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ABSTRACT

A multilabel classification rule with performance constraints
for supervised problems is presented. It takes into account
three concerns : the loss function which defines the crite-
rion to minimize, the decision options which are defined by
the admissible assignment classes or subsets of classes, and
the constraints of performance. The classification rule is de-
termined using an estimation of the conditional probability
density functions and by solving an optimization problem. A
criterion for assessing the quality of the rule and taking into
account the loss function and the issue of the constraints is
proposed. An example is provided to illustrate the classifica-
tion rule and the relevance of the criterion.

1. INTRODUCTION

Classification problems with performance constraints can arise
in different real fields, like cancer diagnosis, currency veri-
fication, fraud detection or face identification. The specifi-
cations of such problems are given by the different classes
whose number can be two or more, and by the desired per-
formances. These ones, in general, can be defined by several
constraints, which can combine different total or conditional
probabilities and which can be expressed using inequalities or
order relationships.

In statistical hypothesis testing, the Neyman-Pearson test
[1] is the solution of a classification problem with one con-
straint and two classes : it minimizes the second type error
subject to the first type error being equal to a constant. An-
other usual binary classification problem with a performance
constraint is defined by a bound on the error rate. Its interest
is to ensure a high reliability and avoid erroneous decisions.
Because the rule which minimizes the error rate can lead to
a larger rate than the desired bound, an ambiguity reject op-
tion has been introduced as a mean to reduce the error prob-
ability through a rejection mechanism [2, 3]. It consists in
withholding a decision and directing the rejected pattern to
an exceptional handling, using additional information. When
rejection is needed, the optimal rule is the one which satisfies
the error rate and minimizes the rejection rate. More gener-
ally, the classification rule researched is the one which mini-
mizes a given loss function without rejection if the constraints

are satisfied, and the one which minimizes the rejection rate
otherwise. The rules for the two constraints case where each
of the two conditional errors is bounded and for the one con-
straint case where the ratio of the error probability to the non-
rejection probability is bounded are studied in [4, 5].

For solving classification problems with desired perfor-
mances in the case of more than two classes, the reject option
has also to be considered. However the reject option is more
complex than in the case of two classes. The simplest rule
of classification with rejection is similar to the one for two
classes : it assigns the pattern to a class or it rejects it. It was
proposed by Chow [2] for designing a classification rule that
minimizes the reject rate for a given error rate. A more com-
plex rejection scheme called class-selective rejection consists
in not rejecting the pattern from all classes but only from those
that are most unlikely to issue the pattern. It was introduced
by Ha [6] for designing a classification rule that minimizes
the average number of selected classes for a given error rate.
Then it was used in [7] for designing a rule that minimizes
the maximum distance between selected classes for a given
average number of classes.

A general formulation has been introduced in [8] for mul-
tilabel classification problems with performance constraints.
It considers three concerns : the first one deals with the de-
cision options which correspond to the assignment classes or
subsets of classes that are deemed as admissible for the prob-
lem, the second one deals with the performance constraints
to be satisfied, and the third one deals with the loss function
which defines the function to minimize. The classification
rule in statistical hypothesis testing context, assuming that the
conditional density functions and the a priori probabilities are
known, was expounded.

This paper tackles the problem of classification adapted
to this formulation when the process is described by a train-
ing sample set. A supervised learning rule and a criterion for
assessing the quality of the rule are proposed. Indeed, to com-
pare several rules, it is necessary to get a criterion taking into
account the loss function and the issue of the constraints. In
section 2, the problem of multilabel classification with per-
formance constraints is presented and the classification rule
in statistical hypothesis testing framework is expounded. In
section 3, a supervised classification rule and a criterion for
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assessing the quality of a rule are proposed. In section 4, sim-
ulations results are provided to illustrate the supervised rule
and the relevance of the criterion. The paper is concluded in
section 5.

2. MULTILABEL CLASSIFICATION

The three concerns of the formulation of the multilabel clas-
sification problem with performance constraints briefly intro-
duced above are described more precisely in sections 2.1 to
2.3. The theoretical rule is exposed in section 2.4.

2.1. Decision options

Let us suppose that a pattern = belongs to a class j noted
Cj, with j = 1..N where N is the number of classes. The
classification rule consists in assigning the pattern z to a label
set w; which is a class or a subset of classes. Assigning =
to a subset of classes means that the element is considered as
belonging to any class in the subset. The decision options set
Q is defined by the label sets w; :

Q={w,ws,...wr}

where I is the number of sets, whose maximum value is 2%V —
1. Each w; is a subset of the N classes, containing at least one
class, and specified by the numbers of the classes, for example
wy = {1;4;5}.

We define Z; as the set of patterns x that are assigned to
Wi«

Z; = {x € R"|z is assigned to w; } .

Since each z has to be assigned to a unique w;, the sets Z;
build up a partition of R"”, that we call Z.

The probability of deciding that an element of the class j
belongs to the set w; is P(D;/C};) :

P(D:/Cy) = [ P(a/Cyis

[3

where P(x/C;) are the conditional density functions.

2.2. Performance constraints

Any performance constraint C*), where k refers to the con-
straint number, is defined by its expression e(*) and its thresh-
old () :

I N
e®) < F) with ek ZZ MpP(Di/Cy) ()

where 04( j) € Rand P; = P(C}) are the a priori probabili-
ties. A large diversity of constraints can be defined using this
formulation.

2.3. Average expected loss

The average expected loss is general and enables to include
simple problem formulations. It is given by :

I N

c= ZZCUP]P(DZ/CJ) (2)

i=1 j=1

where c;; is the cost of deciding that an element x belongs to
the set w; when it belongs to the class j.

The values of c;; being relative since the aim is to mini-
mize c, the values can be defined in the interval [0; 1] without
loss of generality. When the set w; contains only one class,
c;; will be generally chosen equal to O for j equal to the class
in w; and 1 otherwise. When w; contains several classes, and
class j ¢ w;, ¢;; defines an error cost then this cost will be
generally chosen equal to 1 ; when class j € w;, ¢;; defines
an indistinctness cost then it will be generally chosen growing
with the set size.

2.4. Theoretical classification rule

The optimal classification rule is defined by the partition Z*
so that the loss ¢ is minimum and the K constraints given by
(1) are satisfied. It is the solution of the following problem :

mZin c subjectto e < V(k) vk =1..K.

The solution to this optimization problem is given by the sad-
dle point (Z*, u*) of the Lagrangian associated with the prob-
lem :

K
L(Zp) =c+ Y (e —4®) 3)

k=1
in which = [p1, p2 ... ], and p; > 0,6 =1... K are the
Lagrange multipliers associated with each of the constraints.
Classical Lagrangian duality enables the primal problem to be

transformed to its dual problem, which is easier to solve. The
dual problem is given by :

max {mzin L(Z, p)} .

HERK+

It has been shown in [8] that the partition Z* is defined
by the Z, for i = 1..1, so that :

Zi = 2Z;(1") )
where Z () is defined by :
Z; (1) = {wIMw p) < N, p),l=1.1,1#it (5

K
with \;( Z P;P(z/C;) (cij + Z ukal(f)>
j=1 k=1
and p* is given by
= 6
p = arg nax, w(p) (6)

with w(p

z/*

3. SUPERVISED LEARNING RULE AND QUALITY
ASSESSMENT OF THE RULE

(x Mdar—Zuw

3.1. Supervised classification rule

To design a supervised classification rule, a direct method is
to estimate P; and P(x/C}) from the training set and then to
solve the optimization problem, as for the theoretical rule.
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To estimate the probabilities P}, an usual means is to use
the ratio of samples in the different classes of the training
set. To estimate the conditional distributions P(z/C)) a fre-
quently used technique is the Parzen density estimate [1]. It
allows to approximate the value of a density function at any
location z knowing n independent samples z;, ¢ = 1..n drawn
from the same distribution. The expression of this estimate
using a Gaussian kernel is

Blz) = n7~H(2m) 2z

ZGXP< /(2 Zj)tE_l(Z—Zj)) ©)

where
e d is the vector dimension,
e X is an estimation of the covariance matrix of the data,
e 0 < o < 1is a parameter that allows to adapt the
smoothing of the estimated density.

3.2. Quality assessment of the rule

For measuring the quality of the classification rule, it is nec-
essary to define a criterion. When the specifications of the
problem involve no constraints, the criterion is simply given
by the loss function. But when performance constraints are
involved, the criterion has to take into account the constraints
in addition to the loss function, and has to express that the
constraints are satisfied while the loss function is minimum.

To define the criterion, we have considered the problem
without constraints equivalent to the initial problem with con-
straints. It leads to the same classification rule and its formu-
lation is based on a modified loss function, which depends on
the loss function and the constraints of the original problem.
Indeed, the classification rule of the initial problem with a loss
function ¢ and performance constraints is defined by Z(u*),
where Z*(u) and p* are respectively given by (5) and (6).
This is also the solution of the problem without constraints
and with the loss function ¢’ defined by :

1 I N
d =3 Nilw,p) = ZZ PiP(D;/Cy) ()
i=1 i=1 j=1

K
with ¢} = ¢ + Z,uiaz(»f).

Then a mean to assess the quality of the rule is to measure the
average expected loss of the equivalent problem. By subtract-
ing the constant Zle wiy ), the criterion remains equiva-
lent and becomes equal to the Lagrangian function L(Z, u*),
enabling thus comparison with this one. Since the theoretical
values 7 are unknown, they have to be replaced by estimated
values juz.. The proposed criterion « is then given by :

K
3 <cij + Zﬂ@?) P;P(D;/C}) ZNW
k

1j=1 =1

1
R =

7

€))

4. SIMULATION RESULTS

For a problem characterized by a loss function and constraints,
the supervised learning classification rule depends on the sam-
ple set and the parameter o used for estimating the density
probability functions. The aim of the simulation was to deter-
mine if the proposed criterion is appropriate for selecting, on
average for a large number of sample sets, the best classifica-
tion rule with respect to the value of o. Thus the optimal value
of o obtained using the proposed criterion has to be compared
with the one which minimizes the loss function while respect-
ing the constraints.

4.1. Problem description and theoretical rule

Each pattern 2 in R? belongs to one of three equiprobable
classes which have normal distributions. Their means and
covariance matrices are given by : m; = (—1.1;0),%; =
I,ms = (1.1;0), X9 = I, mg = (0;2),%; = 0.5 where
1 is the identity matrix. The density probability functions are
represented on figure 1.

The problem of classification is described by the follow-
ing concerns :

e 7label sets : wy = {1}, wa = {2}, w3 = {3},ws =
{1;2},ws = {153}, ws = {2;3}, w7 = {1;2; 3},
e 2 constraints : Pp < 0.05
Pr <0.08

where Pg is the probability of error :

(10)

Pp = P,P(D1/C2) + P3P(D1/C3) + PLP(D2/C1)
+P3P(D2/Cs) + PLP(D3/C1) + P2P(D3/Cs)
¥ PyP(Dy/Cs) + PoP(Ds/Cs) + PLP(Dg/Ch)

an

and P is the probability of indistinctness :

Pp = PyP(Dy/Cy) + PyP(Dy/C)
+P1P(D5/C1) + P3sP(Ds5/Cs) (12)
+PyP(Dg/C3) + P3P(Dg/C3),

o the average expected loss defined by the following costs :

— for the sets wi, we and w3 containing one class,
cij = 1if j ¢ w; (incorrect class) and ¢;; = 0
otherwise (correct class),

— for the sets wy, ws and wg containing two classes,
¢i; = lif class j ¢ w; (incorrect class) and ¢;; =
0.5 otherwise (correct classification but with in-
distinctness),

— for the set wy containing the three classes, ¢;; = 1
because it corresponds to total rejection ;

then it can be written as : ¢ = Pg + 0.5P; + P(Dr).

Given this problem, the proposed criterion defined by (9)
rewrites as :

k = Pg+0.5P; + P(D7) + pu (Pg — 0.05) + po (P; — 0.08).



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Fig. 1. Density probability functions and decision zones in
function of =
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Fig. 2. Average of Pr and P; (left vertical scale) and of ¢ and
K (right vertical scale) of the classification rule, in function of
.

The partition associated with the theoretical classification
rule in function of x is represented in figure 1. It has been
obtained for p* = [3.43;0.46]. Values of Pg, Py, c and « are
given in table 1.

4.2. Experimental process

First, the classification rules were determined using the con-
ditional probability functions estimated according to (7), with
the same parameter o, varying between 0.005 and 0.4, for all
classes and with 200 samples in each class. The values of Pg,
Py, c and k of the classification rule were computed using the
theoretical density probability functions. To compute «, the
theoretical value for p was used. The mean of these measures
in function of o were estimated from 100 sample sets. They
are represented on figure 2. Since the loss decreases when o
grows and both constraints are verified for any o smaller than
0.2, the best value is 0.2. The minimum criterion value is
0.370 and obtained for o = 0.2. Thus the proposed criterion
enables to select reliably the best value for o.

To study the effect of the value of u, the mean of the es-
timated values of p; and ps in function of o was computed
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035 & 0.40
Fig. 4. Average of « for different values of y, in function of
o.

(it is represented on figure 3), and the value of the criterion
k was computed using an estimated value of p instead of the
theoretical one . For comparison, the same value was used
for any value of o. Results are given by figure 4. When the
maximum values of u1 and uo are used, i.e. u = [4.23;0.50],
the minimum criterion value is obtained for o = 0.175 ; when
the median values are used, i.e. p = [3.83;0.50], the mini-
mum is obtained for o = 0.2, and when the minimum values
are used, i.e. p = [3.43;0.50], the minimum is obtained for
o = 0.2. These results show that the selected value for o is
very close to the optimal one even if there is an error on the
value used for p.

Then, the classification rules were determined using the
conditional probability functions estimated according to (7),
with a parameter o depending on the class. Due to similar-
ity of classes 1 and 2, the same parameter o; was used for

50 samples|200 samples| theory
mean of PE 0.0457 0.0461 0.0505
mean of Pl 0.0808 0.0783 0.0811
mean of ¢ 0.3841 0.3609 0.3296
mean of K 0.3698 0.3468 0.3317
standard deviation of PE 0.0107 0.0059
standard deviation of PI 0.0148 0.0077
standard deviation of ¢ 0.0477 0.0235
standard deviation of Kk 0.0169 0.0050

Table 1. Mean and standard deviation of different measures
of the classification rule, in the cases of a set with 50 and 200
samples in each class, and in the case of the theoretical rule.
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Fig. 5. Estimated density probability functions and decision
zones in function of x using a set with 200 samples in each
class

Fig. 6. Mean criterion in function of parameters o and o5 in
the case of N = 200.

both classes and a parameter o, was used for class 3. The
experiments were carried out with sample sets containing N
samples in each class, with NV = 50 and N = 200. An exam-
ple of a rule when N = 200 is given in figure 5. The mean of
the criterion « in function of o1 and o5 is given by figure 6 for
N = 200. The parameters leading to the minimum criterion
value are, for N = 200 : o0y = 0.35 and 05 = 0.015, and for
N =50: 01 = 0.3 and o5 = 0.01. The mean and standard
deviation of Pg, P, C and k, estimated from 100 sample
sets, are given in table 1. These results show that the criterion
allows to select values of oy and o5 so that on average the
constraints are verified and the loss function is small. When
the number of samples is equal to 200, the criterion value is
close to the theoretical one.

5. CONCLUSION

Multilabel classification problems with constraints of perfor-
mance take into account three concerns : the loss function
which defines the criterion to minimize, the decision options
which are defined by the admissible assignment classes or
subsets of classes, and the performance constraints. A super-
vised learning rule for such problems is proposed. It consists

in estimating the conditional density probability functions us-
ing a Parzen estimate and in solving an optimization problem
as for determining the rule when the theoretical probability
functions are known.

A criterion for assessing the quality of a supervised learn-
ing classification rule that takes into account the loss function
and the issue of the constraints is introduced. It corresponds
to the Lagrangian function of the optimization problem, and
provides a measure of the loss function of the unconstrained
problem leading to the same classification rule than the initial
one.

Simulations on a problem with three classes and two con-
straints were carried out. Different values for the number
of patterns in the sample set and for the parameter setting
the smoothing of the estimated density functions were con-
sidered. The constraints, the loss function and the proposed
criterion of the classification rule were measured using the
theoretical density functions. It has been shown that the pro-
posed criterion is appropriate for assessing the quality of a
rule : it allows to choose the value of the smoothing parame-
ter which is the best one from the point of vue of the issue of
the constraints and of the minimization of the loss function.

Future work will focus on determining the rule and choos-
ing the value of the smoothing parameter entirely from a sam-
ple set.
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