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ABSTRACT

The transform-domain least-mean-square (TD-LMS) al-
gorithm provides significantly faster convergence than
the LMS algorithm for coloured input signals. However,
a major disadvantage of the TD-LMS algorithm is the
large computational complexity arising from the unitary
transform and power normalization operations. In this
paper we establish the equivalence of a recently pro-
posed recursive power normalization algorithm and the
traditional exponential window power estimation algo-
rithm. The proposed algorithm is based on the matrix
inversion lemma and is optimized for implementation on
a digital signal processor (DSP). It reduces the num-
ber of divisions from N to one for a TD-LMS adaptive
filter with N coefficients. This provides a significant
reduction in computational complexity for DSP imple-
mentations. The equivalence of the reduced-complexity
algorithm and the exponential window power estimation
algorithm is demonstrated in simulation examples.

1. INTRODUCTION

Computational complexity and convergence speed are
two important considerations for adaptive filtering algo-
rithms [1]. The computational complexity of an adap-
tive filtering algorithm is proportional to the number
of filter coefficients. For example, the computational
complexity of the least-mean-square (LMS) algorithm
is O(N) for an adaptive finite impulse response (FIR)
filter with N coefficients. The convergence speed of sto-
chastic gradient descent adaptive filtering algorithms
such as the LMS is dependent on the eigenspread of
the autocorrelation matrix of the input signal. In gen-
eral, the larger the eigenspread, the slower the conver-
gence. For LMS-type adaptive filters, the most challeng-
ing adaptive filtering problems are those that require
long adaptive filters and have input signals with large
eigenspread. For such problems, the adaptive filtering
algorithm would require large computational complexity
and exhibit rather slow convergence.

A remedy for slow convergence is to whiten the adap-
tive filter input signal by using an orthogonal transform
followed by power normalization. This is also known
as transform-domain adaptive filtering [2]. While the
use of an orthogonal transform and power normaliza-
tion speeds up the algorithm convergence by effectively
reducing the eigenspread of the adaptive filter input, it
does not readily lead to a reduction in computational

complexity or the required number of filter coefficients.
The complexity of the orthogonal transform and power
normalization can be reduced to a certain extent by em-
ploying generalized subband decomposition (GSD) [3].
GSD essentially enables the use of smaller-size trans-
forms resulting in less division operations. The compu-
tational complexity of long adaptive filters can also be
reduced by employing block LMS algorithms in the fre-
quency domain at the expense of an end-to-end delay [4].
A particularly attractive method for complexity reduc-
tion is selective partial updating [5], which was applied to
transform domain adaptive filters in [6]. To allow com-
plexity reduction by selective partial updating, a new
power normalization algorithm was also developed.

In this paper we provide a detailed analysis of this
recently proposed recursive power normalization algo-
rithm [6], which requires only one division rather than
N divisions for a TD-LMS adaptive filter with N co-
efficients. We study the equivalence of the proposed
recursive power estimation algorithm and the exponen-
tial window power estimation algorithm, which is tra-
ditionally used in TD-LMS implementations. A com-
parison is also provided between the two power estima-
tion algorithms in terms of their respective cycle counts
when implemented on a current digital signal processor
(DSP), revealing the significant complexity reduction
that is achieved by employing the reduced-complexity
recursive power estimation algorithm proposed in [6].
The recursive power estimation algorithm is optimized
for DSP implementation by taking advantage of uncorre-
lated transform outputs and inexpensive multiply opera-
tions. Compared with the recursive least squares (RLS)
algorithm [1] which has a complexity of O(N2), the pro-
posed recursive algorithm only requires a complexity of
O(N).

The paper is organized as follows. Section 2 summa-
rizes the TD-LMS algorithm and its key components.
Section 3 concentrates on the power normalization com-
ponent of the TD-LMS algorithm. A complexity analy-
sis is provided for the traditional exponential window
power estimation algorithm. A detailed derivation of
the reduced-complexity recursive algorithm is presented
based on the matrix inversion lemma. In Section 4,
computer simulations are presented to demonstrate the
equivalence of the proposed algorithm and the exponen-
tial window power estimation algorithm. The conclu-
sions are drawn in Section 5.
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Figure 1: TD-LMS structure.

2. OVERVIEW OF TD-LMS

For coloured input signals with large eigenspread, the
LMS and normalized LMS (NLMS) algorithms exhibit
rather slow convergence. For such signals, the TD-LMS
algorithm converges significantly faster. This improve-
ment is brought about by approximate decorrelation
(whitening) of the input regressor vector to the adap-
tive filter. Decorrelation is accompanied by power nor-
malization. The TD-LMS algorithm is defined by the
recursion [2]

w(k + 1) = w(k) + µ e(k)Λ−2
v
∗(k) (1)

where

v(k) = [v0(k), . . . , vN−1(k)]T = Tx(k)

is the transformed regressor vector (the superscript ∗ de-
notes complex conjugate), Λ2 = diag{σ2

0 , σ2
1 , . . . , σ2

N−1}
is the power matrix of transform outputs, and e(k) =
d(k) − wT (k)v(k) is the error signal. The TD-LMS
structure is illustrated in Fig. 1. The power matrix can
be estimated online using a sliding exponential window:

σ2
i (k) = λσ2

i (k − 1) + |vi(k)|2, i = 0, . . . , N − 1 (2)

where λ is a forgetting factor for the exponential win-
dow (0 < λ < 1). Using (2), the power matrix Λ2 in
(3) is replaced by Λ2(k) = diag{σ2

0(k), . . . , σ2
N−1(k)},

resulting in

w(k + 1) = w(k) + µ e(k)Λ−2(k)v∗(k). (3)

The transform T is a fixed N × N orthogonal or
unitary matrix obtained from a discrete-time trans-
form such as the discrete Fourier transform (DFT), the
discrete cosine transform (DCT), the discrete Wavelet
transform (DWT) or the discrete Hartley transform
(DHT), to name but a few. The optimal transform
is derived from the autocorrelation matrix of the input
signal, and is known as the Karhunen-Loev̀e transform
(KLT). However, because the KLT is signal-dependent
and has a large computational complexity, it is not em-
ployed in practical applications.

The computational complexity associated with ob-
taining the transformed signal vector v(k) from the in-
put signal x(k) has been studied in the open literature,

and several low-complexity implementations are avail-
able. For example, most of the orthogonal transforms
can be implemented as IIR filter banks [7, 8] or as sliding
window transforms [9] with computational complexity of
O(N).

3. POWER NORMALIZATION

Power normalization is an important component of
transform-domain adaptive filters. Without power nor-
malization, no improvement can be achieved in the con-
vergence speed. The computational complexity of power
normalization is also very significant because of the large
number of division operations for which the DSP proces-
sors are not optimized.

For the exponential window power estimation in (2),
the computational effort required for each transform
output vi(k) is 2 multiplications (one for squaring mod-
ulus of vi(k) and another to compute λσ2

i (k − 1)). Re-
ferring to (3), power normalization requires one division
for each v∗

i (k):

v∗

i (k)

σ2
i (k)

, i = 0, . . . , N − 1. (4)

Thus, the total computational complexity for power nor-
malization is 2N multiplications and N divisions.

The large number of divisions in power normaliza-
tion is a major obstacle to the adoption of the TD-LMS
for practical applications [10]. An alternative method
for exponential window power estimation followed by
division is to do both in one step by resorting to the
matrix inversion lemma [1]:

(A + BCD)−1 = A
−1

− A
−1

B(DA
−1

B + C
−1)−1

DA
−1. (5)

The objective of power normalization is ultimately to es-
timate the reciprocal of power for each transform output
to be used in (3):

Λ−2(k) =









1/σ2
0(k) 0

1/σ2
1(k)

. . .
0 1/σ2

N−1(k)









=






λΛ2(k − 1) +







|v0(k)|2 0
. . .

0 |vN−1(k)|2













−1

.

(6)

In order to ensure that the matrix inversion lemma re-
sults in complexity reduction, the term DA

−1
B + C

−1

in the right-hand side of (5) must be scalar so that ma-
trix inversion is avoided. It turns out that this can only
be achieved if we set A = λΛ2(k − 1), B = D

H = v(k)
and C = 1, leading to an approximation to (6):

(A + BCD)−1 =
(

λΛ2(k − 1) + v(k)vH(k)
)

−1

≈ Λ−2(k).
(7)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



In the averaged sense this is a good approximation be-
cause the transform T is assumed to whiten the input
signal. Thus, E{v(k)vH(k)} would ideally be a diag-
onal matrix. We will replace the above approximation
with equality in the following derivations. The appli-
cation of the matrix inversion lemma to (6) dispenses
with the need for implicit inverse power calculation for
the transform outputs:

Λ−2(k) =
1

λ
Λ−2(k − 1)

−
1

λ2
Λ−2(k − 1)v(k)vH(k)Λ−2(k − 1)

×
( 1

λ
v

H(k)Λ−2(k − 1)v(k) + 1
)

−1

=
1

λ
Λ−2(k − 1)

−
Λ−2(k − 1)v(k)vH(k)Λ−2(k − 1)

λ2 + λvH(k)Λ−2(k − 1)v(k)
.

(8)

The second term in the right-hand side of (8) is not
diagonal. In order to calculate only the diagonal entries,
we modify (8) to

Λ−2(k) =
1

λ
Λ−2(k − 1)

−
1

λ2 + λvH(k)Λ−2(k − 1)v(k)

× Λ−2(k − 1)







|v0(k)|2 0
. . .

0 |vN−1(k)|2







× Λ−2(k − 1).
(9)

Letting φi(k) = 1/σ2
i (k), (9) can be conveniently

rewritten as





φ0(k)
...

φN−1(k)



 =
1

λ





φ0(k − 1)
...

φN−1(k − 1)





−
1

1 + 1
λ

∑N−1
i=0 |vi(k)|2φi(k − 1)

×











|v0(k)|2
(

φ0(k−1)
λ

)2

...

|vN−1(k)|2
(

φN−1(k−1)
λ

)2











.

(10)

The computational steps of the above recursion can be
performed as detailed below:

1

λ
φi(k − 1), (N muls) (11a)

( 1

λ
φi(k − 1)

)

vi(k)v∗

i (k), (2N muls) (11b)

( 1

λ
φi(k − 1)|vi(k)|2

)( 1

λ
φi(k − 1)

)

, (N muls) (11c)

Power Norm. Complexity Min. Cycle
Algorithm Muls Divs Count (C62x)
Exp. window 2N N 17N

Rec. algorithm 5N 1 5
2N + 16

Table 1: Complexity comparison for power normaliza-
tion algorithms [6].

1

1 + 1
λ

∑

· · ·

[ ]

(N adds, 1 div, N muls) (11d)

The above procedure generates the reciprocal of the
transform output power values recursively, as desired.
However, the reciprocal power values must be multi-
plied with the transform outputs to achieve the required
power normalization. If this is done explicitly, it would
increase the number of multiplications by N . In or-
der to save N multiplications, we use (11b) in the re-
cursive power estimation algorithm, which produces de-
layed power normalized transform outputs:

1

λ
φi(k − 1)v∗

i (k), i = 0, . . . , N − 1. (12)

Compared with (4), which would result from the appli-
cation of (2) and direct divisions, the outputs of the re-
cursive power normalization algorithm in (12) are scaled
by a constant 1/λ and use one-sample-delayed power es-
timates σ2

i (k−1). The constant scaling factor can easily
be absorbed into the stepsize parameter µ, and therefore
has no effect on power normalization. The one-sample
delay for the power estimate used in normalizing the
v∗

i (k) will have no noticeable impact on the performance
of TD-LMS since the tracking performance of the TD-
LMS algorithm will hardly be influenced by this delay.
Thus, we can use (12) instead of (4) as the power nor-
malized transform output signal with no adverse effect
on the TD-LMS performance whatsoever.

As shown in (11), the total computational complex-
ity of (10) is 5N multiplications and one division. Com-
pared with the power normalization method based on
(2) and (4), the recursive power normalization algorithm
in (10) reduces the number of divisions from N to one
at the expense of a 2.5-fold increase in the number of
multiplications (see Table 1).

On DSP processors, the actual complexity of (10)
would be significantly smaller than that of (2) and (4)
despite an increased number of multiply operations. The
reason for this lies in the way the DSP architectures
have evolved over the years. Modern DSP processors
have highly optimized architectures for the multiply-
and-accumulate (MAC) operation as it is one of the
most common operations performed in signal processing
applications [11]. This means that while DSP processors
will perform multiply and MAC operations very fast,
the less common operations such as division will require
longer processing times. For example, on Texas Instru-
ments DSP TMS320C62x, which is one of the high per-
formance fixed-point DSP processors currently available
on the market, a MAC operation can be performed in
half cycle, while a division operation takes between 16–
41 cycles [12]. This implies that on the C62x the com-
plexity of a division operation is at least 32 times larger
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Figure 2: Plot of 1/σ2
i (k) and φi(k), i = 0, . . . , 7.

than that of a multiply operation. Table 1 includes a
complexity comparison between the two power normal-
ization algorithms when implemented on the C62x. For
N = 512, which is the typical adaptive filter length for
a network echo canceller, the range of C62x cycle counts
for the exponential window and recursive power normal-
ization algorithms would be 8704–21504 and 1296–1321,
respectively. The significant difference between the cy-
cle counts provides a clear indication of the complexity
reduction offered by the recursive power normalization
algorithm.

4. EQUIVALENCE OF THE POWER
NORMALIZATION ALGORITHMS

In this section we compare the reciprocal power es-
timates produced by the traditional exponential win-
dow power estimation algorithm (4) and the reduced-
complexity recursive power estimation algorithm de-
rived from the matrix inversion lemma (12). The ap-
proximate equivalence of the two power normalization
algorithms is shown by way of computer simulations.

In the simulations we use an input signal x(k) with a
speech-like spectrum as recommended by USASI (USA
Standards Institute) for acoustic echo cancellation ap-
plications. An 8-point DCT is used for transforming
the time-domain input signal x(k) to the transformed
signal v(k) (i.e., N = 8). We use a small N in or-
der to facilitate graphical illustration of the power esti-
mates produced by the two algorithms. The exponential
window power estimation algorithm was initialized to
σ2

i (0) = 0.02, i = 0, . . . , 7, and the recursive power esti-
mation algorithm to φi(0) = 1/σ2

i (0) = 50, i = 0, . . . , 7.
The exponential forgetting factor was set to λ = 0.995.
The resulting reciprocal power estimates, 1/σ2

i (k) and
φi(k), i = 0, . . . , 7, produced by the two algorithms are
shown in Fig. 2. Following an initial transient period,
the two estimates settle on approximately the same val-
ues. There is a slight difference between the results of
the two algorithms because of the assumption made in
obtaining (9) from the matrix inversion lemma. To as-
certain whether this slight difference is uniform for dif-
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Figure 3: Plot of σ2
i (k)φi(k), i = 0, . . . , 7, versus k (λ =

0.995). Note that this product should ideally yield a
horizontal line at the same level for all i.

ferent transform outputs, we have also plotted the prod-
uct σ2

i (k)φi(k), i = 0, . . . , 7, versus k in Fig. 3.
In the case of exact equality between the outputs of

the two power estimation algorithms, we would have

σ2
i (k)φi(k) = 1, 0 ≤ i ≤ N − 1. (13)

If the power estimation outputs were simply related to
each other by φi(k) = α/σ2

i (k), i = 0, . . . , N − 1, where
α is a constant, then we would have

σ2
i (k)φi(k) = α, 0 ≤ i ≤ N − 1. (14)

Equation (14) represents an exact match between the
outputs of the two power estimation algorithms up to
a scaling factor. Note that for the scaling α to be uni-
form for each transform output as prescribed by (14),
we require the products σ2

i (k)φi(k), i = 0, . . . , N − 1
to form identical horizontal lines when plotted against
k. Referring to Fig. 3, we observe that the products
σ2

i (k)φi(k) form approximately identical horizontal lines
with α ≈ 1.05 as k increases, thereby confirming the ap-
proximate equivalence between the two algorithm out-
puts. We have repeated the previous simulations with
the adaptive filter length increased to N = 32 and all
other parameters remaining unchanged. This has re-
sulted in the product plot shown in Fig. 4. As can be
seen from Fig. 4, (14) roughly holds with α ≈ 1.20 for
large k, again confirming the approximate equivalence
between the two algorithms. The scaling factor α arises
from the approximations made in (7) and (9) in order to
reduce the computational complexity. As λ approaches
one, the two algorithms produce closer results as can be
seen in Figs. 5 and 6.

5. CONCLUSION

The approximate equivalence of the traditional expo-
nential window power estimation algorithm and a re-
cently proposed recursive power normalization algo-
rithm with a single division operation has been demon-
strated by way of computer simulations. The cycle count
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Figure 4: Plot of σ2
i (k)φi(k), i = 0, . . . , 31, versus k

(N = 32, λ = 0.995).
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Figure 5: Plot of σ2
i (k)φi(k) (N = 8, λ = 0.999).

saving achieved by the proposed algorithm is significant
for DSP implementations [6].

In addition to saving on the computational complex-
ity, the proposed power estimation algorithm can also be
used to facilitate further complexity reduction in selec-
tive partial updating of the TD-LMS algorithm [6]. It
was shown in [6] that selective partial updating of the
adaptive filter coefficients leads to a complexity reduc-
tion only if the proposed recursive power normalization
algorithm is employed. The traditional exponential win-
dow power estimator does not permit any complexity
reduction for selective partial updating. It results in
higher complexity than the full-update TD-LMS algo-
rithm, thereby beating the purpose of partial updating.

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, 3rd ed. New
Jersey: Prentice Hall, 1996.

[2] W. K. Jenkins, A. W. Hull, J. C. Strait, B. A.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

k

P
ro

du
ct

 o
f σ

i2 (k
) 

an
d 

φ i(k
),

 i=
0,

...
,N

−
1

Figure 6: Plot of σ2
i (k)φi(k) (N = 32, λ = 0.999).

Schnaufer, and X. Li, Advanced Concepts in Adap-
tive Signal Processing. Boston: Kluwer, 1996.

[3] M. R. Petraglia and S. K. Mitra, “Adaptive FIR
filter structure based on the generalized subband
decomposition of FIR filters,” IEEE Trans. on Cir-
cuits and Systems II, vol. 40, no. 6, pp. 354–362,
June 1993.

[4] J. J. Shynk, “Frequency-domain and multirate
adaptive filtering,” IEEE Signal Processing Mag-
azine, vol. 9, no. 1, pp. 14–37, January 1992.
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