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Università degli Studi di Napoli Federico II

via Claudio 21, I-80125 Napoli, Italy
e-mail: [gelli, f.verde]@unina.it.

ABSTRACT
The problem of blind channel identification in quasi-
synchronous (QS) multicarrier code-division multiple-access
(MC-CDMA) systems is considered. When improper mod-
ulation schemes are adopted, improved subspace-based al-
gorithms, which process both the received signal and its
complex-conjugate version, must be employed in order to
exploit also the channel information contained in the con-
jugate correlation function of the channel output. An im-
proved subspace-based algorithm for QS-MC-CDMA sys-
tems is devised herein which, compared with a recently pro-
posed subspace-based identification method [1], allows one
to achieve improved performances. The identifiability issues
concerning the proposed method are addressed in detail, and
translated into explicit conditions regarding the maximum
number of users, their corresponding channels, and their
spreading codes. Finally, numerical simulations are provided
to assess the performances of the considered algorithm, in
comparison with those of [1].

1. INTRODUCTION

This paper deals with the problem of blind subspace-based
joint channel estimation and time acquisition for quasi-
synchronous (QS) multicarrier (MC) code-division multiple-
access (CDMA) wireless systems, which employ frequency-
domain spreading (see [1] and references therein), and in-
troduces a cyclic prefix (CP) in the transmitted data. This
problem has been recently studied in [1], wherein it has
been shown that, for QS-MC-CDMA networks, the use of
subspace-based techniques turns out to be particularly advan-
tageous, since, unlike many subspace-based approaches pro-
posed for direct-sequence (DS) CDMA systems (see, e.g.,
[2]), they lend to significant reductions in implementation
complexity and, moreover, identification of the signal and
noise subspaces does not require exact knowledge of the
channel orders of the users. The blind method [1] can be used
in conjunction with traditional training-based approaches for
channel estimation (obtaining thus a semi-blind algorithm)
to improve performance and shorten the training period.

Compared with classical single-user blind channel identi-
fication, in a multiuser context the applicability of subspace-
based channel estimation techniques is mainly limited [3] by
the number of active users. Specifically, for CP-based QS-
MC-CDMA systems, let Lcp denote the length of the CP, in
order to uniquely determine the desired parameters (channel
impulse response and transmission delay of each active user),
the method proposed in [1] necessarily requires that the num-
ber J of users satisfies the inequality J ≤ N − Lcp + 1,
i.e., it can be successfully employed only when the number

of users is smaller than the number N of subcarriers. To
increase the network capacity, in this paper we generalize
the approach of [1], by exploiting the possible improper (or
noncircular) [4] nature of the transmitted symbols. The gen-
eralized subspace-based algorithm, which will be referred
hereinafter to as the improper modulation subspace algo-
rithm (IMSA), jointly processes the received signal and its
conjugate version. Noncircularity has been originally ex-
ploited to improve filtering [5], blind separation [6] and syn-
chronization [7]. It should be noted that the subspace ap-
proach of [1], although it can be used for systems employ-
ing proper (or circular) [4] or improper data symbols, turns
out to be suboptimal when the modulation is improper, and
hence will be referred to as the proper modulation subspace
algorithm (PMSA). We show both theoretically and experi-
mentally that, besides leading to weaker identifiability condi-
tions, this kind of processing allows QS-MC-CDMA systems
to handle up to J ≤ 2 (N − Lcp) + 1 active users, which is
(roughly) the double of the maximum number of active users
that can be accommodated by the PMSA method.

It is worth noting that, with reference to the less challeng-
ing single-user context, the improper nature of the transmit-
ted signal has been already employed for blind channel iden-
tification in both single carrier [8] and multicarrier [9] sce-
narios. With regard, instead, to a multiuser context, a method
exploiting the improper nature of the transmitted symbols has
been recently proposed in [10] for blind signature waveform
estimation in DS-CDMA systems; however, in [10], the iden-
tifiability conditions are not addressed in detail and certain
important issues are hidden. In contrast, in this paper, the
identifiability conditions are thoroughly analyzed, and some
results are expressed in a general and explicit way.

2. SYSTEM MODEL

Let us consider the baseband-equivalent of a conventional
MC-CDMA system, which employs N subcarriers1. The in-
formation symbol bj(n) of the jth user in the nth (n ∈ Z)

1Upper- and lower-case bold letters denote matrices and vectors; the su-
perscripts ∗, T , H , and −1 denote the conjugate, the transpose, the Her-
mitian (conjugate transpose), the inverse of a matrix; C, R and Z are the
fields of complex, real and integer numbers; Cn [Rn] denotes the vector-
space of all n-column vectors with complex [real] coordinates; similarly,
Cn×m [Rn×m] denotes the vector-space of all the n × m matrices with
complex [real] elements; 0n, On×m and In denote the n-column zero vec-
tor, the n × m zero matrix and the n × n identity matrix; for any a ∈ Cn,
‖a‖ denotes the Frobenius norm; {A}i,j indicates the (i, j)th entry of any
matrix A; for any A ∈ Cn×m, rank(A), N (A), R(A) and R⊥(A)
denote the rank, the null space, the column space of A and its orthogonal
complement in Cn; for any A ∈ Cn×n, det(A) denotes the determinant;
A = diag[A11,A22, . . . ,Ann] is the diagonal matrix wherein {Aii}n

i=1
are diagonal matrices; the subscript c stands for continuous-time (analog)
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symbol interval multiplies the frequency-domain spreading

code cj
�
= [c(0)

j , c
(1)
j , . . . , c

(N−1)
j ]T ∈ C

N , with c
(m)
j �= 0,

∀m ∈ {0, 1, . . . , N − 1} and ∀j ∈ {1, 2, . . . , J}. The result-
ing sequence is subject to the inverse discrete Fourier trans-
form (IDFT), producing thus the block

ũj(n) = WIDFT cj bj(n) , (1)

where WIDFT ∈ C
N×N denotes the unitary symmetric IDFT

matrix, and its inverse WDFT
�
= W−1

IDFT = WH
IDFT defines

the discrete Fourier transform (DFT) operation. After com-
puting the IDFT, a CP of length Lcp � N is inserted at the
beginning of ũj(n), obtaining thus the vector

uj(n) = Tcp WIDFT cj bj(n) , (2)

where Tcp
�
= [IT

cp, IN ]T ∈ R
P×N , with P

�
= Lcp + N and

Icp ∈ R
Lcp×N obtained by drawing out the last Lcp rows of

the identity matrix IN . The block uj(n) is subject to parallel-
to-serial (P/S) conversion, and the resulting time-domain se-
quence feeds a digital-to-analog (D/A) converter operating at
rate 1/Tc = P/Ts, where Ts and Tc denote the symbol and
the sampling period, respectively. The signal at the D/A out-
put is then transmitted over a multipath channel modeled as
a linear time-invariant system. Let τj = dj Tc + βj , with
dj ∈ {0, 1, . . . , P − 1} and βj ∈ [ 0, Tc), represent the trans-
mission delay of the jth user, we assume that the impulse re-
sponse g̃c,j(t) of the composite channel of the jth user spans
Lj sampling periods, i.e., g̃c,j(t) ≡ 0, ∀t �∈ [ 0, Lj Tc), with
Lj < P and, moreover, that the CP length Lcp satisfies the
inequality Lcp ≥ maxj ∈{1,2,...,J}

[
Lj+dj+1

]
. Under these

assumptions, after ideal carrier-frequency recovery, sampling
and CP removal, the expression of the kth (k ∈ Z) received
symbol block r(k) ∈ CN is given by (see [1] for details)

r(k) =
J∑

j=1

Υj gj bj(k) + v(k) , (3)

where J denotes the number of users, the vector v(k) ∈ C
N

accounts for noise, whereas

Υj
�
=

√
N · WIDFT Cj WDFT Ω ∈ C

N×Lcp , (4)

with

Cj
�
= diag[c(0)

j , c
(1)
j , . . . , c

(N−1)
j ] ∈ C

N×N , (5)

Ω
�
= [ILcp ,O

T
(N−Lcp)×Lcp

]T ∈ R
N×Lcp , (6)

is a known full-column rank matrix, the unknown vector

gj
�
= Qj [g̃j(0), g̃j(1), . . . , g̃j(Lj)]T ∈ C

Lcp (7)

depends on the channel impulse response and transmission

delay of the jth user, whereby g̃j(k)
�
= g̃c,j(k Tc − βj), with

g̃j(0), g̃j(Lj) �= 0, and

Qj
�
= [OT

dj×(Lj+1), ILj+1,OT
(Lcp−Lj−dj−1)×(Lj+1)]

T (8)

signals, E[·] and i
�
=

√−1 denote statistical averaging and imaginary unit.

is a full-column rank matrix. Observe that eq. (3) encom-
passes as a special case the received baseband signal in the
downlink, where all the users are synchronous and propa-
gate through a common channel, i.e., dj = βj = 0 and

gj = g
�
= [g(0), g(1), . . . , g(L), 0, . . . , 0]T .

The following assumptions will be considered:

A1) the transmitted symbols bj(n) are mutually in-
dependent zero-mean and independent identically-
distributed (iid) improper [4] random sequences, with

second-order moments σ2
b

�
= E[|bj(n)|2] > 0 and

�b(n)
�
= E[b2

j (n)] �= 0, for any n ∈ Z;
A2) the noise vector v(k) is a zero-mean complex proper

[4] white random process, which is independent of
bj(n), ∀j ∈ {1, 2, . . . , J}, with autocorrelation ma-

trix Rvv
�
= E[v(k)vH(k)] = σ2

v IN .

3. THE PROPOSED IMSA METHOD

Improper symbols bj(k) arise in a large number of digital
modulation schemes (see, e.g., [8, 9]), including all the real-
valued symbol formats, such as BPSK, DBPSK, M-ASK,
and many conjugate symmetric complex-valued symbol con-
stellations, such as OQPSK, OQAM, and binary CPM, MSK,
GMSK. In all these cases, the improper nature of bj(k) is a
consequence of a linear deterministic dependence between
bj(k) and its complex conjugate b∗j (k), which can be mo-
deled [8, 9] as b∗j (k) = ei 2πξk bj(k), ∀k ∈ Z and for any
realization of bj(k), with ξ = 0 for BPSK, DBPSK, M-ASK,
whereas ξ = 1/2 for OQPSK, OQAM, and binary CPM,
MSK, GMSK. Observe that, for proper modulation schemes,
such as, e.g., M -PSK and M -QAM (with M > 2), the trans-
mitted symbols do not exhibit this conjugate symmetry.

To exploit this dependence, let us consider the augmented

vector z̃(k)
�
= [rT (k), rH(k)]T ∈ C

2N . With reference to
the above-mentioned modulation techniques, one has

b∗(k) = ei 2πξk b(k) , for any k ∈ Z , (9)

with b(k)
�
= [b1(k), b2(k), . . . , bJ (k)]T ∈ C

J . Conse-
quently, it results that

r∗(k) = ei 2πξk G∗ b(k) + v∗(k) , (10)

where

G �
= [Υ1 g1,Υ2 g2, . . . ,ΥJ gJ ] ∈ C

N×J (11)

represents the composite-channel matrix. It is apparent that,
due to the presence of the periodically time-varying com-
plex exponential ei2πξk, the conjugate correlation matrix

Rrr∗(k)
�
= E[r(k) rT (k)] ∈ C

N×N of r(k) is time-varying
in k. However, this kind of non-stationarity can be readily
counterbalanced at the receiving side, by performing a dero-
tation of r∗(k) before evaluating z̃(k), that is, by considering
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the augmented vector

z(k)
�
=

[
r(k)

r∗(k) e−i 2πξk

]
=

[ G
G∗

]
︸ ︷︷ ︸

H∈C2N×J

b(k)

+
[

v(k)
v∗(k) e−i 2πξk

]
︸ ︷︷ ︸

w(k)∈C2N

. (12)

The IMSA method relies on the EVD of the augmented auto-

correlation matrix Rzz
�
= E[z(k) zH(k)] ∈ C

2N×2N of z(k)
which, accounting for eq. (12) and invoking assumptions A1-
A2, can be written as

Rzz = σ2
b HHH + σ2

v I2N . (13)

In eq. (12), the signal subspace is represented by the column
space R(H) of the augmented composite-channel matrix
H ∈ C

2N×J , whose dimension D is equal to the rank of H,
i.e., D = rank(H) ≤ min{2N, J}. We assume that: C1) H
is full-column rank, i.e., J ≤ 2N and D = rank(H) = J .
Under assumption C1, the EVD of Rzz is given by

Rzz = Us Σs UH
s + Un Σn UH

n , (14)

where: Us ∈ C
2N×J collects the eigenvectors associated

with the J largest eigenvalues µ1, . . . , µJ of Rzz (arranged
in descending order), whose columns span the signal sub-
space R(H); Un ∈ C

2N×(2N−J) collects the eigenvectors
associated with the noise eigenvalue σ2

v , whose columns span
the noise subspace R⊥(H); finally,

Σs
�
= diag[µ1, µ2, . . . , µJ ] and Σn

�
= σ2

v I2N−J . (15)

By exploiting the orthogonality between R(H) and R⊥(H),
one has

UH
n H = O(2N−J)×J ⇐⇒ UH

n

[
Υj gj

Υ∗
j g∗

j

]
= 02N−J ,

(16)
∀j ∈ {1, 2, . . . , J}, which shows that, for each user, the un-
known vector gj can be estimated by solving an overdeter-
mined linear system, provided that eq. (16) uniquely charac-
terizes the user channels. To solve eq. (16) with reference
to the desired user (j = 1), it is convenient to regard it as
a matrix equation in Re{g1} and Im{g1}. Thus, by parti-
tioning Un as Un = [(U′

n)T , (U′′
n)T ]T , with U′

n,U′′
n ∈

C
N×(2N−J), eq. (16) can be rewritten for j = 1 as

Q1 g1 = 02N−J , (17)

where

Q1
�
= [E′

1 + E′′
1, j (E′

1 − E′′
1)] ∈ C

(2N−J)×(2Lcp) , (18)

g1
�
= [(Re{g1})T , (Im{g1})T ]T ∈ R

2Lcp , (19)

with

E′
1

�
= (U′

n)H Υ1 ∈ C
(2N−J)×Lcp , (20)

E′′
1

�
= (U′′

n)H Υ∗
1 ∈ C

(2N−J)×Lcp . (21)

In practice, the matrix Rzz is unknown and, thus, estimates
of the eigenvectors spanning the signal and noise subspaces
must be obtained from the sample autocorrelation matrix

R̂zz
�
=

1
K

K−1∑
k=0

z(k)zH(k) = Ûs Σ̂s ÛH
s + Ûn Σ̂n ÛH

n ,

(22)
where K denotes the estimation sample size. In this case,
let Q̂1 denote the parameterization matrix obtained by em-
ploying the estimate Ûn of Un, an estimate g1,est of g1 is
obtained by solving the constrained minimization problem
g1,est = arg minx∈R

2Lcp xHQ̂H
1 Q̂1 x, subject to ‖x‖2 = 1,

whose solution is the eigenvector associated with the smallest
eigenvalue of Q̂H

1 Q̂1. As regards computational complexity
issues, it can be inferred that the computational burden of the
IMSA method is essentially dominated by the EVDs of the
matrices R̂zz [which requires O(8N3) flops] and Q̂H

1 Q̂1

[which requires O(8L3
cp) flops]. Since in practice N � Lcp,

we can conclude the IMSA method involves a computational
load of order of O(8N3), which is moderately superior to
that required by the PMSA algorithm, whose implementation
leads to a computational complexity of order of O(N3).

3.1 Rank characterization of the channel matrixH
The purpose of this section is to derive the conditions as-
suring that the matrix H defined in eq. (12) is full-column
rank, i.e., that condition C1 is fulfilled. As a first step to-
wards this end, we observe that rank(H) = J iff the null
spaces of the matrices G and G∗ intersect only trivially, that
is, N (G)∩N (G∗) = {0J}. It can be easily verified that, if G
is full-column rank, which necessarily requires that J ≤ N ,
then this condition is trivially satisfied and, hence, the ma-
trix H is full-column rank as well. Remarkably, the converse
statement is not true in general, that is, H can be full-column
rank even in overloaded QS-MC-CDMA systems, i.e., when
the number J of users is greater then the number N of sub-
carriers and, thus, matrix G cannot be full-column rank. In
this case, the code vectors {cj}J

j=1 cannot be linearly inde-
pendent and, moreover, it results that rank(G) ≤ N , which in
its turn implies that the dimension of the subspace N (G) is
nonnull and is equal to J−rank(G). Specifically, we provide
the following Lemma2:

Lemma 1 (Rank ofH) If J ≤ 2N , then the augmented
composite-channel matrix H is full-column rank iff there are
no conjugate pairs of nonzero vectors belonging to N (G).

Lemma 1 provides a mathematical condition which is not
readily interpretable. To gain more insight into this aspect, it
is interesting to consider the downlink case. First, we observe
that, in this scenario,

H =
√

N

[
WIDFT ON×N

ON×N W∗
IDFT

]
︸ ︷︷ ︸

W∈C2N×2N

[
Γ ON×N

ON×N Γ∗
]

︸ ︷︷ ︸
Γ∈C2N×2N

[
C
C∗

]
︸ ︷︷ ︸

C∈C2N×J

,

(23)
where

Γ
�
= diag[γ(0), γ(1), . . . , γ(N − 1)] , (24)

2For the sake of conciseness, we omit the proofs of all the Lemmas and
Theorems herein enunciated. Details will be given in a forthcoming paper.
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with {γ(m)}N−1
m=0 representing the N -point DFT of the com-

mon channel {g(�)}L
�=0, and

C
�
= [c1, c2, . . . , cJ ] ∈ C

N×J (25)

defines the code matrix. Since rank(W) = rank(WIDFT) +
rank(W∗

IDFT) = 2N , it results that rank(H) = rank(ΓC)
and, hence, we directly investigate the rank properties of

H
�
= ΓC. In order for H to be full-column rank, matrix

C must necessarily be full-column rank, i.e., J ≤ 2N and

rank(C) = J . In other words, let cj
�
= [cT

j , cH
j ]T ∈ C

2N

define the extended code vector of the jth user, for j ∈
{1, 2, . . . , J}, the vectors c1, c2, . . . , cJ must be linearly in-
dependent. To this respect, it is important to note that, if the
spreading codes are real-valued, i.e., C∗ = C, matrix C is
full-column rank iff C is full-column rank. Thus, employing
real-valued code vectors in the downlink implies necessarily
that the proposed IMSA method can be used only in under-
loaded systems, i.e., when J ≤ N . On the other hand, if
complex-valued codes are employed, matrix C can be full-
column rank even when C is not full-column rank, which
is the situation occurring in overloaded QS-MC-CDMA sys-
tems. Motivated from this observation, we assume in the
sequel that the spreading codes are complex-valued.

Under the assumption that C is full-column rank, i.e.,
J ≤ 2N and rank(C) = J , let us consider the general case
when the N -point DFT of {g(�)}L

�=0 has 0 ≤ Mz ≤ L ze-
ros on subcarriers m1,m2, . . . ,mMz

∈ {0, 1, . . . , N − 1},
that is, γ(m1) = γ(m2) = . . . = γ(mMz

) = 0. In this
case, the block diagonal matrix Γ is singular with rank(Γ) =
rank(Γ) + rank(Γ∗) = 2(N − Mz) and, hence, matrix
H is full-column rank iff N (Γ) ∩ R(C) = 02N . Ob-
serving that N (Γ) is spanned by the column space of the

full-column rank matrix Sz
�
= diag[Sz,Sz] ∈ R

2N×2Mz ,
where Sz ∈ R

N×Mz is obtained from the identity ma-
trix IN by picking up its columns located in the positions
m1 + 1,m2 + 1, . . . ,mMz

+ 1, it can be stated:

Theorem 1 (Rank ofH – downlink) Let the extended code
vectors c1, c2, . . . , cJ be linearly independent. If the N -
point DFT of the common discrete-time channel {g(�)}L

�=0
has Mz zeros on subcarriers m1,m2, . . . ,mMz

∈
{0, 1, . . . , N − 1}, then matrix H is full-column rank iff the
matrix [C,Sz] ∈ C

2N×(J+2Mz) is full-column rank.

Some remarks are now in order. First, if the N -point
DFT of the channel {g(�)}L

�=0 has no zero, i.e., Mz = 0,
then the linear independence of the extended code vectors
c1, c2, . . . , cJ becomes a necessary and sufficient condition
in order to have rank(H) = J . Second, it is worthwhile
to note that, from eq. (12), condition C1 is a necessary and
sufficient condition for the existence of widely-linear zero-
forcing receivers, which are able to perfectly recover the im-
proper information symbols b(k) in the absence of noise.
Finally, the condition rank([C,Sz]) = J + 2Mz can be sati-
sfied even when the number J of users is greater than the
number N of subcarriers; in detail, it necessarily requires
that 2N ≥ J + 2Mz , that is, J must be not larger than
2 (N − Mz), with 0 ≤ Mz ≤ L ≤ Lcp � N . In other
words, the system capacity is decremented by two units for
any additional channel zero on the DFT grid.

3.2 Identifiability conditions for the IMSA method

In this section, we provide sufficient conditions assuring the
consistency of the proposed IMSA method. Preliminarily,
observe that matrix G can be equivalently written as

G =
√

N · WIDFT [C1 γ1,C2 γ2, . . . ,CJ γJ ]︸ ︷︷ ︸
G∈CN×J

, (26)

where γj
�
= WDFT Ωgj ∈ C

N collects the N -point DFT
samples of Ωgj ∈ C

Lcp , for j ∈ {1, 2, . . . , J}. It can be
seen that eq. (16) can be equivalently written as

UH
n W H = (W Un︸ ︷︷ ︸

Ũn

)HH = O(2N−J)×J , (27)

where H
�
= [GT ,GH ]T ∈ C

2N×J . Let g
′
1,g

′
2, . . . ,g

′
J be

arbitrary vectors of C
Lcp , and consider the matrix

H′ �
= [(G′)T , (G′)H ]T , (28)

where
G

′ �
= [C1 γ

′
1,C2 γ

′
2, . . . ,CJ γ

′
J ] , (29)

with γ
′
j

�
= WDFT Ωg

′
j , for j ∈ {1, 2, . . . , J}. The follow-

ing identifiability Theorem provides sufficient conditions for
unique channel identification:

Theorem 2 (Identifiability) Let Θj ∈ C
N×N de-

note the circulant matrix with first column Ωgj ,
for j ∈ {1, 2, . . . , J}, and consider its partition

Θj = [(Θ(1)
j )T , (Θ(2)

j )T ]T , with Θ(1)
j ∈ C

Lcp×N and

Θ(2)
j ∈ C

(N−Lcp)×N . Moreover, assume that: C1) the
extended composite-channel matrix H is full-column rank;
C2) ∀j ∈ {1, 2, . . . , J}, the J − 1 extended vectors[

Θ(2)
� WIDFT C−1

j c�

(Θ(2)
� WIDFT C−1

j c�)∗

]
, for � ∈ {1, 2, . . . , J} − {j}

(30)
are linearly independent over C

2(N−Lcp). Then, the follow-
ing statements are equivalent:

(i) H
′

is a solution of eq. (27), i.e., ŨH
n H

′
= O(2N−J)×J .

(ii) g
′
j = αj gj , with αj ∈ R, ∀j ∈ {1, 2, . . . , J}.

Some remarks are now in order. First, unlike the PMSA
method [1], the ambiguity scalar factors {αj}J

j=1 are real
rather than complex. Second, it can be proved that, if the
identifiability condition of the PMSA method is verified (see
[1]), then condition C2 for the IMSA is surely verified.
Loosely speaking, any vector gj that can be identified by
the PMSA method is also identifiable by the IMSA one. On
the other hand, if condition C2 holds, the identifiability con-
dition of [1] is not necessarily fulfilled. In other words, the
IMSA method can correctly estimate the vectors {gj}J

j=1 un-
der identifiability conditions that are weaker than those of the
PMSA one. Finally, for the PMSA method [1], the number
J of active users must obey the relation J ≤ N − Lcp + 1.
On the other hand, for the proposed IMSA method, condi-
tion C2 poses the following constraint on system capacity:
2 (N −Lcp) ≥ J − 1 or, equivalently, J ≤ 2 (N −Lcp) + 1.
Hence, the maximum number of users that can be accommo-
dated by using the proposed IMSA method, compared with
the PMSA one, is doubled.
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Figure 1: Normalized channel MSE versus K.

4. SIMULATION RESULTS

We consider the uplink of a QS-MC-CDMA system em-
ploying N = 32 subcarriers, with a cyclic prefix of length
Lcp = 8 and OQPSK symbol modulation. As frequency-
domain spreading codes, we use length-32 random complex-
valued quaternary sequences taking values ±1± i. The base-
band multipath channel of the jth user is of order Lj = 4 and
is modeled as in [1], and the integer transmission delays dj

are chosen as discrete random variables, assuming equiprob-
able values in {0, 1, 2}, for j = 1, 2, . . . , J . The SNR of the

desired user is defined as SNR
�
= σ2

b ‖Υ1 g1‖2/E[ ‖v(k)‖2 ].
We considered a severe near-far scenario: in all the experi-
ments, the path gains of each user channel are adjusted so that
each interfering user is 10 dB stronger than the desired one
(j = 1). As a channel estimation performance measure, we
used the normalized channel mean square error (MSE), de-
fined as in [1], averaged over Nr = 1000 independent Monte
Carlo trials. Finally, we used in each Monte Carlo trial a dif-
ferent set of noise samples and, for each user, a different set
of spreading codes, transmission delays, channel parameters
(path gains and propagation delays), and data sequences.

In the first experiment, the performances of the consid-
ered methods are studied as a function of the sample size
K. The number of users is set to J = 20 and the SNR is
20 dB. It can be seen from Fig. 1 that the IMSA method is
more data-efficient than the PMSA one. In the second ex-
periment, we evaluate the performances of both methods as
a function of the number J of users, ranging from an under-
loaded (J < N ) to an overloaded (J > N ) system. The
sample size is equal to K = 200 symbols and the SNR is 20
dB. Results of Fig. 2 show that, when the number of users
varies from 1 to 25 (which represents the maximum number
of users that the PMSA method can handle), the proposed
IMSA method still assures better performances in compari-
son with the PMSA approach. Moreover, the proposed IMSA
method provides very satisfactory performances when the
number of users varies from 25 to 49 (which represents the
maximum number of users that the proposed IMSA method
can support), whereas for these values of J the PMSA algo-
rithm cannot operate.
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Figure 2: Normalized channel MSE versus J .
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