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ABSTRACT
The linearly constrained minimum variance (LCMV) method
is an extension of the classical minimum variance distor-
tionless response (MVDR) filter, allowing for multiple lin-
ear constraints. Depending on the spatial filter length and
the desired frequency grid, a direct computation of the re-
sulting spatial beampattern may be prohibitive. In this paper,
we exploit the rich structure of the LCMV expression to find
a non-recursive computationally efficient implementation of
the LCMV beamformer with fixed constraints. We then ex-
tend this implementation by means of its time-varying dis-
placement structure to derive an efficient time-updating algo-
rithm of the spatial spectral estimate. Numerical simulations
indicate a dramatic computational gain, especially for large
arrays and fine frequency grids.

1. INTRODUCTION

The area of sensor array signal processing has received a con-
siderable interest in the recent literature, and numerous al-
gorithms addressing different aspects of the topic have been
proposed (see, e.g., [1, 2] and the references therein). Typi-
cally, these algorithms exploits the difference in propagation
delay recorded at the different sensor array elements to form
a parametric or non-parametric spatial spectral estimate. Re-
cently, non-parametric spatial spectrum estimators have re-
ceived renewed interest, mainly as these have the benefit of
not explicitly assuming ana priori known signal model, and
as a result tend to be more robust to variations in the mea-
sured signal than parametric counterparts. A traditional non-
parametric method for spatial spectral estimation is to apply
the simple beamformer for all directions of interest and use
the beamformer outputs to estimate the spatial power spec-
tral distribution. However, as is well-known, such anon-
adaptivebeamformer suffers from either low resolution or
high leakage, or both [2,3]. Another common approach is the
minimum variance distortionless response (MVDR) beam-
former. The MVDR beamformer has several desirable prop-
erties, and is often applied when high spatial resolution is
desired. It is a filterbank method that forms adata-adaptive
weight vector for each direction of interest, weighting the
array elements in an adaptive manner so as to minimize the
beamformer output power while passing signals from a given
direction of interest undistorted. This effectively places deep
nulls cancelling interference from sources in directions other
than the one of interest, resulting in a very high resolution
spatial estimate. The linearly constrained minimum variance
(LCMV) beamformer is a generalized form of the MVDR
beamformer, allowing for additional constraints, for exam-
ple to counter the influence of known jamming signals (see,
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e.g., [2], and the references therein, for a more general dis-
cussion on LCMV and on different typical constraints).

In general, both the MVDR and the LCMV beamformers
suffer from being computationally cumbersome, especially
for large data sets, large arrays and/or for evaluation over
a fine frequency grid; this as both methods suffer from re-
quiring the evaluation of a vector-matrix product containing
the inverse of the possibly large dimensional data covariance
matrix, sayRy, for each frequency grid point of interest. For
this reason, there has been a substantial interest in finding
efficientrecursiveimplementations of the LCMV and the re-
lated generalized sidelobe canceller (see, e.g., [4–9] and the
references therein). However, given the recursive nature of
these algorithms, one often needs to consider step-size selec-
tion, internal error propagation and convergence rate. Fur-
thermore, in several applications, only a limited amount of
data is available for a particular setup; in such cases, often
only the resulting spatial spectral estimate is of interest.

In this paper, we propose a non-recursive efficient im-
plementation of the LCMV beamformer with fixed non-
frequency dependent constraints exploiting the rich structure
of the LCMV expression. Via the use of the matrix inver-
sion lemma, the LCMV structure allows for the evaluation of
the beamformer using the fast Fourier transform (FFT), dra-
matically reducing the required computational complexity.
Different from the above mentioned recursive algorithms,
the proposed method provides anexact implementation of
the LCMV beamformer. The presented implementation, to-
gether with its time-variant displacement (TVD) structure, is
then exploited to derive an efficient forward-backward av-
eraged (FBA) sliding-window time-updating of the LCMV
spatial spectrum (we refer the reader to [10, 11] for a further
discussion on displacement theory). The algorithm has the
benefit of not requiring any step-size selection and offers the
exact LCMV spatial spectrum over the examined time win-
dow.

2. THE LCMV BEAMFORMER

Consider a uniform linear sensor array consisting ofm el-
ements, measuring signals impinging on the array with ap-
proximately planar wavefronts. Letyt , for t = 1, . . . ,N, de-
note the measuredm-dimensional data vectors. The LCMV
beamformer can, for agivenspatial frequencyω1, be found
as them-tap spatial finite impulse response (FIR) filter,hω1,
minimizing (see, e.g., [2])

hω1 = argmin
hω1

h∗ω1
Ryhω1 subject to C∗

ωhω1 = f , (1)

where (·)∗ denotes the conjugate transpose, andf is a d-
dimensional constraint vector, withd ¿ m. Furthermore,
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Ry = E{yty∗t }, with E{·} denoting expectation,

Cω = [ aω1 Aω̃ ] (2)

aω =
[

1 eiω . . . eiω(m−1)
]T

(3)

where(·)T denotes the transpose andAω̃ represents the con-
straint matrix (see, e.g., [2] for further details on how to select
the constraints and the constraint matrix). Herein, we will fo-
cus on the common case when them×(d−1) constraint ma-
trix, Aω̃ , does not depend on the frequency of interest,ω1;
this is, for instance, the case when the constraints are used to
cancel known jammer directions. Further, the constraint cor-
responding to the frequency of interest,ω1 ∈ [−π/2,π/2], is
typically selected equal to unity to pass this frequency undis-
torted, i.e.,f1 = 1, where

f =
[

f1 fT
]T

. (4)

As is well known, the beamformer minimizing (1) is found
as [2,3]

hω1 = R−1
y Cω

(
C∗

ωR−1
y Cω

)−1
f , (5)

yielding the spatial spectral estimate

ϕy(ω1) , h∗ω1
Ryhω1 = f∗

(
C∗

ωR−1
y Cω

)−1
f . (6)

Commonly,Ry in (6) is unknown, and is replaced by a con-
sistent estimate; herein, we use the FBA covariance matrix
estimate as it is known to yield preferable spectral estimates
[12], i.e.,

R̂y =
1
2

(
R̂ f

y +JR̂ f T
y J

)
, (7)

whereJ denotes the exchange matrix, and

R̂ f
y =

1
N

N

∑
t=1

yty∗t . (8)

We note that the computational cost of evaluatingϕy(ω1),
with thed×d matrix

Qω , C∗
ωR̂−1

y Cω , (9)

might well be prohibitive for largem, especially asϕy(ω)
often needs to be evaluated over a very fine frequency grid,
requiringQω to be computed overP frequency grid points,
with typically PÀ N; a brute-force evaluation ofQω , using
(7), forP frequencies, requiresO(m3+(N+dP)m2+d2mP)
operations. Here, we will for simplicity assume that the fre-
quency grid covers the full frequency range, remarking that
frequencies such thatCω loses rank should be omitted from
the resulting estimate. We note that should only a limited
frequency region be of interest, the algorithm can easily be
modified accordingly.

3. PROPOSED EFFICIENT IMPLEMENTATION

Using the block-matrix inversion lemma (see, e.g., [3]),Q−1
ω

can be expressed as (10), given at the top of next page, where
I denotes the identity matrix (of appropriate dimension), and

µω1 = a∗ω1
R̂−1

y aω1 (11)

νω = A∗̃
ωR̂−1

y aω1 (12)

Gω̃ = A∗̃
ωR̂−1

y Aω̃ (13)

By again using the matrix inversion lemma to rewrite the fac-
tor (Gω̃ −µ−1

ω1
νω νω

∗)−1, (10) can be expressed as

Q−1
ω =

[
z1 z∗2
z2 Z3

]
(14)

where

z1 = µ−1
ω1

+ µ−2
ω1

φω +
φ2

ω
µ2

ω1
(µω1−φω)

(15)

z2 = −µ−1
ω1

G−1
ω̃ νω − φω

µ2
ω1
−µω1φω

G−1
ω̃ νω (16)

Z3 = G−1
ω̃ +

1
µω1−φω

G−1
ω̃ νω ν∗ωG−1

ω̃ (17)

with φω , ν∗ωG−1
ω̃ νω . Thus, assuming that the frequency of

interest is passed undistorted,ϕy(ω1) in (6) can be expressed
as

ϕy(ω1) = z1 +2Re(f∗z2)+ f∗Z3f, (18)

where Re(x) denotes the real part ofx. It is worth noting that
the LCMV beamformer is often used to null known jammer
directions; in such a case,f = 0, allowing the evaluation of
ϕy(ω1) to be simplified toϕy(ω1) = z1. We proceed to note
that for a Hermitian matrixΛ ∈ Cm×m, it holds that [13]

a∗ω1
Λaω1 = 2Re

(
m−1

∑
s=0

λse
iω1s

)
−λ0, (19)

where

λs =
m−1

∑
k=s

Λk,k−s, (20)

with Λk,p denoting the(k, p)th index ofΛ. Thus, givenR̂−1
y ,

both the quadratic formsµω1 andφω , and thusz1, can be ef-
ficiently evaluatedover all P frequency grid points simulta-
neouslyusing the FFT. Similarly,f∗G−1

ω̃ νω can be computed
for all P frequencies using the FFT. Further, we note that
the(d−1)× (d−1) matrixG−1

ω̃ only needs to be evaluated
once for all frequencies. Thus, the evaluation of (18) requires
O(Nm2 +m3 +PlogP+m2(d−1)+m(d−1)2) operations.
We note that in cases when only a narrow band, or a subset,
of the spatial spectrum is of interest, the complexity can be
significantly reduced by exploiting a local Fourier transform
(see, e.g., [14,15]) in place of the FFT in (19). In the follow-
ing section, we will proceed to examine how to update the
LCMV beamformer as additional data becomes available.

4. TIME-UPDATING THE LCMV BEAMFORMER

Given the centrohermitian structure ofR̂y, one may form the
decompositionR̂y = KBK∗ [16], whereK can be selected
to be column conjugate symmetric1 and unitary. In particu-
lar, for even dimension̂Ry,

K =
1√
2

[
I iI
J −iJ

]
, (21)

whereK is a square matrix with the same dimensions asR̂y.

1A matrix K is said to be column conjugate symmetric ifK = JK∗.
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Q−1
ω =

[
µω1 ν∗ω
νω Gω̃

]−1

=
[

I
0

]
µ−1

ω1
[ I 0 ]+

[
−µ−1ν∗ω

I

]
(Gω̃ −µ−1

ω1
νω ν∗ω)−1[ −µ−1

ω1
νω I

]
(10)
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Figure 1: Average complexity gain as a function of the array
size,m, for varying number of constraints,d. Here, the data
size isN = 3m andP is selected as the next power of two
larger than N.

Similarly, for odd dimension̂Ry,

K =
1√
2




I 0 iI
0 i

√
2 0

J 0 −iJ


 . (22)

For this choice ofK, B is a real symmetric matrix. As shown
in [16], this decomposition offers a significant complexity re-
duction for the most common operations on FBA covariance
matrices, such as the time-updating ofR̂y. Let the FBA co-
variance matrix estimate at timet be denotedR̂y(t). Then,
an efficientsliding windowtime-update ofR̂y(t), such that

R̂y(t) = R̂y(t−1)+ ŶtŶ∗
t − Y̌tY̌∗

t , (23)

whereŶt andY̌t are the updating and downdating data ma-
trices, i.e.,

Ŷt = [ yt Jy∗t ] (24)

Y̌t = [ yt−N Jy∗t−N ] , (25)

with N denoting the length of the sliding window, can prefer-
ably2 be formed aŝRy(t) = KBtK∗, where

Bt = Bt−1 + ẐtẐT
t − ŽtŽT

t , (26)

with thecompactupdating and downdating data matrices

Ẑt = K∗ŶtV and Žt = K∗Y̌tV (27)

whereK is determined from (21) or (22), and

2The time-updating using (26) requires only about half the number of
operations compared to the update in (23).
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Figure 2: Average complexity gain as a function of the size
of the frequency grid,P, for varying array sizes,m. Here,
d = 3 andN = 3m.

V =
1√
2

[
I iI
I −iI

]
. (28)

It should be noted that the transforms in (27) imply thatẐt

andŽt are real-valued. Here, we are interested in updating
R̂−1

y (t) instead ofR̂y(t); such an update can be formed using
the TVD structure of (26). A time-variant Toeplitz-likem×
m matrix Bt is said to have a TVD structure if the matrix
difference∇Bt , defined by [10,11]

∇Bt = Bt −FtBt−∆F∗t , (29)

has lowrank, sayr(t), wherer(t)¿ m, for some lower tri-
angular matrixFt . The TVD rank,r(t), provides a measure
of the degree of structure present, with lower rank indicating
stronger structure. Thus, ifr(t) is close tom, there is little
point in pursuing the displacement framework. Combining
(29) with (26) implies that

∇Bt = ẐtẐT
t − ŽtŽT

t , (30)

where∆ = 1, Ft = I, and them× r(t) generatormatricesẐt

and Žt are each used in turn to updateBt . Further, it can
be seen thatr(t) = 2 for both update and downdating gen-
erator matrices. We note that the positive-definite nature of
R̂y(t) guarantees the existence of a unique lower triangular
Cholesky factor,Lt , such thatBt = LtLT

t , which, exploiting
(30), can be expressed in two stages as [11]

[
L̂t 0

][
L̂T

t
0

]
=

[
Lt−1 Ẑt

][
In 0
0 Im

][
LT

t−1
ẐT

t

]

whereL̂t represents the updatedonlyCholesky factor which
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Figure 3: Average complexity gain as a function of the num-
ber of constraints,d. Here, the data size isN = 3m and
P = 512.

is then followed by the downdating process

[ Lt 0 ]
[

LT
t

0

]
=

[
L̂t Žt

][
In 0
0 −Im

][
L̂T

t
ŽT

t

]
,

in order to effect both the up- and downdating (i.e., to form
the sliding window) of the Cholesky factors of the compact
form of the FBA covariance estimate,Bt . Hence, it follows
that there existstwo [In⊕ Im]-unitary rotation matrices3, Γ̂t

andΓ̌t , such that [11]
[

L̂t 0
]
=

[
Lt−1 Ẑt

]
Γ̂t (31)

and subsequently

[ Lt 0 ] =
[

L̂t Žt
]
Γ̌t . (32)

Note thatΓ̂t andΓ̌t have the effect of rotating the updating
generator matrices,̂Zt andŽt , onto the expressionsLt−1 and
L̂t respectively to produce the up- and down-dated Cholesky
factorLt and block zero entries in the left-hand sides of both
(31) and (32). Both the rotational transformsΓ̂t andΓ̌t are
typically implemented as a sequence of elementary trans-
forms, having the general form,Γt = Γ1

t Γ
2
t · · ·Γm

t , whereΓk
t

annihilates thekth row of a given generator matrix. The ro-
tation matriceŝΓt andΓ̌t can be formed in numerous differ-
ent ways. Generally, however, Givens rotations are used for
updating and Householder rotations for down-dating. One
should note that in practice it is more efficient for each col-
umn of the Cholesky factor to be concatenated with the gen-
erator matrix to make an{m−k+1}×{r(t)+1}matrix, and
as each vector is updated, this process is repeated whilst each
row of the generator matrix is annihilated until all the column
vectors of the new Cholesky factor are produced. Thus, the
appropriate rotation matrices,Γ̂t andΓ̌t are3×3 matrices of

3Here, aJ-unitary matrixΘ is defined as any matrixΘ such thatΘJΘ∗ =
J. Further,a⊕b denotes a matrix with the sub-matricesa {n× n} and
b {m×m} concatenated to produce a matrix of size{(m+n)× (m+n)}.
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Figure 4: Average complexity gain for time-updating as a
function of the number of sensors.

the form

Γ̂k
t =




l(k,k)
βk

ẑ(k,1)
αk

l(k,k)ẑ(k,2)
αkβk

ẑ(k,1)
βk

− l(k,k)
αk

ẑ(k,1)ẑ(k,2)
αkβk

ẑ(k,2)
βk

0 −αk
βk


 (33)

Γ̌k
t =




l̂(k,k)
δk

− ž(k,1)
γk

− l̂(k,k)ž(k,2)
γkδk

− ž(k,1)
δk

l̂(k,k)
γk

ž(k,1)ž(k,2)
γkδk

− ž(k,2)
δk

0 γk
δk


 (34)

wherel(k, `), l̂(k, `), ẑ(k, `) andž(k, `) denote the (k, `)th el-
ement ofL, L̂, Ẑt andŽt , respectively, and

αk =
√
|l(k,k)|2 + |ẑ(k,1)|2 βk =

√
|αk|2 + |ẑ(k,2)|2

γk =
√
|l̂(k,k)|2−|ž(k,1)|2 δk =

√
|γk|2−|ž(k,2)|2

As shown in [11], this procedure can easily be extended to
also yield theinverseCholesky factor; this is achieved by
augmenting (31) and (32) by appending the inverse Cholesky
factors according to [11]. By applyinĝΓt (and subsequently
Γ̌t ), we thus find an efficient time-updating of the inverse
Cholesky factor also, yielding one column vector per itera-
tion. Using the updated inverse Cholesky factor, we form the
time-updated LCMV estimate in (18), using

R̂−1
y (t) =

(
KL−1

t−1

)(
KL−1

t−1

)∗
, (35)

replacing (12) and (13) withνω(t) =
(
K̃L−1

t−1

)
L−∗t−1aω1 and

Gω̃(t) =
(
K̃L−1

t−1

)(
K̃L−1

t−1

)∗
, whereK̃ = A∗̃

ωK; the other
components are evaluated accordingly. The time-updated
version of (18) is then obtained using the FFT technique
described above. Finally, we note that the above proposed
sliding-window time-updating can, if desired, be reformu-
lated to form an updating employing an exponential forget-
ting factor (which then obviates the down-dating and instead
removes the influence of old data components by multiplica-
tion of the Cholesky factor,L−1

t−1, by a suitable factor close
to unity).

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



0 2 4 6 8 10

x 10
6

10
−12

10
−11

10
−10

Iterations

N
or

m
 e

rr
or
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5. NUMERICAL EXAMPLES

In this section, we briefly examine the computational gain of
the proposed methods, initially examining the non-recursive
implementation introduced in Section 3. Simulation data
has been generated to contain a signal of interest imping-
ing on the array from broadside, whiled− 1 known jam-
ming sources, each being ten times stronger than the signal
of interest, are evenly spread over the angles [20◦,50◦]. The
measured signal is corrupted by an additive white circularly
symmetric Gaussian noise, and the constraint vector,f, has
been selected to damp the jamming signals with a factor 0.01.
Figure 1 illustrates the complexity gain factor (estimated as
the average execution time of 500 iterations using Matlab) of
evaluatingϕy(ω1) using (18), as compared to using the tra-
ditional approach in (6), as a function of the array size,m.
The data size is selected asN = 3m. In the figure, the size
of the frequency grid,P, is selected as the next power of two
larger than N. Figures 2 and 3 illustrate the computational
gain, for varying array sizes, as a function of the size of the
frequency grid and the number of constraints, respectively.
Here,P = 512. In these figures, the cost of evaluatingR̂−1

y
has been omitted as both the proposed and the brute-force im-
plementations require this evaluation. As is clear from these
Figures, the proposed non-recursive implementation offers a
significant computational gain, especially for larger arrays.
We stress that the implementation in (18) will yield the same
spatial spectral estimate as the brute-force implementation in
(6). Proceeding to examine the proposed time-updating, Fig-
ure 4 shows the complexity gain of the proposed algorithm as
compared to reevaluating the spatial spectrum using the pre-
sented non-recursive implementation (including the cost for
evaluatingR̂−1

y ), as a function of the array size,m. As seen
from the figure, the proposed updating offers a substantial
complexity reduction, especially for larger arrays, even com-
pared to using the efficient implementation to evaluate the
spatial spectrum. Finally, Figure 5 illustrates the (norm) er-
ror propagation of the sliding-window time-updating as com-
pared to the exact spectrum, clearly indicating the robust na-
ture of the algorithm.
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