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ABSTRACT
Parameter estimation and model order selection for lin-
ear regression models are two classical problems. In
this article we derive the minimum mean-square er-
ror (MMSE) parameter estimate for a linear regression
model with unknown order. We call the so-obtained
estimator the Bayesian Parameter estimation Method
(BPM). We also derive the model order selection rule
which maximizes the probability of selecting the cor-
rect model. The rule is denoted BOSS—Bayesian Order
Selection Strategy. The estimators have several advan-
tages: They satisfy certain optimality criteria, they are
non-asymptotic and they have low computational com-
plexity. We also derive “empirical Bayesian” versions of
BPM and BOSS, which do not require any prior knowl-
edge nor do they need the choice of any “user parame-
ters”. We show that our estimators outperform several
classical methods, including the AIC and BIC for order
selection.

1. INTRODUCTION

1.1 Problem Formulation

Consider the linear regression model
y = Xh+ ε (1)

where y ∈ RN is the vector of observed data, X =
[x1 · · ·xn] ∈ RN×n is a known matrix of n regressors
{xj}nj=1, h = [h1 · · ·hn]T ∈ Rn is the unknown param-
eter vector and ε ∼ N (0, σ2I) is a length N vector of
zero-mean Gaussian white noise with variance σ2.

We call (1) the full model and assume that the data
are generated by a model of the form

Mk : y = Xkhk + ε (2)
where nmin ≤ k ≤ n, Xk = [x1 · · ·xk] (i.e., Xk con-
sists of the first k columns of X), and hk = [h1 · · ·hk]T .
The model order k is assumed to be unknown. We con-
sider two interrelated tasks: the problem of estimating
h givenX and y, and the problem of detecting the order
k, given X and y.

If n ≤ N , X were full rank, and k were known, then
hk could be estimated by the maximum-likelihood (ML)
method. It is well known [1] that the ML estimator
coincides with the least squares (LS) estimator if the
noise ε is white and Gaussian:

ĥk,ML = ĥk,LS = (XT
kXk)−1XT

k y. (3)

This work was supported in part by the Swedish Research
Council (VR).

However, this ML estimate is not directly useful if k is
unknown. For example, by using a value of k in (3)
which is larger than the true model order, then one
would estimate many parameters which were in fact
equal to zero. This would result in a suboptimal es-
timate with a large variance. On the contrary, if one
used a value of k which were smaller than the true or-
der, then the estimate obtained by (3) would be biased.

In this article we obtain the best possible bias-
variance tradeoff for the estimation of h, in the sense of
minimum mean squared error (MMSE). We also solve
the model order selection problem by obtaining the
model order k with the highest posterior probability;
this selection rule is optimal in the sense that no other
method can have a higher probability of picking the
correct order. To facilitate our derivation, we will as-
sume that the parameters hj are independent, Gaus-
sian random variables: hj ∼ N (0, γ2

j ). In other words,
hk ∼ N (0, diag[γk]) where γk = [γ2

1 , · · · , γ2
k]T . The

Gaussian assumption is convenient from an analytical
point of view. Additionally, Gaussian random variables
have the largest uncertainty (in the sense of entropy) for
a given variance [2]. This makes the Gaussian density
a natural choice for the prior distributions. To begin,
we will assume that the variances {γ2

j }nj=1 and the noise
variance σ2 are known. Then, in Section 4, we will show
how to use our method without knowing any of the vari-
ances.

Note: The models {Mk}nk=nmin
considered in this

article are common in signal processing applications,
including finite-impulse-response (FIR) filter identifica-
tion and the estimation of polynomial coefficients [1].
By way of contrast, in statistical data analysis prob-
lems it is common to consider sparse models, where
the true model can contain any subset of the regressors
{xj}nj=1 [3]. The sparse regression problem is related to
the problem we study in this article, and in some sense
also more difficult since the number of possible models
grows exponentially with n, rather than linearly (which
is the case for the model we study in this paper). In a
related paper [4], we derived solutions (albeit approxi-
mative) to the parameter estimation and model selection
problems for a sparse regression model. This article was
inspired by our developments in [4]. The main contrasts
to [4] are that (i) for the parameter estimation and order
selection problems considered in this paper, no approxi-
mations are necessary; (ii) owing to the special structure
of the problem, we can obtain computationally very ef-
ficient estimates; and (iii) we use a more flexible model
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for the parameter vector (in particular, we can let the
variances of distinct coefficients be different).

1.2 Background and Related Work

The problems of model order selection and parameter
estimation with unknown model order are as old as the
idea of parametric modeling. Traditionally, the parame-
ter estimation problem has been split in two steps: First,
the model order selection problem is solved, and then
the parameter vector is estimated assuming that the se-
lected order is equal to the true one. This is generally
not optimal. In, e.g., [5], [6], the concept of Bayesian
model averaging is discussed. In this type of approach,
the quantity of interest (e.g., a prediction or a parameter
value) is first computed separately for each of the consid-
ered models. A weighted sum, with the model posterior
probabilities as weights, is then used for the final model
averaged computation of the quantity of interest. The
estimator we develop in Section 2 (see, e.g., (5)) is a
type of Bayesian model average. In [3], Bayesian model
averaging was considered for a different set of linear re-
gression models under some other a priori assumptions.

Model order selection is the art of determining the
“best” model order from a set of model order candi-
dates. Usually the goal is to maximize the probability
that the selected model is the “true” one. Model order
selection procedures for which the probability of select-
ing the correct order approaches one (assuming such a
correct model order exists among the candidates) as the
number of data samples increases are called consistent.

A commonly used group of model selection crite-
ria is the information criteria (IC) group. There exist
many different IC [8], but the most frequently used are
the information criterion of Akaike (AIC) [9] (which is
not consistent) and the Bayesian Information Criterion
(BIC) [10] (which is consistent). The IC have a common
form: they select the model which minimizes

−2 ln p(y|ĥk,ML) + k · η(·) (4)

where p(y|ĥk,ML) is the probability density function
(pdf) for the measured data given the ML parameter
vector estimate of order k. The first term in (4) is a
measure of how well the model fits the data; by adding
more parameters the model will be a better fit and the
value of this term will decrease. For the linear regression
problem (2), the first term equals [11]:

−2 ln p(y|ĥk,ML) = N ln σ̂2
k + constant

where σ̂2
k = ‖y −Xkĥk,ML‖2/N is the ML estimate of

the noise variance. The second term in (4), k · η(·), is
usually called a “penalty” term and it increases with
increasing k. (The function η(·) is specific to the partic-
ular IC being used; it typically depends on k and N .)
The role of this penalty is to penalize models with many
parameters (which have a low value of −2 ln p(y|ĥk,ML)).
In other words, it ensures that a simple model is pre-
ferred unless a more complex model fits the data sig-
nificantly better. The function η(·) takes on the val-
ues η = 2 for AIC and η(N) = lnN for BIC. All in-
formation criteria we are aware of, and which fit into

this framework, are asymptotic in the sense that they
are derived assuming N → ∞. However, there ex-
ists a bias-corrected small-sample version of AIC—AICc

[12]—which is applicable for certain types of models. It
uses η(k,N) = 2N/(N − k − 2).

More detailed reviews of IC-based model selection
criteria can be found in [11], [13].

1.3 Contribution of This Work

In this article, we derive the MMSE parameter esti-
mate ĥMMSE for the linear regression problem with un-
known model order. We denote the resulting estima-
tor the BPM (Bayesian Parameter estimation Method).
We also derive the model order estimator which has the
largest probability of returning the correct answer. This
model order estimator will be called BOSS (Bayesian
Order Selection Strategy). The estimators (see (8) and
(12)) have a number of advantages:
1. Optimality: Our BPM parameter estimate is opti-

mal in the MMSE sense. BOSS is also optimal: no
other order selection algorithm will pick the correct
order more often on the average. This optimality is
valid if all assumptions used in the derivations hold.

2. Short-sample performance: Many model order
selection algorithms (notably, the IC) are asymp-
totic. BPM and BOSS are not, and therefore
they show good performance also for short data se-
quences.

3. Computational efficiency: BPM and BOSS can
be efficiently computed.

4. No user parameters: We present versions of our
methods which can be used without having any a
priori knowledge of the data or selecting any user
parameters. (See Section 4.)

We remark upon the fact that neither BOSS nor BPM
are completely new estimators. Although not explicitly
stated, they can be easily obtained, e.g., from the results
in [7]. In this light, the new contributions in this article
over [7] are (1) an, in our opinion, “cleaner” derivation;
(2) the empirical approach described in Section 4 for
treating unknown a priori parameters; (3) the numerical
study in Section 5.

2. THE MMSE ESTIMATE OF h

In this section we describe the BPM (Bayesian Parame-
ter estimation Method) by deriving the MMSE param-
eter estimate of h under the assumption that one of
the models {Mk}nk=nmin

in (2) generated the data. We
also assume that the parameter vector elements are zero
mean Gaussian with known variances {γ2

j }nj=1, and that
the noise variance σ2 is known. (These assumptions will
be relaxed in Section 4.) The MMSE estimate is equal
to the conditional mean,

ĥMMSE = E[h|y] =
n∑

k=nmin

P (Mk|y)E[h|y,Mk]. (5)

Using Bayes’ rule we obtain

ĥMMSE =
n∑

k=nmin

P (Mk)
p(y|Mk)
p(y)

E[h|y,Mk] (6)
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where

p(y) =
n∑

k=nmin

p(y,Mk) =
n∑

k=nmin

P (Mk)p(y|Mk). (7)

Combining (6) and (7) we obtain the Bayesian Param-
eter estimation Method,

BPM : ĥMMSE =

n∑
k=nmin

P (Mk)p(y|Mk)E[h|y,Mk]

n∑
k=nmin

P (Mk)p(y|Mk)
.

(8)
Generally (as is commonly done [6], [8]), if nothing else
is known about the model prior probabilities P (Mk),
we will assume that they are equal and, of course, that
they sum up to one:

P (Mk) =
1

n− nmin + 1
, k = nmin, . . . , n. (9)

What remains to evaluate (8) is then to compute
p(y|Mk) and E[h|y,Mk].

Computation of p(y|Mk): Under the assumption
that Mk is the data generating model we have

y|Mk ∼ N (0,Qk)

where
Qk = XkΓkXT

k + σ2I

where we have used Γk = diag[γk]. So,

p(y|Mk) =
1

√
2π

N

1
|Qk|1/2

exp
(
−1

2
yTQ−1

k y

)
. (10)

Computation of E[h|y,Mk]: Clearly, assuming the
model Mk generated the data, hj = 0 for j > k, so
it is sufficient to find E[hk|y,Mk]. Under Mk, hk and
y are jointly Gaussian:

[
y
hk

]
|Mk ∼ N

(
0,
[
Qk XkΓTk

ΓkXT
k Γk

])
.

Applying a standard result (Theorem 10.2 of [14], for
example), the conditional mean evaluates to

E[hk|y,Mk] = ΓkXT
kQ
−1
k y. (11)

We now have all the ingredients necessary to com-
pute (8): namely (9), (10) and (11).

3. OPTIMAL MODEL ORDER SELECTION

The selection of the “best” model order is a classical
problem. Here we derive BOSS (Bayesian Order Selec-
tion Strategy)—our method for model order selection.
Applying Bayes’ Theorem, as in the previous section,
we obtain an expression for the model posterior proba-
bilities:

P (Mk|y) = P (Mk)
p(y|Mk)
p(y)

.

Since p(y) is independent of the model Mk, the model
order which gives the highest posterior probability
model is

BOSS : k̂ = arg max
k=nmin,...,n

P (Mk|y)

= arg max
k=nmin,...,n

P (Mk)p(y|Mk)(12)

which can be computed using (9) and (10) from the
previous section. One can show (see, e.g., the discussion
around Equation (37) in [11]) that the order with the
highest a posteriori probability is also the choice which
is the most likely to equal the correct order.

4. EMPIRICAL BAYESIAN ESTIMATORS

BPM (8) and BOSS (12) require knowledge of the a
priori parameters {P (Mk)}nk=nmin

, {γ2
j }nj=1 and σ2. In

practice, these parameters may not be known perfectly.
In this section, we present an efficient, pragmatic solu-
tion to the problem of using BPM and BOSS when the
a priori parameters are completely unknown. For sim-
plicity, we restrict the discussion to the case that the hj
are i.i.d., so that γ2

j = γ2, ∀ j. Furthermore, as in (9),
we make the common assumption [6], [8] that, if nothing
at all is known about the probabilities of the considered
orders a priori, all model orders are equally probable.
The relevant parameters are then γ2, σ2.

Our approach is to estimate the parameters γ2, σ2

from the data. This will result in a so-called “em-
pirical Bayesian” method [15]. Note that, in a strict
sense, estimation of γ2, σ2 from the data voids the op-
timality of our estimators (8), (12). This is so be-
cause the parameters γ2, σ2 are a priori parameters, and
should therefore not depend on the observation vector
y. Nevertheless, estimation of γ2, σ2 from the data ap-
pears to be an attractive, pragmatic way of handling
the situation when these parameters are completely un-
known. (Note: A different approach could be to assume
that {P (Mk)}nk=nmin

, {γ2
j }nj=1 and σ2 are random with

known distributions; see, e.g., [3].)
An unbiased, consistent estimate of σ2 can be ob-

tained by taking [1]

σ̂2 =
1

N − n‖y −Xnĥn,ML‖2 (13)

where ĥn,ML is obtained from (3).
Next, under the model Mk, γ2 can be estimated by

γ̂2
Mk

=
‖ĥk,ML‖2

k
.

By weighting the above estimates with P (Mk), we can
devise the following estimator1:

γ̂2 =
n∑

k=nmin

‖ĥk,ML‖2
k

P (Mk). (14)

We obtain the empirical Bayesian versions of our es-
timators by inserting (13) and (14) into the expressions
(8) and (12).

1Note that estimation of γ2 underM0 is an ill-posed problem.
The case nmin = 0 can thus not be handeled by our empirical
Bayesian estimators.
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5. NUMERICAL EXAMPLES
We evaluate the performance of our methods by means
of Monte-Carlo simulations. For the evaluation of our
parameter estimator BPM (8) we use the empirical MSE

of the parameter estimates: M−1
∑M
m=1 ‖ĥ

(m)−h(m)‖2,

where ĥ
(m)

and h(m) denote the estimated and true
parameter values for realization number m, and M
is the total number of Monte-Carlo runs. For the
evaluation of our model order estimator BOSS (12)
we use the percentage of correctly estimated orders:
M−1

∑M
m=1 δ(k̂

(m) − k(m)) · 100 [%], where δ(t) denotes
the discrete-time unit impulse and k̂(m) and k(m) denote
the estimated and true orders for realization number m,
respectively. We choose M = 10000.

For each Monte-Carlo trial we generate data from
a model Mk where the order k is chosen uniformly at
random between nmin = 1 and n = 10 (these are also
the values of nmin, n supplied to the estimators). We
try both long (N = 300) and short (N = 30) data se-
quences. Our regressor matrix X is composed of i.i.d.
N (0, 1) elements.

We compare the performance of our estimators (both
the true Bayesian—with all prior knowledge available—
and the empirical Bayesian) with the performance ob-
tained using BIC, and AIC (for N = 300) or AICc (for
N = 30). In the parameter estimation examples with
AIC/AICc and BIC, these are first used to obtain an or-
der estimate k̂ (by minimizing (4)); h is then estimated
using ML (3) for the order k̂.
5.1 Example 1
We first evaluate the performance of our methods for
noise variances from 10 dB down to −20 dB. The vari-
ances of the true parameter values {hj} are set to
γ2 = 1.

Figures 1, 2 show the results. Here BPM (8) and
its empirical version consistently outperform the other
methods. Also, the performance difference between
BPM and empirical BPM is small. For N = 300 all
estimators but AIC have very similar performance, ex-
cept when the noise variance is large.

In Figure 3 we show the order selection results. Our
estimator, BOSS (12), consistently outperforms all other
methods. The empirical version of BOSS performs very
close to the true Bayesian version.
5.2 Example 2 (parameter mismatch)
Next, we investigate the estimators’ sensitivity to a mis-
match in the a priori parameters γ2, σ2. For brevity, we
only show the results for order selection and for N = 30.
Similar conclusions hold for the parameter estimation
and the order selection results for N = 300, but the
differences between the methods are less pronounced.

In Figure 4, we supply our Bayesian estimator (12)
with a mismatched γ2 = 0 dB, while the actual γ2 used
to generate the data is varied from −10 dB to 10 dB.
The true σ2 = −10 dB is given to BOSS. (The empirical
BOSS estimates γ2, σ2.) As can be seen from the figure,
BOSS is not very sensitive to mismatched γ2-values.

In Figure 5 we supply BOSS with σ2 = −10 dB,
when the true σ2 is varied from 10 dB down to −20 dB.
The true γ2 = 1 is given to the estimator (the empirical
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Figure 1: Parameter estimation: Long data sequence,
N = 300. (The small plots are closeups.)
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Figure 2: Parameter estimation: Short data sequence,
N = 30. (The small plot is a closeup.)

BOSS estimates γ2, σ2). As can be seen, as long as the
σ2 provided to BOSS does not deviate too much from
the true value, the estimator retains very good perfor-
mance. Fortunately, σ2 is relatively easy to estimate
accurately from the data using (13).

This example indicates that neither BPM nor BOSS
is particularly sensitive to the choice of γ2, σ2. This may
be a contributing reason for why the empirical Bayesian
variants of our estimators work so well.

6. CONCLUSIONS
We have derived the optimal parameter estimator, in the
MMSE sense, for linear regression when model order is
unknown. We have also derived the optimal model order
estimator for the regression problem. Our estimators2,
denoted BPM and BOSS, respectively, possess a number
of advantages over classical approaches (see Section 1.3).
Since they are Bayesian, they require knowledge of some
a priori parameters. However, we have also derived em-
pirical Bayesian variants of BPM and BOSS which do

2Free implementations of our estimators (in Matlab) can be
obtained from [16].
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Figure 3: Model order selection.
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Figure 4: Order selection: Mismatching γ2, N = 30.
not require the choice of any user parameters.

In numerical examples, both for short and long data
sequences, we demonstrate that our estimators outper-
form the classical approaches AIC, AICc and BIC. BPM
and BOSS are relatively insensitive to the choice of the a
priori parameters. Also, their empirical Bayesian vari-
ants work very well. Since our estimators have low
complexity, and since they possess certain optimality
properties, we believe that they should be considered
attractive alternatives for estimation and detection in
the context of the model (2).
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