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ABSTRACT
The paper deals with the design of the equalizer based on the
widely linear processing combined with the decision-feedback
(DF) procedure and operating over time-dispersive multiple-
input multiple-output channel. A basic issue concerns
the choice between two widely-linear/widely-linear decision-
feedback structures: the former is based on the complex-
valued signal representation, whereas the latter utilizes the
real-valued representation of the involved signals. Indeed, in
previous contributions, both structures have been indifferently
used since, in the considered scenarios, they resulted to be
equivalent. In this paper, we recognize that there is an impor-
tant scenario where the above structures are not equivalent.
To fairly compare them, the issue of decision-error propa-
gation has been addressed. An extensive set of experimen-
tal results shows that the real-valued signal representation-
based equalizer outperforms significantly the complex-valued
representation-based equalizer as well as the conventional DF
equalizer when the effects of decision errors in the feedback
filters are taken into account.

1. INTRODUCTION

Very recently, due to the advances in wireless communi-
cation systems, aimed at satisfying the increasing demand
of high bit-rate services, much attention has been focused
on multiple-input multiple-output (MIMO) communication
channel models. Since the optimum (in the Maximum
Likelihood sense) receiver for MIMO channel mainly suf-
fers from the computational complexity, many suboptimal
receiver structures have been proposed in order to achieve
an acceptable compromise between performance and com-
putational complexity. In the class of nonlinear symbol-by-
symbol equalizers, the decision-feedback (DF) ones, which
employ unlike the linear ones (referred in the following to
as feedforward-based equalizers) also a linear feedback fil-
ter operating on the past decisions, have been extensively
considered. It has been shown that DF strategy allows
one to achieve significant performance improvements over
linear equalizers both in single-input single-output [1] and
in MIMO [2] scenarios. Very recently, the widely linear
(WL) filtering [3] and DF equalization have been combined
together to obtain the widely-linear/widely-linear decision-
feedback (WL-WDF) equalizer [4] (which utilizes widely-
linear processing both in feedforward filtering and in feed-
back filtering). Such equalizers provide significant perfor-
mance advantages over both DF and WL feedforward-based
equalizers. For these reasons, WL processing and DF strat-
egy have been combined [5] in presence of dispersive MIMO
channels. The equalization structures were synthesized ac-
cording to the minimum mean-square error (MMSE) crite-
rion and finite-impulse-response (FIR) filters were utilized.

As shown in [5], two alternative choices are possible to
synthesize the WL receiver. The former (referred to in the
sequel as real-valued representation-based equalizer (RBE))

performs the linear processing of both the real and the imag-
inary parts of the input vector [5, 6]. The latter (referred to
in the sequel as complex-valued RBE) performs the linear
processing of the input vector and its conjugate version [3].
Two important scenarios are considered in the DF equal-
ization [2]: in the former, say Scenario 1, the estimate of
the transmitted symbol block is based only on the decisions
about the symbol blocks previously transmitted. In the lat-
ter, say Scenario 2, since the decisions are taken sequentially,
each component of a symbol block is estimated by resorting
to previous decisions about the components of the same sym-
bol block as well as previously transmitted symbol blocks. It
is easy to show [5] that real-valued and complex-valued RBEs
are equivalent in Scenario 1.

In this paper, we show that in the Scenario 2 the real-
valued and the complex-valued RBE structures are not
equivalent anymore. To carry out a meaningful performance
comparison, the optimum structures optimized also over the
decision ordering have been considered and the effects of the
error propagation have been considered.

The outline of the paper is the following: Section 2 intro-
duces the WL transformation according to both the complex-
valued and the real-valued representatiom of the signals.
Section 3 presents the problem settings and the derivation
of the WL-WDF-MMSE equalizer. Furthermore, Section 4
reports the results of the experiments, mainly aimed at com-
paring the performances of the DF equalizer and of the real-
valued and the complex-valued representation-based WL-
WDF equalizers. Finally, Section 5 provides the conclusions
and final remarks.

2. PRELIMINARY DEFINITIONS AND BASIC
PROPERTIES

In this section we first introduce some mathematical opera-
tors and representations that will be utilized in the following.
Since the WL processing can be performed both by adopting
the real-valued representation and the complex-valued one,
operators and representations are defined for both complex
and real cases. We address the problem of finding the main
correspondences and differences between the WL transfor-
mations for both the complex case and the real one.

2.1 Preliminary definitions

Let us define the following operators:

C̃p[u]�
[

u(1 : n1, 1 : p) u(1 : n1, p + 1 : n2)
u∗(1 : n1, 1 : p) 0n1×(n2−p)

(1)

0n1×(n2−p)

u∗(1 : n1, p + 1 : n2)

]
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Ẽp[u]�
[ �{u(1 : n1, 1 : p)} �{u(1 : n1, p + 1 : n2)}

�{u(1 : n1, 1 : p)} �{u(1 : n1, p + 1 : n2)} (2)

−�{u(1 : n1, p + 1 : n2)}
�{u(1 : n1, p + 1 : n2)}

]
(3)

Cp[u]�
[

u
u∗(p + 1 : n1, 1 : n2)

]
(4)

Ep[u]�
[ �{u}

�{u(p + 1 : n1, 1 : n2)}
]

(5)

where u ∈ C
n1×n2 , 0 ≤ p ≤ n1 is an integer value,

u(i1 : �1, i2 : �2) is the submatrix of u, whose first and
last rows (columns) are the i1th (i2th) and the �1th (�2th)
ones, respectively, �{·} and �{·} denote real and the imag-
inary part, the superscript ∗ denotes the complex conjuga-
tion, and, finally, the array 0n1×n2 is the n1×n2 matrix con-
taining all null entries (the specification of the size n1 × n2

will be omitted in the sequel for the sake of brevity). The
operators (1)-(4), as it will be shown in Section 3, allow us
to rewrite the input-output relation of a MIMO linear (time-
dispersive) channel so that the WL-WDF equalizer can be
synthesized by utilizing the procedure relative to the DF
equalization of [2]. Moreover, the operators (4) are utilized
to describe the basic properties of the WL transformations
introduced in the next subsection.

Let us also define the operators

C̄p

[
u1

u2

]
= u1 Ēp

[
u3

u4

u5

]
=

[
u3

u4 + ju5

]
where j is the imaginary unit, u1 has n1 rows, u2, u4, u5 has
n1−p rows and u3 have p rows. The operators C̄p[·] and Ēp[·]
represent the inverse of Cp[·] and Ep[·], respectively. The pa-
rameter p denotes the number of real-valued components of
the input vector u. Therefore, when the first p components
of u are real-valued, then C̄p [Cp[u]] = u and Ēp [Ep[u]] = u.
Finally, similarly to [7], let us define the matrix transforma-
tion

T �
[
Ip 0 0
0 In1−p jIn1−p

0 In1−p −jIn1−p

]
, TTH = THT = I2n1−p (6)

If u is a vector with n1 rows such that the first p rows are
real-valued, then Cp [u] = TEp [u].

2.2 Widely Linear Transformations

By adopting the real-valued representation, the WL trans-
formation from x to y is defined as the linear transformation
on the extended vector Enr [x], namely:

Enq [y] �
[

F11 F12 F13

F21 F22 F23

F31 F32 F33

]
Enr [x] = FEnr [x] . (7)

where the first nq components of y are real-valued, F11 ∈
R

nq×nr , F12,F13 ∈ R
nq×(ni−nr), F21,F31 ∈ R

(no−nq)×nr ,
and where F�k ∈ R

(no−nq)×(ni−nr) with �, k = 2, 3. More
specifically, the widely linear transformation from x to y
can be written as: y = Ēnq [FEnr [x]].

The linear transformation (7) can also be equivalently
written as:

Cnq [y] �
[

G11 G12 G∗
12

G21 G22 G23

G∗
21 G∗

23 G∗
22

]
Cnr [x] = GCnr [x] (8)

where
G = TFTH . (9)

Then, the overall WL processing can also be written as:
y = C̄nq [GCnr [x]]. In other words, when a matrix F
for WL processing in real-valued representation is avail-
able, then the matrix for the corresponding WL processing
in complex-valued representation is G = TFTH and, vice
versa, F = THGT is the relation for the inverse transfor-
mation between the two representations.

In the literature [3-5], the two representations are both
used since they are often equivalent for many application sce-
narios. However, it can be verified that such an equivalence
does not hold in general. Let us further discuss how it may
happen that the choice of the representation implies a differ-

ence in the performances. Let us denote with S
(1)
r and S

(2)
r

two sets of matrices F in the real-valued representation cor-
responding, by means of the transformation (9), to the sets

S
(1)
c and S

(2)
c of matrices G in the complex-valued represen-

tation, respectively. Assume that S
(1)
r satisfies a constraint

on the structure of its elements, and S
(2)
c satisfies a constraint

on the structure of its elements. Then, if S
(1)
r �= S

(2)
r and,

therefore, S
(1)
c �= S

(2)
c , the two representations are not equiv-

alent. In fact, the choice of the real-valued representation

means to search for the matrix F in S
(1)
r , while choosing the

complex-valued representation is equivalent to search for the

matrix F in S
(2)
r ; the two representations are equivalent only

in the special case where the chosen matrices in S
(1)
r and S

(2)
r

belong to the intersection of S
(1)
r and S

(2)
r . In other words,

choosing the complex-valued representation means to search

for the matrix G in S
(2)
c , while choosing the real-valued rep-

resentation is equivalent to search for the matrix G in S
(1)
c .

An important example is provided by the WL-WDF-MMSE
equalization in Scenario 2 where, as it will be shown in Sec-
tion 3, a lower triangular structure is imposed on the matrix

filter. More specifically, a lower-triangular matrix F ∈ S
(1)
r

needs to be utilized when the real-valued representation is

adopted, while a lower-triangular matrix G ∈ S
(2)
c needs to

be utilized when the complex-valued representation is cho-

sen. Since the set S
(1)
c corresponding to S

(1)
r by means of

the transformation (9) is different from S
(2)
c , the choice of

the two representations leads to the optimization over two
different sets and, hence, in general different optimum so-
lutions are obtained in correspondence of the two possible
choices.

3. MIMO INPUT-OUTPUT MODEL AND
IDEAL WL-WDF-MMSE EQUALIZATION

Let us consider a FIR baseband equivalent noisy communi-
cation channel with ni jointly wide-sense stationary (WSS)
transmitted signals and no received signals. The inputs and
the outputs of the MIMO channel at the kth instant are

xk = [x
(1)
k x

(2)
k . . . x

(ni)
k ]T and yk = [y

(1)
k y

(2)
k . . . y

(no)
k ]T .

Using a matrix representation, the output vector yk can be
expressed as follows:

yk =
ν∑

m=0

Hmxk−m + nk (10)

where ν denotes the channel order, Hm is the no×ni matrix

whose entry h
(i,�)
m accounts for the effect of the �th input on

the ith output, and nk is the no × 1 vector of noise samples

at the kth instant. Each symbol x
(i)
k is drawn from the con-

stellations Si (i = 1, . . . , ni): with no loss of generality, we
consider both the complex-valued constellations (e.g., MPSK
with M ≥ 4 and QAM) and real-valued constellation (e.g.,
PAM) as in [5], and we assume unit-power symbol sequences

x
(i)
k . We order the symbol sequences so that the real-valued
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[ C0[yk]
C0[yk−1]

C0[yk−(Nf−1)]

]
=


C̃P

nr
[H0] . . . C̃P

nr
[Hν ] 0 . . . 0

0 C̃P
nr

[H0] . . . C̃P
nr

[Hν ] 0
...

...
. . .

. . .
...

0 . . . 0 C̃P
nr

[H0] . . . C̃P
nr

[Hν ]

 ·
[ Cnr [xk]

Cnr [xk−1]
Cnr [xk−(Nf +ν−1)]

]
+

[ C0[nk]
C0[nk−1]

C0[nk−(Nf−1)]

]
(13)

constellations have indices i ∈ {1, . . . , nr}. By resorting to
the transformations (1) and (4), the channel model (10) can
be replaced by the following equivalent one:

C0[yk] =
ν∑

m=0

C̃nr [Hm]Cnr [xk−m] + C0[nk]. (11)

Let P be a permutation matrix of size 2ni − nr, such that
PT P = I2ni−nr . By defining the (row) permutated input

vector CP
nr

[xk] � PCnr [xk] and, hence, the (column) permu-

tated channel matrix C̃P
nr

[Hm] � C̃nr [Hm]PT , the channel
output can be equivalently re-written as follows:

C0[yk] =

ν∑
m=0

C̃P
nr

[Hm]CP
nr

[xk−m] + C0[nk]. (12)

Since we consider FIR equalizers, it is useful to express (12)
in matrix representation; specifically, by considering a block
of Nf received vectors C0 [yk], (12) can be re-written as in
(13), or, more compactly,

ỹk = H̃(P )x̃k(P ) + ñk. (14)

With reference to channel model (14), we define the input-
correlation matrix of size (Nf + ν)(2ni − nr)

Rx̃(P ) � E
[
x̃k(P )x̃H

k (P )
]

(15)

and the noise-correlation matrix of size 2noNf

Rñ � E
[
ñkñ

H
k

]
. (16)

It follows that the input-output cross-correlation matrix and
the output-correlation matrix are given by

Rỹx̃(P ) � E
[
ỹkx̃

H
k (P )

]
= H̃(P )Rx̃(P ) (17)

Rỹ � E
[
ỹkỹ

H
k

]
= H̃Rx̃H̃

H + Rñ (18)

where we have taken into account that the channel output
yk and ỹk (and, therefore, also its second-order statistics)
are independent of P.

The output, say zk−∆(P ), of the WL-WDF equalizer is
obtained by applying the transformation C̄nr [·] to the output
zC,k−∆(P ) of the DF equalizer operating on the channel (12),
i.e., zk−∆(P ) = C̄nr [zC,k−∆(P )] where

zC,k−∆(P ) �
Nf−1∑
�=0

WH
� C0[yk−�] (19)

+

Nb∑
i=0

(I2ni−nr δi − BH
i )PCnr [x̂k−∆−i]

where W� and Bi denote the matrix taps of size 2no ×
(2ni − nr) and (2ni − nr) × (2ni − nr), respectively, δk

is the Kronecker delta, x̂k−∆−i is an estimate of xk−∆−i

(i = 0, . . . , Nb), and the integer ∆ denotes a processing de-
lay. Note that each permutation matrix P defines a different
decision ordering and, so, a different DF equalizer. The feed-
forward filter matrix WC � [ WH

0 WH
1 . . . WH

Nf−1 ]H

and the feedback one BC � [ BH
0 BH

1 . . . BH
Nb

]H are
chosen according to the MMSE criterion, i.e.,

min
WC ,BC

E
[‖ek−∆(P )‖2] (20)

ek−∆(P ) � zC,k−∆(P ) − CP
nr

[xk−∆]

with ek−∆(P ) denoting the error vector, with correlation ma-

trix defined as Re(P ) � E
[
ek−∆(P )eH

k−∆(P )
]
. The “ideal

WL-WDF-MMSE equalizer” is obtained by performing the
minimization (20) under the assumption that past decisions
are correct. By utilizing the results in [1], it can be shown

that the optimum feedforward filter W
(opt)
C is given by

W
(opt)
C (P ) = R−1

ỹ Rỹx̃(P )Ψ∆BC(P ) (21)

with

Ψ∆ �
[

0∆(2ni−nr)×(2ni−nr)(Nb+1)

I(2ni−nr)(Nb+1)

0s(2ni−nr)×(2ni−nr)(Nb+1)

]
.

The optimization problem (20) can be solved assuming that
i) only past decisions are available for estimating Cnr [xk−∆]
(say Scenario 1); ii) past decisions and current decisions
with lower indexed components are available for estimating
Cnr [xk−∆] (say Scenario 2). These two scenarios are mathe-
matically described by constraints introduced on the matrix
tap B0. Specifically, the condition B0 = I2ni−nr holds when
Scenario 1 is considered, while B0 is constrained to be upper
triangular with unit diagonal entries (monic) when Scenario
2 is considered. It can be shown that the optimum feedback
filters and the corresponding MSE are:

Scenario 1

B
(opt)
C,1 (P ) = (R∆(P ))−1 Φ

[
ΦH (R∆(P ))−1 Φ

]−1

MMSE1(P ) = trace
([

ΦH (R∆(P ))−1 Φ
]−1

) (22)

Scenario 2

B
(opt)
C,2 (P ) = B

(opt)
C,1 (P )B

(opt)
0 (P )[

ΦH (R∆(P ))−1 Φ
]−1

= L(P )D(P )L(P )H

B
(opt)
0 (P ) = L(P )−H

MMSE2(P ) = trace (D(P ))

(23)

where Φ �
[
I2ni−nr 0(2ni−nr)×Nb(2ni−nr)

]H
and the matri-

ces L(P ) and D(P ) are obtained by performing the Cholesky

factorization of the matrix
[
ΦH (R∆(P ))−1 Φ

]−1
. By resort-

ing to the property trace(A) = trace(X−1AX), with X be-
ing a unitary matrix, it can be verified that MMSE1(P ) =
MMSE1(I) ∀P, i.e., the performances of DF-based equaliz-
ers are invariant to the decision ordering when Scenario 1 is
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considered. On the other hand, if Scenario 2 is considered,
the permutation matrix P greatly affects the MMSE (20)
achieved by DF-based equalizers and, therefore, (2ni − nr)!
different WL-WDF equalizers exist. Unfortunately, the opti-
mum decision ordering can be derived only by an exhaustive
procedure.

Non-equivalent structures

According to the real-valued representation, the channel
model (11) can be equivalently rewritten [5] as

E0[yk] =
ν∑

m=0

Ẽnr [Hm]Enr [xk−m] + E0[nk]. (24)

The DF equalizer operating on such a channel model de-
fines the WL-WDF equalizer structure according to the real-
valued representation. It is simple to verify that the frame-
work utilized to derive the WL-WDF-MMSE according to
the complex-valued representation allows one to derive the
WL-WDF-MMSE according to the real-valued representa-
tion. In [5], it has been shown that a one-to-one correspon-
dence exists between such a representation and the complex-
valued one when Scenario 1 is considered. On the other hand,
let us note that, due to the constraint imposed by the Sce-

nario 2, the matrix tap B
(opt)
0 (P ) is monic upper triangular,

and hence, on the basis of the results in Section 2.2, the
complex-valued equalizer structure and the real-valued one
are not equivalent.

4. PERFORMANCE ANALYSIS OF THE
PROPOSED EQUALIZERS

In this section, we present the results of computer simula-
tions carried out to assess the performances of the different
equalizers considered in the previous section. We first con-
sider in subsection 4.1 the case where no error propagation
is present. Then, in subsection 4.2, we consider the case
where the effects of error propagation in DF equalization are
taken into account. The equalizer performances have been
optimized over all the decision orderings by an exhaustive
procedure.

4.1 Ideal Decision-Feedback Results

In this subsection we present the performances of the ideal
WL-WDF-MMSE equalizers. The performances are evalu-
ated in terms of signal-to-noise ratio (SNR) at the decision
point defined as

SNR �
(

1

ni
E

[‖C̄nr [zC,k−∆(P )] − xk−∆‖2])−1

and optimized with respect to ∆. Moreover, the optimum
feedback filter memory Nb = Nf +ν−∆−1 has been chosen.
The averaged SNR (ASNR) in dB is obtained by averaging
the obtained results over 100 independent trials: in each

trial, the channel taps h
(i,�)
m (i = 1, . . . , ni , � = 1, . . . , no)

are randomly generated according to a complex zero-mean
white Gaussian random process with unitary variance and
uncorrelated with each other. Unless not specified, in the
following simulations, we assume ni = 4 spatially and tem-
porally uncorrelated unit power input sequences, nr = 2,
nc = ni − nr complex-valued circularly symmetric input se-
quences, no complex-valued white WSS Gaussian zero-mean
noise sequences with the same power σ2

n, ν = 1, and Nf = 4.
Moreover, we denote the WL-WDF-MMSE equalizer ob-
tained by adopting the complex-valued representation with
WLWDF-C, while WLWDF-R will denote the WL-WDF-
MMSE equalizer obtained by adopting the real-valued rep-
resentation. The two Scenarios (22) and (23) are denoted
with the abbreviations Sc.1 and Sc.2, respectively.

We have evaluated the performance relative gain G1 of
the WLWDF-C equalizer over the WLWDF-R one, the per-
formance relative gain G2 of the WLWDF-R equalizer over
the DF-MMSE equalizer in both Sc.1 and Sc.2, the perfor-
mance relative gain G3 of the WLWDF-R equalizer in Sce-
nario 2 over the same equalizer in Scenario 1, and, finally, the
performance relative gain G4 of the DF equalizer in Scenario
2 over the same equalizer in Scenario 1. More specifically:

G1 � ASNRWLWDF-C(dB) − ASNRWLWDF-R(dB)

min {ASNRWLWDF-C(dB), ASNRWLWDF-R(dB)}
G2 � ASNRWLWDF-R(dB) − ASNRDF(dB)

ASNRDF

G3 � ASNR
(Sc.2)
WLWDF-R(dB) − ASNR

(Sc.1)
WLWDF-R(dB)

ASNR
(Sc.1)
WLWDF-R(dB)

G4 � ASNR
(Sc.2)
DF (dB) − ASNR

(Sc.1)
DF (dB)

ASNR
(Sc.1)
DF (dB)

.

where G2 is evaluated for both Sc.1 and Sc.2. Figs. 1 (a)-(b)
report [Gi]i=1,...,4 versus the number of channel outputs no

for SNRi = 15dB and SNRi = 30dB, respectively. Note that
the WLWDF-C equalizer reaches its largest gain G1 over
the WLWDF-R equalizer for no < ni; moreover, G1 exhibits
the maximum value for no = 2 in presence of large SNRi.
Similarly, the gain G2 of the WLWDF-R equalizer over the
DF is different from zero for no < ni both in Sc.1 and in
Sc.2; more specifically, G2 exhibits its maximum for no = 3
when Sc.1 is considered, while it is constant for no < ni when
Sc.2 is considered. The performance improvement gained by
the WL processing, for fixed ni and no, is due to to a better
exploitation of the statistical redundancy exhibited by the
useful signal component. As expected, similarly to G1, also
G2 approaches to zero when no increases. Finally, the gains
G3 and G4 monotonically decrease with no. The feedback of
current decisions (Scenario 2) allows one to achieve a large
gain over the equalizer structures of the Scenario 1 when
no is lower than ni since they guarantee the capability to
discriminate the ni inputs.

4.2 Error propagation in WL-WDF equalization

Since the performances of the DF-based equalizers are also
affected by the presence of the error propagation, in the fol-
lowing we analyze by computer simulations the effects of the
error propagation when the WL-WDF-MMSE is employed at
the receiver side. More specifically, we single out important
differences between the complex-valued representation-based
equalizer and the real-valued representation-based one when
Scenario 2 is considered.

We consider a 2 × 1 MIMO channel model (Fig. 2) and
a 2 × 2 one (Fig. 3). BPSK and 4-QAM constellations are
assumed to be employed for the real-valued input sequence
and the complex-valued circularly symmetric one, respec-
tively (i.e., nr = 1 and nc = 1). The number of the feed-
forward matrix taps is set to Nf = 2 and all the equalizer
parameters are chosen according to the MMSE criterion. In
presence of error propagation we use, as performance mea-
sure, the bit error rate (BER) averaged over the ni inputs;
moreover, the BER curves are exhaustively optimized over
all the possible decision orderings and are averaged over 100
independent channel realizations. In Figs. 2 and 3 the SERs
of the considered equalizers in Scenario 2 are plotted versus
SNRi both in absence and in presence of error propagation.
The reported BER curves show that the WLWDF-C equal-
izer, which outperforms all the other equalizers when correct
decisions feed the feedback filter (see the black lines), can
perform very poorly (see the grey lines) in the presence of
error propagation. In such a scenario the WLWDF-R equal-
izers outperforms all the other equalizers.
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The results of such analysis are completely different from
those obtained in the previous subsection where the error
propagation effects were not taken into account. In fact,
the WLWDF-C equalizer is able to utilize the decision over

the conjugate version of x
(i)
k−∆ to improve the estimate of

x
(i)
k−∆ (and vice versa). However, such an improvement holds

only when x̂
(i)
k−∆ = x

(i)
k−∆, i.e. when the estimation error is

enough small to allow to achieve a correct decision. It follows

that the achieved accuracy improvement in estimating x
(i)
k−∆

(correspondent to an increase in the SNR at the decision
point) does not reduce the probability of error.

5. CONCLUSIONS

The paper addresses the widely-linear decision-feedback
equalization over time-dispersive MIMO channels when the
receiver exploits not only past decisions, but also the avail-
able current decisions (in the paper referred to as Sce-
nario 2) so that also the decision ordering has to be op-
timized. The paper shows that two non-equivalent WL-
WDF-MMSE equalizer structure can be obtained by resort-
ing to the complex-valued representation of the baseband
signals and to the real-valued one. The results show that
real-valued representation-based structure outperforms the
complex-valued representation-based one since it is more tol-
erant to the effects of decision errors in the feedback filter.
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Figure 1: Gains [Gi]i=1,...,4 versus the number of outputs no

for SNRi = 15dB (a) and SNRi = 30dB (b).
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Figure 2: BERs of the equalizers versus SNRi; 2 × 1 MIMO
channel.
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Figure 3: BERs of the equalizers versus SNRi; 2 × 2 MIMO
channel.
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