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ABSTRACT

This paper deals with the problem of adaptive reconstruc-
tion and identification of AR processes with randomly miss-
ing observations. The performances of a previously proposed
real time algorithm are studied. Two new alternatives, based
on other predictors, are proposed. They offer an unbiased es-
timation of the AR parameters. The first algorithm, based on
the h-step predictor, is very simple but suffers from a large
reconstruction error. The second one, based on the incom-
plete past predictor, offers an optimal reconstruction error in
the least mean square sense.

1. INTRODUCTION

In many practical situations, periodically sampled signals
with missing observations may be encountered. This is the
case, for example, of errors in transmission, or of temporary
unavailability of measurement. It is also the case, in coding
of audio signals or images, for compression purposes.

Several methods have already been developed for the pro-
cessing of autoregressive signals with missing data. They are
generally of two types:

• Off line methods that use all available data. They are de-
velopped for spectral estimation such as in [5], for iden-
tification purposes such as in [6, 9, 14], or for reconstruc-
tion such as in [8]. In [9], Jones used a Kalman filter
to calculate the exact likelihood function for unequally
spaced data. Model’s parameters, that most fits the data,
are then estimated by a non linear optimization. Isaks-
son [6], proposed an EM algorithm equivalent to a max-
imum likelihood algorithm but much faster. In [8], the
estimates of the unknown samples are obtained by mini-
mizing the sum of squares of the residual errors that in-
volve estimates of the autoregressive parameters. In [14],
the identification of ARX models from incomplete data
using least squares is studied.

• Real time adaptive methods such as in [1, 7, 11, 13].
In [11], an LMS-like algorithm for simultaneous recon-
struction and identification is developed. In [13], an at-
tempt to recursive identification based on pseudo-linear
regression has been derived. In [1], the problem of esti-
mating the output in missing-data situations is addressed.
In [7], Isaksson derives a recursive EM algorithm for the
identification of AR processes subject to missing data,
based on the offline version of the one described in [6].
This algorithm uses a smoothing Kalman filter for the
prediction. In addition, at each time, the inversion of a
matrix is required to update the parameters. Therefore, it
is not a real time algorithm.

In many applications, such as digital communications or
systems tracking, on line processing is necessary. We are
interested here in on line adaptive reconstruction and identi-
fication of autoregressive signals with randomly missing ob-
servations. The loss of samples process follows a Bernoulli
law independent of the signal. In section 2, we begin by de-
scribing and analyzing the performances of a previously pro-
posed LMS-like algorithm [11]. In section 3, new solutions,
based on different predictors, are proposed. Finally, the new
recursive algorithms are studied and compared in section 4.

2. LMS-LIKE ALGORITHM

2.1 Description

The LMS-like algorithm [11, 12] is based on the stochastic
gradient principle. It minimizes a quadratic prediction error
to estimate the AR parametersa = [a1, . . . ,ap]

>. Let ân be
the vector of the estimated parameters at timen, it is updated
using the following equation [10]:

ân+1 = ân − µ
∂Jn+1

∂a

∣∣∣∣
a=ân

(1)

where, at timen+1, Jn+1 is the instantaneous quadratic pre-
diction error.

Let yn be an AR process of orderp subject to missing
observations, andzn its reconstruction. The principle of the
reconstruction approach used in [5, 6, 8, 11, 12, 13] is to re-
place each missing observation by its predicted value. Then

zn =

{
yn if yn is available,
ŷn otherwise, (2)

where ˆyn = ∑p
i=1 aizn−i. Due to missing observations, a sam-

ple may be predicted in terms of the prediction of previously
lost samples. Its prediction, ˆyn, is therefore non linear with
respect to the parameters.

The square prediction error cost function is then non lin-
ear in terms of the parameters and its derivative is therefore:

∂Jn

∂a
= −2(yn − ŷn)

∂ ŷn

∂a
. (3)

The term∂ ŷn/∂a is a vector of dimensionp whose elements
are:

∂ ŷn

∂ak
=

∂ ∑p
i=1 aizn−i

∂ak
= zn−k +

p

∑
i=1

ai
∂ zn−i

∂ak
(4)

where,∂ zn−i/∂a = 0 if yn−i is available, and∂ zn−i/∂a =
∂ ŷn−i/∂a otherwise. Therefore, the term∂ ŷn/∂a is obtained



by the following recursive equation [12]:

∂ ŷn

∂a
= zn +

[
∂ zn−1

∂a

∣∣∣∣ . . .
∣∣∣∣
∂ zn−p

∂a

]
a (5)

wherezn = [zn−1 . . .zn−p]
>.

The vectora is updated only when a new sample is avail-
able, whereas the recursion (5) is used at all times. The LMS-
like algorithm as proposed by Mirsaidi et Al. [11] will be
referred to by Mirsaidi’s algorithm in the following.

2.2 Performance analysis

One of the major interest of Mirsaidi’s algorithm is its sim-
plicity. Unfortunately, simulations show that it yields biased
estimations of the parameters, for AR signals of order 2 and
above. The biases increase withq, the Bernoulli’s proba-
bility of a sample to be lost. Moreover, the biases seem to
be independent of the parameters initialization, which tends
to prove that Mirsaidi’s algorithm converges toward a global
minimum of the cost function. This assumption is confirmed
by Wallin et al. [15]. According to their work, randomly
missing data should not cause a multiple optima problem in
the AR parameters estimation. Besides, they maximize the
likelihood probability function to estimate the parameters. In
the case of AR processes (Gaussian process), it is equivalent
[4] to minimize the mean square prediction error as in [11].

3. PROPOSED ALTERNATIVES

In order to avoid the observed bias problem, we propose new
LMS-like alternatives based on two other predictors.

3.1 Prediction

3.1.1 H-step predictor

The best linear combination of 1,y1, . . . ,yn for predicting
yn+h is ŷn+h = Pnyn+h, where Pn denotes the orthogo-
nal projection mapping onto the subspaceS generated by
1,y1, . . . ,yn. According to the projection theorem,ŷn+h thus
defined is the unique element ofS for which the distance
‖yn+h − ŷn+h‖ is minimal and it is the best mean square pre-
dictor of yn+h in S [4]. The recursive equation of the best
h-step predictor for an AR(p), deduced from [4], is:

ŷn+h = Pnyn+h =
p

∑
i=1

aiPnyn+h−i. (6)

For an AR(p), ŷn+1 = Pnyn+1 = ∑p
i=1 aiyn+1−i, so using the

recursive equation (6) we get thatŷn+h is a linear combina-
tion of yn−p+1, . . . ,yn. In the case of missing observations,
a sample (at timen + h) is predicted in terms of thep pre-
ceeding consecutive available samples. Hence, minimizing
the square prediction error in terms of the parameters leads
to solvep equations forp variables, whatever the observation
pattern is. If all the data betweenn andn+h are missing, i.e.
zn+h−i = ŷn+h−i for i = 1, ...,h, this predictor is equivalent to
the previous one.

3.1.2 Incomplete past predictor

To predictyn, we shall assume that the datayn−n1, . . . ,yn−nL
are missing with 0< n1 <. . .< ns <. . .< nL and letM =
{n−n1, . . . ,n−nL}. Bondon [3] has proved that̂yn, given by

the equation (7), is the orthogonal projection ofyn onto the
space generated by the previous available observations. Let
(εn) be the innovation process of(yn),

yn − ŷn = −
L

∑
s=0

ψs

ns

∑
j=0

ans− jεn− j, (7)

where the coefficients(ψs) satisfy the matrix equation

U(ψ0,ψ1, . . . ,ψL)
> = (1,0, . . . ,0)> (8)

U is the nonsingular(L+1)× (L+1) matrix with elements

uv,w =
nv∧nw

∑
j=0

anv− janw− j v,w = 0, . . . ,L. (9)

Since(yn) is supposed to have an AR representation, the pre-
dictor ŷn has an AR representation for any finite set of miss-
ing data. This representation is unique [3] and is given by

ŷn = ∑
k∈N−M

rkyn−k, (10)

with

rk = δk −
L

∑
s=0

ψs

ns∧k

∑
j=0

ans− jak− j. (11)

In the case of an AR(p) process,̂yn = ∑nL+p
k=0,k/∈M rkyn−k.

3.1.3 Example

Let us consider, for example, the following observation pat-
tern {1011010} where 0 stands for a missing observation.
We predicty7, for an AR(2) process, using the different pre-
dictors presented in this paper.
1. The predictor used in [11]:

ŷ7 = a1y6 + a1a2y4 + a2
2y3. (12)

2. Theh-step predictor:

ŷ7 = (a3
1 +2a1a2)y4 +(a2

1a2+ a2
2)y3. (13)

3. The incomplete past predictor:

ŷ7=

(
a1+

a1a2

1+ a2
1

)
y6+

(
a1a2−

a3
1a2 + a1a2

2

1+ a2
1

)
y4

+

(
a2

2−
a2

1a2
2

1+ a2
1

)
y3.

(14)

The predictor used in [11] and the incomplete past pre-
dictors predict the missing observation using all the previ-
ous available data up to and including the last bloc ofp (in
the case of an AR(p)) consecutive available observations.
Hence, they use more information than theh-step predictor.
The orthogonal projection ofyn on its incomplete past has
a unique AR representation of coefficientsrk given by the
incomplete past predictor [3]. As we can see from this exam-
ple, the predictor used in [11] has a different AR represen-
tation than the incomplete past predictor. The coefficientsrk
obtained with the incomplete past predictor contain additive



corrective terms compared to those obtained with the predic-
tor used in [11]. We conclude that the predictor used in [11]
is not an orthogonal projection on the incomplete past. Thus
it is not optimal in the least mean squares sense. In [7], it
was noticed that the expectations of the state based on the
observed data will not just replace a partially unknown state
by its predicted value but there will also be a correction term
based on the prediction error covariance matrix. Without this
correction, it would correspond to an ordinary least square
solution on reconstructed data which was the prediction used
in [11], and this will typically converge to biased estimates.
The same problem of bias is present with the pseudo linear
RLS proposed in [13]. The problem of identification ARX
models with missing observations using the least squares has
been studied by Wallin et al. [15]. They showed that least
squares estimate of the parameters using the predictor used
in [11] is biased. They calculated an expression of that bias
and concluded that the bias is zero for any optimal predictor
in the least squares sense. This explains the bias of the es-
timated AR parameters with Mirsaidi’s algorithm, and will
lead us to use theh-step and the incomplete past predictors
as predictors in LMS-like algorithms.

3.2 Proposed Algorithms

The difference between the three proposed methods relies on
the used predictor and consequently on the computation of
∂Jn/∂a to update the model parameters.

3.2.1 LMS-like using the h-step predictor

The h-step predictor is equivalent to the one used in [11]
when all the samples between the last block ofp consecu-
tive available samples,yn−p+1, . . . ,yn, and the current sam-
ple yn+h, are lost. This algorithm is therefore simply de-
duced from Mirsaidi’s algorithm. The unique difference is
to consider, for the next predictions, an observed sample as
missing until a new block ofp consecutive available sam-
ples is formed. So, in the subsequent steps, ˆyn+h is used
for the prediction and∂ ŷn+h/∂a is used in (5), instead of
0. In opposition, if at timen + h, a new block ofp con-
secutive available samples,yn+h−p+1, . . . ,yn+h, is formed,
their observed values are used for the next predictions. The
next samples are predicted in terms of thesep samples so,
∂ zn+h/∂a, . . . ,∂ zn+h−p+1/∂a are equal to 0.

This algorithm is very simple and leads to unbiased esti-
mated parameters. On the other hand, this method is highly
dependent on the observation pattern andh can become ar-
bitrarily large. In particular, in the case of high-order AR
signals with missing observations, blocks ofp consecutive
available samples are rarely formed. This may lead to a large
mean square reconstruction error and consequently to a large
variance on the parameter estimation, increasing withq.

3.2.2 LMS-like using the incomplete past predictor

Since the incomplete past predictor is optimal in the least
mean square sense, we propose to use it as a predictor in
a LMS-like algorithm. We consider its AR representation
given by equations (10) and (11). The cost function to opti-
mize is thenJn =(yn−∑k∈N−M rkyn−k)

2. Its partial derivative

with respect to (ai) is,

∂Jn

∂ai
=

L

∑
s=0

∂ψs

∂ai

ns∧k

∑
j=0

ans− jak− j

+
L

∑
s=0

ψs [A(i,k,ns)+ A(i,ns,k)]

(15)

with A(i,k, l) =

{
ak−l+i if 0 < l− i < l ∧ k
0 otherwise

Note here thata0 = 1 anda j = 0 for j > p.
To calculate∂ψs/∂ai, we differentiate the matrix system

(8) with respect toai, which gives,

U
∂ (ψ0, . . . ,ψL)>

∂ai
= −

∂U
∂ai

(ψ0, . . . ,ψL)>. (16)

The matrix∂U/∂ai is formed by the derivative of each
element ofU with respect to the parameterai. Thus, we get
p matrices corresponding to the derivative ofU with respect
to each of thep parameters. In the same way as in (15),

∂uvw

∂ai
= A(i,nv,nw)+ A(i,nw,nv) (17)

In opposition to the two previous algorithms, the predic-
tion and the calculation of∂Jn/∂ai, for this algorithm, are
not recursive. Consequently the systems (8) and (16) must
be solved at each time, which is computationally intensive.

4. COMPARISON

The test signal, used to compare the performances of the
three algorithms, is an AR(2) process of parameters [1.5, -
0.7] generated over 105 samples. The Bernoulli’s probability
of sample loss isq = 0.3. Due to the missing samples,µ
must have smaller values than for the classical LMS. Sim-
ulations are done withµ = 7.10−5. Algorithms Misaidi, A
and B stand, respectively, for Mirsaidi’s algorithm and itsal-
ternatives using theh-step predictor and the incomplete past
predictor. The figure 1 shows the estimation of the parameter
a1 for the three algorithms, and figure 2 shows the behaviour
after the convergence.
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Figure 1: Estimation ofa1 with the three algorithms.
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Figure 2: Estimation ofa1 after the convergence of the three
algorithms.

The performances of these algorithms are summarized in
table 1.bi is the bias existing in the estimation of a parameter
andσi is the standard deviation of a parameter estimation.
The MQRE is the normalized mean quadratic reconstruction
error. The normalization is done with respect to the power of
the signal. For a signal generated overN samples, it is given
by the following equation:

MQRE =
∑N

k=1(yk − zk)
2

∑N
k=1 y2

k

. (18)

The CPU is the computation time, in seconds, needed to sim-
ulate each one of the three algorithms for the above test sig-
nal, using MATLAB on a processor of 2.4 GHz.

Table 1: Comparison of the three algorithms performances
Algorithm b1 b2 σ1 σ2
Mirsaidi 0.166 0.137 0.019 0.018

A 0.026 0.014 0.029 0.0298
B 0.004 0.009 0.014 0.016

Algorithm MQRE CPU
Mirsaidi 0.07 5

A 0.11 4
B 0.061 38

Table 1 and figures 1 and 2 show that Mirsaidi’s algo-
rithm converges toward biased values of the parameters while
the estimation with the two other algorithms is not biased.
Moreover, referring to the table 1, the algorithm B is compu-
tationally expensive and simulations show that the CPU time
increases withq, this may be due to the increasing size of the
matrices to be inverted. However, the algorithms Mirsaidi
and A are much faster and the CPU time does not increase
with q. On the other hand, the algorithm B offers the smallest
prediction error comparing to the others while the algorithm
A has the largest one.

Moreover, figure 3 shows, for each algorithm, an empiri-
cal distribution for the estimator ofa1. For 2000 generations
of the signal and of the observation scheme, the parameter

a1 is estimated with the three algorithms. For each one, the
empirical distribution ofa1 at a timet0 after the convergence
is deduced.
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Figure 3: Empirical estimator distribution ofa1 with the
three algorithms.

Figure 3 shows that the empirical distribution for the esti-
mator ofa1 using algorithm B is centered on 1.5 which con-
firms that this estimator is not biased. The estimation ofa1,
using the algorithm A, is slightly biased since the empirical
distribution is centered on 1.49. This is not normal since this
estimator is supposed to be unbiased, this may be the result
of the high variance of this estimator and of the empirical
estimation of the distribution (it is limited to 2000 genera-
tions). However, for Mirsaidi’s algorithm, the empirical dis-
tribution is centered on 1.34 which shows that this estimator
is strongly biased.

According to table 1 and figures 2 and 3, for all LMS-
like algorithms, the variance of the parameters estimator is
related to the signal prediction error. Indeed, the estimator
of the algorithm B offers the smallest variancesσ2

1 andσ2
2 ,

however, in the case of the algorithm A, they have the largest
values. This observation was expected since the update of
the parameters using equations (1) and (3) is proportional to
the prediction error.

Finally, figure 4 shows the evolution of the MQRE in
terms ofq, for the three algorithms and for the same test sig-
nal as above. Referring to figure 4, the MQRE obtained for
Misaidi’s algorithm is still close to the optimal one, even for
largeq.

5. CONCLUSION

Two new adaptive algorithms for reconstruction and identi-
fication of an AR process with missing observations are de-
scribed. The first one based on theh-step predictor, which
is very simple, offers an unbiased parameter estimation, but
presents a large quadratic reconstruction error. The second
one is based on the incomplete past predictor. This algo-
rithm allows, at the same time, an unbiased estimation of
the parameters, and an optimal reconstruction in the least
mean square sense. It can be noticed from figure 4, that the
quadratic reconstruction error for algorithm B is, effectively,
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Figure 4: MQRE in terms of the loss probabilityq.

minimal comparing to the other techniques. However, this
algorithm is quite time consuming.

In conclusion, the analysis of the three algorithms shows
that Mirsaidi’s algorithm, while not suited for identification,
is useful for real time reconstruction of a signal. On the other
hand, algorithm A is more suited for real time identification.
However, for applications where computation time does not
present a limitation, algorithm B presents the best perfor-
mances.
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