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ABSTRACT
This paper investigates channel estimation and equaliza-

tion for the relay node of a cooperative diversity system
based on superposition modulation. Exploring the superpo-
sition structure of the transmission data, we propose a novel
channel estimator for the relay node. Without any pilot se-
quence, the proposed estimator can converge to the ideal
case as if the transmission data is known to the receiver.
We also re-derive the soft-input-soft-output MMSE equalizer
to match the superimposed data structure of the cooperative
scheme. Finally computer simulation results are given to ver-
ify the proposed algorithm.

1. INTRODUCTION

Among various cooperative diversity schemes those that use
non-orthogonal subspaces are of particular interest due to
their high spectral efficiency [1, 2]. This paper focuses on a
particular non-orthogonal decode-and-forward scheme based
on superposition modulation described in [3], where a system
with two source nodes, A and B, is considered, each trans-
mitting data in turn to one destination node, and the trans-
mission node transmits a superposition of its own data and
the data received from the other source node during the pre-
vious slot.

A key point of this scheme is for the relay node to reliably
detect the transmission data. In the original protocol [3], the
channel is assumed to be flat fading and known, which is not
the case in most scenarios. Channel estimation and equal-
ization are thus necessary. Although pilot symbols are usu-
ally required for the channel estimation, they can be saved
at the relay node by exploring the superposition structure of
the transmission data where part of the data is known to the
receiving node. This falls into the general area of the super-
imposed training (see [4] and the references therein). Many
related algorithms have been proposed, most of which at-
tempt to minimize the influence of the information data on
the training sequence by exploring some periodic properties
of the training data. Such approaches, unfortunately, can not
be applied for the superposition-based cooperative system,
since we now have little control of the “training sequence”
which is in fact the information data of a source node and
generally not periodic.

In this paper, we propose a novel turbo least-square (LS)
channel estimator by using the a priori information fed back
from the decoder to iteratively improve the channel estima-
tion. In the working SNR range, the proposed estimator con-
verges to the ideal estimator as if all the transmission data are
known. We also re-derive the soft-input-soft-output (SISO)
MMSE equalizer [5] for this particular superimposed data
structure. For clarity of exposition, we assume BPSK modu-

lation in this paper, but the results can be readily extended to
other modulation methods as well.

2. SYSTEM MODEL

Without losing generality, we always assume node A trans-
mits and B receives at a time sloti. If A successfully decodes
the data from B during the time sloti−1, it transmits a packet
of M superimposed symbols as:

xA, i =
√

1− γ2 · sA, i + γ · sB, i−1, (1)

wheresA andsB are the data vector for A and B respectively,
the subscripti represents the time index, and0 < γ2 < 1.
Otherwise if A fails to decodesB, i−1, it only transmits its
own data packet.

Since this paper mainly considers the relay node, we only
show the received signal vector at node B which is given by

yB, i = Hi ·xA, i +ni , (2)

whereHi andni are the Sylvester channel matrix and noise
vector from A to B respectively. For later use, we express
xA, i = [xA, i(n), . . . ,xA, i(n−M+1)]T, and similarly for other
vectors whenever necessary.

It is clear from (1) thatxA, i(n) is an PAM signal with four
constellation points. Because, for reliable detection, the con-
stellation points should be separated as far as possible [6], the
optimumγ must let the four constellation points be equally
apart. Based on this observation, some simple derivation im-
mediately leads to

γ2
opt = 0.2. (3)

This result matches well with a statement in [3] that
0.0756 γ2 6 0.2. However such optimumγ only considers
the general symbol detection. When the whole cooperative
system is considered, the choice ofγ becomes much more
complicated since it also depends on the condition of the re-
lay channels. The detail of this topic is beyond the scope of
this paper.

3. TURBO LS CHANNEL ESTIMATOR

In this paper, we assume the channel is quasi-static (slow
fading), i.e. remains unchanged within one packet. We also
assume that, with guarded interval, no inter-packet interfer-
ence occurs. So the time indexi is dropped whenever no
confusion is caused.

For notation purposes, the channel estimation input is ex-
pressed asc = [c(n), . . . ,c(n−M +1)]T. The LS channel es-
timator is then given by

ĥ = (CCH)−1 ·C yB, (4)
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where C = [c(n), . . . ,c(n − NyB + 1)]T, c(n) =
[c(n), . . . ,c(n− NL + 1)]T, NyB and NL are the lengths
of yB and the LS estimator respectively, and from (2) we
haveNyB = M−Nh +1 andNh is the channel length1. The
simplest method to explore the superimposed data structure
for the channel estimation is to regardsB as the training
sequence andsA as the interference, or to letc = γ · sB in
(4). The performance is, obviously, severely limited by the
so-called “co-packet interference” from

√
1− γ2 sA.

Since an equalizer is usually required for a selective
fading channel, similar to the decision feedback equalizer
(DFE), we may feed back the hard decision of the equalizer
output,s̃A, to the channel estimator to suppress the co-packet
interference so that

c = γ · sB +
√

1− γ2 · s̃A. (5)

The channel estimator and equalizer operate in an iterative
way. Initially, s̃A = 0 and onlysB is applied for the chan-
nel estimation. The estimated channel is then used by the
equalizer whose output, after the hard decision device, is fed
back for the next channel estimation. Although ideally such
an approach converges to the case as if bothsB andsA are
known to the LS estimator, it may suffer from serious error
propagation when, for example, the channel SNR is low or
the co-packet interference is large due to a smallγ. An ideal
input to such an iterative LS approach has the form of

c = γ · sB +
√

1− γ2 · f (ŝA), (6)

whereŝA is an estimate ofsA, f (ŝA)→ sA whenŝA is close
to sA and f (ŝA)→ 0 otherwise.

Since the original superposition-based cooperative diver-
sity belongs to the generaldecode-and-forwardscheme, a
decoder is usually followed after the equalizer. Inspired by
the excellent performance of the turbo equalizer, we propose
a so-called turbo LS estimator so that

c = γ · sB +
√

1− γ2 ·E[sA], (7)

where E[sA(n)] = 1·P(sA(n) = 1)+(−1) ·P(sA(n) =−1),

P(sA(n)) =
1+sA(n) · tanh(LLR(sA(n))/2)

2
, (8)

and LLR(sA(n)) = ln[P(sA(n) = 1)/P(sA(n) = −1)] which
is the log-likelihood fed back from the decoder. The over-
all structure of the turbo channel estimator is illustrated in
Figure 1, where initiallyLLRex(sA(n)) = 0 for all n.
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Figure 1: The turbo LS channel estimator.

Because only the extrinsic informationLLRex is fed back
from the decoder, and also due to the deinter-/inter-leaver,

1Extra zeros need to be padded toc whenNL > Nh.

the error propagation can be effectively suppressed. To be
specific, whenSNR→ ∞, we haveLLRex(sA(n)) → ∞ and
E[sA(n)] = sA(n). WhenSNR→−∞, on the other hand, we
haveLLRex(sA(n))→ 0 and E[sA(n)] = 0. Therefore, (7) is
a good realization of (6).

In most cases, the noise power is also unknown and can
be estimated as

σ̂2 =
|Ĥ ·c−yB|2

NyB

, (9)

whereĤ is the estimated channel matrix. It is obvious that
(9) depends on not onlŷH but alsoc. Thus if onlysB is used
for the channel estimation, then even withĤ = H, the noise
power estimation is still limited to the co-packet interference
from sA. The turbo channel estimator, however, can solve
this problem well because it has not only a better estimation
of Ĥ, but also less co-packet interference by including E[sA]
in c as shown in (7).

4. SISO MMSE EQUALIZER WITH
SUPERIMPOSED DATA

In this paper, we are particularly interested in the linear SISO
MMSE equalizer due to its simplicity and nature connection
to the turbo structure [5]. After the channel estimation, the
known datasB must be removed either before or after the
equalization, which are, for clarity of exposition, denoted as
“pre-cancellation” and “post-cancellation” respectively. Al-
though it looks straightforward, the “pre-cancellation” ap-
proach suffers performance loss in SNR. To illustrate this
phenomena, we first assume the channel is perfectly known.
Then if sB is removed before the equalization, the equalizer
input is given byy′ = yB−γH ·sB =

√
1− γ2H ·sA+n, and

the equivalent channel SNR becomes

SNR=
1− γ2

σ2 . (10)

To the contrary, if the equalizer directly operates onyB and
removessB after the equalization, the channel SNR is1/σ2.
This clearly reveals the SNR loss from the “pre-cancellation”
approach, where the exact value of loss depends onγ. When
the channel is not perfectly known, the analysis is more com-
plicated since the channel estimation error becomes another
source of “noise”. However, in a working SNR range, the
proposed turbo channel estimator gives very small error and
the above conclusion still approximately holds. When the
SNR is low, on the other hand, the BER performance dete-
riorates seriously, making little difference between the “pre-
and post- cancellation” approaches. ThereforesB should al-
ways be removed after the equalizer, and it is then necessary
to re-derive the SISO MMSE equalizer to match the super-
imposed data structure.

The detail of the equalizer is shown in Figure 2, where
w(n) is the equalizer vector,b(n) is a DC term,∆ is the de-
cision delay,ysB(n) = γĤ · sB which corresponds to thesB

part in yB and Ĥ is the estimated channel matrix. In par-
ticular, x̂A(n−∆) is the equalizer output, or the estimation
of xA(n−∆). Subtractingx̂A(n−∆) by wH(n)ysB(n) gives
ŝA(n−∆), the estimation ofsA(n−∆). Finally the LLR gen-
erator calculates the extrinsic information,LLRex(sA), based
on the Gaussian assumption.
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Figure 2: The SISO MMSE equalizer with superimposed
data.

It is clear from (1) that, for a knownsB(n), xA(n) can
only take two values:XA1 =

√
1− γ2 + γ ·sB(n) andXA0 =

−
√

1− γ2 + γ · sB(n), corresponding tosA(n) = ±1 respec-
tively. Then we have

xA(n) = XA1 ·P(sA(n) = 1)+XA0 ·P(sA(n) =−1)

E[x2
A(n)] = X 2

A1 ·P(sA(n) = 1)+X 2
A0 ·P(sA(n) =−1),

(11)
where P(sA(n)) is calculated according to (8) anda = E[a]
for any vectora. Then using (11), settingLLR(sA(n−∆)) =
0, and with similar procedures as those in [5], we obtain the
equalizer tap-vector and output as2

w(n) =(1− γ2) · {Cov(yB(n))+

[(1− γ2)−Cov(xA(n−∆))]Ĥ∆ĤH
∆}−1Ĥ∆,

x̂A(n−∆) =γ ·sB(n−∆)+wH(n)[yB(n)−yB(n)+

(xB(n−∆)− γ ·sB(n−∆))Ĥ∆],
(12)

respectively, whereĤ∆ is the (∆ + 1)th column ofĤ and
Cov(a) = E[aaH] + E2[a] for any vector a. Note that
Cov(yB(n)) andyB(n) can be easily further decomposed in
term of channel parameters andLLR(sA).

The mean and covariance ofŝA(n−∆) for a givensA(n−
∆) = SA are obtained as

µsA, i(n−∆) = E[ŝA(n−∆)|sA(n−∆)]

= E[x̂A(n−∆)|sA(n−∆)]−E[wHysB(n)]

= γsB(n−∆)+
√

1− γ2SAwH(n)Ĥ∆− γwH(n)ĤsB(n)

σ2
sA

(n−∆) = Cov[ŝA(n−∆)|sA(n−∆)]

= (1− γ2)wHĤ∆[1− ĤH
∆w(n)],

(13)
whereµsA, i (i = 1,0) corresponds toSA = ±1 respectively.
Note that the covariance ofx̂A(n−∆) and ŝA(n−∆) are the
same. Finally, with (13) and the Gaussian assumption, we
obtainLLRex(sA).

5. NUMERICAL SIMULATIONS

In this section, the channel vector is set ash =
[0.1 0.3 1 0.3 0.1]T, a half rate convolutional code with cod-
ing vectors of[1 0 1]T and [1 1 1]T is used to encode the
information data ofsA(n), each packet contains128 sym-
bols, the length of the channel estimator and equalizer are
given by5 and10 respectively. We consider four cases, i.e.

2The detail of the derivation is omitted due to the space constraint of this
paper.

only sB is used for the channel estimation, the proposed turbo
LS channel estimator is applied, bothsB andsA are used for
the channel estimation, and the channel is perfectly known,
which are denoted as “LS-sB”, “LS-turbo”, “LS-both” and
“Known-channel” respectively. For all of the cases, the turbo
equalization is applied and the iteration number is set as5.
All the results below are obtained by averaging over5,000
independent runs.

At first, we setγ2 = 0.2 as was suggested in Section 2,
and letsB be removed after the equalizer. Figure 3 shows
the mean-squared-error (MSE) of the channel tap estimation
which is defined asMSE(ĥ) = E|ĥ−h|2/|h|2. It is clearly
shown that in the working SNR range (e.g.SNR> 5dB), the
proposed turbo LS estimator converges to the case as if both
sB andsA are known to the receiver. On the other hand, when
SNR is low (e.g. SNR< 2dB), the error propagation can
be effectively suppressed, since then the turbo LS estimator
works like a traditional LS estimator3.
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Figure 3: The Channel MSE forγ2 = 0.2

It is clearly shown in Figure 4 that the BER performance
with the turbo LS estimator is almost identical to that of the
ideal case where the channel is perfectly known, and is sig-
nificantly better than that with the ‘LS-sB” approach, where,
for example, about3dB improvement in SNR can be ob-
served atBER= 10−5.

The second example compares the performance between
the approaches of “pre-cancellation” and “post-cancellation”
for sB. For a better exposition, we particularly setγ2 = 0.45,
because, according to (10), the larger theγ2 is, the bigger
the difference between the two approaches appears. Fig-
ure 5 shows the equalizer output SNR which is obtained as
E[µ2

sA, i(n)]/E[σ2
sA

(n)], whereµsA, i(n) andσ2
sA

(n) are given
by (13).The SNR advantage of the “post-cancellation” over
the “pre-cancellation” approach can be easily observed.

Figure 6 shows the corresponding BER performances. It
is clear that, with “post-cancellation”, the best BER perfor-
mance, which is achieved when the channel is known, is al-
most identical to that by applying the turbo LS estimator.
On the other hand, though it looks straightforward, the ap-
proach of “LS-sB” with “pre-cancellation” gives the worst

3The MSE of the noise power estimation is similar to Figure 3, but is not
shown here due to the space constraint.
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Figure 4: The BER performance forγ2 = 0.2
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Figure 5: The equalizer output SNR forγ2 = 0.45. Solid
lines: “pre-cancellation”; Dash lines: “post-cancellation”.

BER performance. It is interesting to observe that the perfor-
mance for “LS-sB” with “post-cancellation” is close to that
for “LS-turbo” with “pre-cancellation”, because the perfor-
mance loss suffered by the two cases are due to the neglect
of

√
1− γ2sA at the channel estimator and the neglect ofγsB

at the equalizer respectively. But withγ2 = 0.45, the powers
of

√
1− γ2sA andγsB are almost the same. This observation

indicates that the information ofsB andsA should be used
as much as possible by the channel estimator and equalizer,
which is in fact the philosophy behind the proposed approach
of this paper.

6. CONCLUSION

This paper proposed a novel turbo LS channel estimator for
the relay node of a cooperative system based on superposi-
tion modulation. Without any pilot symbols, the proposed
estimator converges to the ideal case as if bothsA andsB are
known to the receiver. Simulation results successfully verify
the proposed algorithm. But we point out here that such a
scheme is not totally ”blind”. At the very beginning of the
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Figure 6: The BER performance forγ2 = 0.45. Solid lines:
“pre-cancellation”; Dash lines: “post-cancellation”.

transmission or at anytime that a node fails to decode the
other node’s data, the ”superposition” structure is ruined and
pilot symbols may be necessary to resume the process. Since
such events rarely occur, over all, we improve the spectral
efficiency by exploring the superimposed structure.
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