clearly
shown that in the working SNR range (eNR > 5dB), the
proposed turbo LS estimator converges to the case as if both

[N
i h(n) and 6 from the channel estimator

It is clear from (1) that, for a knowsg(n), xa(n) can

only take two valuesZa = /1—y?+y-ss(n) and2a0 = s ands, are known to the receiver. On the other hand, when
—/1—y?+y-sg(n), corresponding tea(n) = +1respec- SNR is low (e.g. SNR < 2dB), the error propagation can
tively. Then we have be effectively suppressed, since then the turbo LS estimator

- works like a traditional LS estimatdr
Xa(n) = Za1-P(sa(n) = 1) + Zao - P(sa(n) = —1)

EXA(N)] = 2341 - P(sa(n) = 1) + 2% P(sa(n) = ~1), ;

(11) o 5,
where Rsa(n)) is calculated according to (8) amd= E[a] ity

for any vectora. Then using (11), settingLR (sa(n—4)) = A
0, and with similar procedures as those in [5], we obtain the
equalizer tap-vector and outputas

w(n) =(1- VZ) {Cov(ys(n))+ glo' .
[(1— %) — Cov(xa(n—A))J A, AR} Ay,

—6—6—o— o4

Ra(n—2) =y-sa(n—8) + W (N)[ya(n) — Fa(n)+
(Xg(n—4) —y-ss(n—A4))Ha], !
R _(12) . i
respectively, wherd, is the @+ 1)th column of H and % 5 10 15 20

Cov(a) = E[aa"] + E?[a] for any vectora. Note that S

Cov(yg(n)) andyg(n) can be easily further decomposed in
term of channel parameters abdR (sp). )
The mean and covariance §f(n— A) for a givensa(n— Figure 3: The Channel MSE fof = 0.2
A) = p are obtained as
It is clearly shown in Figure 4 that the BER performance

Hsy, i(N—A) = E[Sa(n—A)[sa(n—A)] with the turbo LS estimator is almost identical to that of the
= E[a(n—A)[sa(n—A)] — E[w"ys, (n)] ideal case where the channel is perfectly known, and is sig-
- . nificantly better than that with the ‘LSg” approach, where,
=yss(n—4)+/1-y27w" (nN)Hy — yw"(n)Hsg(n)  for example, abouBdB improvement in SNR can be ob-
O'SZA(n —A) = Coviga(n—A)|sa(n—A)] served aBER=107°.
s o The second example compares the performance betyveen
= (1- y)w"Ha[1— Hiw(n)], the approaches of “pre-cancellation” and “post-cancellation”

_ (13)  for sp. For a better exposition, we particularly $8t= 0.45,
whereps, i (i = 1,0) corresponds ta” = 1 respectively.  pecause, according to (10), the larger {Reis, the bigger
Note that the covariance h(n—A) andSy(n—A) are the  the difference between the two approaches appears. Fig-
same. Finally, with (13) and the Gaussian assumption, Wre 5 shows the equalizer output SNR which is obtained as
obtainLLRex(sa). E[u2 (n)]/E[02 (n)], whereps, i(n) and o2 (n) are given
by (13).The SNR advantage of the “post-cancellation” over

5. NUMERICAL SIMULATIONS the “pre-cancellation” approach can be easily observed.
In this section, the channel vector is set &s—= Figure 6 shows the corresponding BER performances. It
[0.10.31030.1]", a half rate convolutional code with cod- is clear that, with “post-cancellation”, the best BER perfor-
ing vectors of[1 0 1" and[1 1 1" is used to encode the mance, wh_ich is achieved when the channel is knovv_n, is al-
information data ofsa(n), each packet containk28 sym- ~ most identical to that by applymg the t_urbo LS estimator.
bols, the length of the channel estimator and equalizer af@n the other hand, though it looks straightforward, the ap-
given by5 and 10 respectively. We consider four cases, i.e.proach of “LSsg” with “pre-cancellation” gives the worst

2The detail of the derivation is omitted due to the space constraint of this  3The MSE of the noise power estimation is similar to Figure 3, but is not
paper. shown here due to the space constraint.
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Figure 4: The BER performance fgf = 0.2
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Figure 5: The equalizer output SNR fgf = 0.45. Solid
lines: “pre-cancellation”; Dash lines: “post-cancellation”.
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Figure 6: The BER performance fgf = 0.45. Solid lines:
“pre-cancellation”; Dash lines: “post-cancellation”.

transmission or at anytime that a node fails to decode the
other node’s data, the "superposition” structure is ruined and
pilot symbols may be necessary to resume the process. Since
such events rarely occur, over all, we improve the spectral
efficiency by exploring the superimposed structure.

[1]

2]

[3]

BER performance. ltis interesting to observe that the perfor{4]

mance for “LSsg” with “post-cancellation” is close to that

for “LS-turbo” with “pre-cancellation”, because the perfor-

mance loss suffered by the two cases are due to the neglect

of v/1— y2sp at the channel estimator and the negleqtspf
at the equalizer respectively. But wif = 0.45, the powers

of v/1— y2sp andysg are almost the same. This observation

1y

indicates that the information afs andsa should be used

as much as possible by the channel estimator and equaliz

which is in fact the philosophy behind the proposed approa
of this paper.

6. CONCLUSION

[5]

This paper proposed a novel turbo LS channel estimator for
the relay node of a cooperative system based on superposi-

tion modulation. Without any pilot symbols, the proposed

estimator converges to the ideal case as if lsathndsg are

known to the receiver. Simulation results successfully verify
the proposed algorithm. But we point out here that such a

scheme is not totally "blind”. At the very beginning of the
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