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ABSTRACT
Noise signals generated by rotating machines such as
diesel engines, cutting machines, fans, etc. may be mod-
eled as noisy sinusoidal signals which can be successfully
suppressed by narrowband active noise control (ANC)
systems. In this paper, the statistical performance of
such a conventional filtered-X LMS (FXLMS) based nar-
rowband ANC system is investigated in detail. First,
difference equations governing the dynamics of the sys-
tem are derived in terms of convergence of the mean and
mean square estimation errors for the discrete Fourier
coefficients (DFC) of the secondary source. Steady-
state expressions for DFC estimation mean square error
(MSE) as well as the remaining noise power are then
developed in closed forms. A stability bound for the
FXLMS in the mean sense is also derived. Extensive
simulations are performed to demonstrate the validity
of the analytical findings.

1. INTRODUCTION

There are many rotating machines such as diesel en-
gines, cutting machines, fans, etc. which produce noise
signals that are harmful to working and living environ-
ment. Usually, these noise signals may be modeled as
sinusoidal signals in additive noise. Removing or reduc-
ing these noise signals, especially their lower frequency
portion, is very important in various engineering and
environmental systems. Narrowband active noise con-
trol (ANC) systems are designated to reduce or mitigate
these annoying noise signals [1]-[7].

A vast number of ANC systems have been pro-
posed. Usually, the finite-impulse-response (FIR) filters
adapted by a filtered-X least mean square (FXLMS) al-
gorithm and its variants are applied [3]. Other tech-
niques using recursive least squares (RLS) and Kalman
filtering based algorithms have also been developed for
many ANC systems [6, 3], which generally provide bet-
ter noise reduction performance at the expense of more
computational cost.

The conventional narrowband ANC systems are ef-
fective in suppressing sinusoidal noise in many real-life
applications [3]. Fig.1 shows such a conventional ANC
system [3, 4]. Some preliminary analysis of the system
in the frequency domain is given in [3, 4], but statistical
properties of the system has not been investigated yet.

In this paper, performance analysis of this FXLMS-
based ANC system is performed in detail. Difference
equations governing the dynamics of the system are de-
veloped in terms of estimation error between the DFCs

estimates of the secondary source and their optimal val-
ues which assure perfect cancellation for all the primary
sinusoids being targeted. The steady-state DFC estima-
tion mean square error (MSE) as well as the remaining
noise power are also derived in closed forms. A stabil-
ity bound in the mean sense is also derived. Extensive
simulations are conducted to prove the validity of the
analytical results.

The primary noise signal in Fig. 1 to be removed is
given by

p(n) =
q∑

i=1

{ai cos(ωin)+ bi sin(ωin)}+vp(n) (1)

where q is the number of frequency components of the
sinusoidal signal, ωi is the frequency of the i-th compo-
nent, vp(n) is a zero-mean additive white Gaussian noise
with variance σ2

p. The signal frequencies may be identi-
fied in a regression fashion based on a synchronization
(sync) signal derived from a non-acoustical sensor like a
tachometer.

The secondary source is expressed by

y(n) =
q∑

i=1

yi(n)=
q∑

i=1

{
âi(n)xai

(n)+ b̂i(n)xbi
(n)

}
(2)

xai
(n) = cos(ωin), xbi

(n) = sin(ωin) (3)

The FXLMS algorithm for DFC estimates is given by

âi(n+1) = âi(n)+µie(n)x̂ai
(n) (4)

b̂i(n+1) = b̂i(n)+µie(n)x̂bi
(n) (5)

where

e(n) = p(n)−yp(n), yp(n) = S(z)y(n) (6)

x̂ai
(n) = Ŝ(z)xai

(n) = α̂ixai
(n)+ β̂ixbi

(n) (7)

x̂bi
(n) = Ŝ(z)xbi

(n) =−β̂ixai
(n)+ α̂ixbi

(n) (8)

S(z) =
M−1∑

j=0

sjz
−j , Ŝ(z) =

M̂−1∑

j=0

ŝjz
−j (9)

α̂i =
M̂−1∑

j=0

ŝj cos(jωi), β̂i =
M̂−1∑

j=0

ŝj sin(jωi) (10)

S(z) is the true secondary path, Ŝ(z) is an estimate of
S(z), which is obtained in advance by some parameter

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



identification technique and is usually assumed to be
close to S(z), M and M̂ are the system orders of the
true and estimated secondary paths, respectively.

2. PERFORMANCE ANALYSIS

The error signal (residual noise) e(n) is given by

e(n) = p(n)−S(z)y(n) (11)

≈
q∑

i=1

{
[ai− (αiâi(n)−βib̂i(n))]xai

(n)

[bi− (βiâi(n)+αib̂i(n))]xbi
(n)

}
+vp(n)

where

âi(n− j) ≈ âi(n), j = 1,2, · · · ,M −1

b̂i(n− j) ≈ b̂i(n), j = 1,2, · · · ,M −1

are used to facilitate and simplify the analysis that fol-
lows. Fortunately, extensive simulations reveal that this
does not affect the accuracy of analysis significantly even
for relatively fast adaptation (see simulation results in
Section 3). Obviously, from (11), optimal DFCs for a
perfect cancellation of all the sinusoids are given by

[
ai,opt

bi,opt

]
=

[
αi −βi

βi αi

]−1 [
ai

bi

]
(12)

where

αi =
M−1∑

j=0

sj cos(jωi), βi =
M−1∑

j=0

sj sin(jωi) (13)

Define the estimation errors of DFCs as

εai
(n) = ai,opt− âi(n), εbi

(n) = bi,opt− b̂i(n) (14)

The error signal reduces to

e(n) ≈
q∑

i=1

{
[αiεai

(n)−βiεbi
(n)]xai

(n)

[βiεai
(n)+αiεbi

(n)]xbi
(n)

}
+vp(n) (15)

A. Convergence in the mean sense

Putting the above error signal and (14) in the FXLMS
recursions and taking ensemble average, one yields

E[εak
(n+1)] =

{
1− 1

2
µk(αkα̂k +βkβ̂k)

}
E[εak

(n)](16)

−1
2
µk(−α̂kβk +αkβ̂k)E[εbk

(n)]

E[εbk
(n+1)] =

{
1− 1

2
µk(αkα̂k +βkβ̂k)

}
E[εbk

(n)] (17)

−1
2
µk(−αkβ̂k + α̂kβk)E[εak

(k)]

In the above derivations, xai
(n) and xbi

(n) are treated
as pseudo-random noise [1, 7].

B. Convergence in the mean square
sense

Using (14) and (15) in (4) and squaring both sides of it,
one gets

E[ε2
ak

(n+1)] = E[ε2
ak

(n)] (18)

−2µkE[εak
(n)e(n)x̂ak

(n)]
Ik(n)

+µ2
kE[e2(n)x̂2

ak
(n)]

Jk(n)

After very lengthy and complicated calculations, one
may reach

Ik(n) =
1
2
(αkα̂k +βkβ̂k)E[ε2

ak
(n)] (19)

+
1
2
(αkβ̂k− α̂kβk)E[εak

(n)]E[εbk
(n)]

Jk(n) =
1
2
σ2

p(α̂2
k + β̂2

k) (20)

+
3
8
α̂2

k{α2
kE[ε2

ak
(n)]+β2

kE[ε2
bk

(n)]

−2αkβkE[εak
(n)]E[εbk

(n)]}

+
1
4
α̂2

k

q∑

i=1,i6=k

{α2
i E[ε2

ai
(n)]+β2

i E[ε2
bi

(n)]

−2αiβiE[εai
(n)]E[εbi

(n)]}
+

1
8
α̂2

k{β2
kE[ε2

ak
(n)]+α2

kE[ε2
bk

(n)]

+2αkβkE[εak
(n)]E[εbk

(n)]}

+
1
4
α̂2

k

q∑

i=1,i6=k

{β2
i E[ε2

ai
(n)]+α2

i E[ε2
bi

(n)]

+2αiβiE[εai
(n)]E[εbi

(n)]}
+

1
2
α̂kβ̂k{αkβk(E[ε2

ak
(n)]−E[ε2

bk
(n)])

+(α2
k−β2

k)E[εak
(n)]E[εbk

(n)]}
+

1
8
β̂2

k{α2
kE[ε2

ak
(n)]+β2

kE[ε2
bk

(n)]

−2αkβkE[εak
(n)]E[εbk

(n)]}

+
1
4
β̂2

k

q∑

i=1,i 6=k

{α2
i E[ε2

ai
(n)]+β2

i E[ε2
bi

(n)]

−2αiβiE[εai
(n)]E[εbi

(n)]}
+

3
8
β̂2

k{β2
kE[ε2

ak
(n)]+α2

kE[ε2
bk

(n)]

+2αkβkE[εak
(n)]E[εbk

(n)]}

+
1
4
β̂2

k

q∑

i=1,i 6=k

{β2
i E[ε2

ai
(n)]+α2

i E[ε2
bi

(n)]

+2αiβiE[εai
(n)]E[εbi

(n)]}
Similarly, one has from (5)

E[ε2
bk

(n+1)] = E[ε2
bk

(n)] (21)

−2µkE[εbk
(n)e(n)x̂bk

(n)]
Kk(n)

+µ2
kE[e2(n)x̂2

bk
(n)]

Nk(n)
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where Kk(n) and Nk(n) can be derived in the same way
that Ik(n) and Jk(n) are calculated.

Kk(n) =
1
2
(αkα̂k +βkβ̂k)E[ε2

bk
(n)] (22)

+
1
2
(−αkβ̂k + α̂kβk)E[εak

(n)]E[εbk
(n)]

Nk(n) =
1
2
σ2

p(α̂2
k + β̂2

k) (23)

+
3
8
β̂2

k{α2
kE[ε2

ak
(n)]+β2

kE[ε2
bk

(n)]

−2αkβkE[εak
(n)]E[εbk

(n)]}

+
1
4
β̂2

k

q∑

i=1,i6=k

{α2
i E[ε2

ai
(n)]+β2

i E[ε2
bi

(n)]

−2αiβiE[εai
(n)]E[εbi

(n)]}
+

1
8
β̂2

k{β2
kE[ε2

ak
(n)]+α2

kE[ε2
bk

(n)]

+2αkβkE[εak
(n)]E[εbk

(n)]}

+
1
4
β̂2

k

q∑

i=1,i6=k

{β2
i E[ε2

ai
(n)]+α2

i E[ε2
bi

(n)]

+2αiβiE[εai
(n)]E[εbi

(n)]}
−1

2
α̂kβ̂k{αkβk(E[ε2

ak
(n)]−E[ε2

bk
(n)])

+(α2
k−β2

k)E[εak
(n)]E[εbk

(n)]}
+

1
8
α̂2

k{α2
kE[ε2

ak
(n)]+β2

kE[ε2
bk

(n)]

−2αkβkE[εak
(n)]E[εbk

(n)]}

+
1
4
α̂2

k

q∑

i=1,i6=k

{α2
i E[ε2

ai
(n)]+β2

i E[ε2
bi

(n)]

−2αiβiE[εai
(n)]E[εbi

(n)]}
+

3
8
α̂2

k{β2
kE[ε2

ak
(n)]+α2

kE[ε2
bk

(n)]

+2αkβkE[εak
(n)]E[εbk

(n)]}

+
1
4
α̂2

k

q∑

i=1,i6=k

{β2
i E[ε2

ai
(n)]+α2

i E[ε2
bi

(n)]

+2αiβiE[εai
(n)]E[εbi

(n)]}

C. Steady-state MSE expressions

When the FXLMS algorithm reaches its steady state
(n→∞), it is easy to see, from the derived difference
equations for the mean error, that

E[εai
(n)]|n→∞ = E[εai

(∞)] = 0 (24)
E[εbi

(n)]|n→∞ = E[εbi
(∞)] = 0 (25)

which implies that the DFC estimates converges to their
optimal values as long as the system is statistically sta-
ble. Using these in the difference equations for the MSE
((18) and (21)) and subtracting (21) from (18), one has

(αkα̂k +ββ̂k)
(
E[ε2

ak
(∞)]−E[ε2

bk
(∞)]

)
(26)

=
1
4
µk

{
(α2

k−β2
k)(α̂2

k− β̂2
k)+4αkβkα̂kβ̂k

}

×
(
E[ε2

ak
(∞)]−E[ε2

bk
(∞)]

)

Obviously,
E[ε2

ak
(∞)] = E[ε2

bk
(∞)] (27)

holds. Substituting (24), (25) and (27) in (18) leads to

(αkα̂k +ββ̂k)E[ε2
ak

(∞)] = (28)

1
2
µkσ2

p(α̂2
k + β̂2

k)+
1
2
µk(α̂2

k + β̂2
k)

q∑

i=1

(α2
i +β2

i )E[ε2
ai

(∞)]

Multiplying both sides of the above equation with (α2
k +

β2
k)/(αkα̂k +βkβ̂k) and then taking summation with re-

spect to k, one obtains
q∑

i=1

(α2
i +β2

i )E[ε2
ai

(∞)] =
ησ2

p

1−η
(29)

where
η =

1
2

q∑
m=1

µm
(α2

m +β2
m)(α̂2

m + β̂2
m)

αmα̂m +βmβ̂m

(30)

Putting (29) back to (28) readily gives

E[ε2
ak

(∞)] =
1
2
µk

α̂2
k + β̂2

k

αkα̂k +βkβ̂k

σ2
p

1−η
(31)

The remaining noise power at steady state is ultimately
derived as

E[e2(∞)] = σ2
p +

q∑

i=1

(α2
i +β2

i )E[ε2
ai

(∞)] =
σ2

p

1−η
(32)

D. A stability bound in the mean sense

From the linear difference equations, (16) and (17), for
the convergence in the mean, we have
|Gk−λI2| = (33)∣∣∣∣
1− 1

2µk(αkα̂k +βkβ̂k)−λ − 1
2µk(−α̂kβk +αkβ̂k)

1
2µk(−αkβ̂k + α̂kβk) 1− 1

2µk(αkα̂k +βkβ̂k)−λ

∣∣∣∣=0

where Gk is the coefficient matrix, and I2 is a unit
matrix of 2× 2. λ is the eigenvalue of Gk. Let λ =
λr +

√−1λc. Putting the complex part of (33) to zero,
one faces two cases. First, if λc = 0, then

{λr− (1− 1
2
µk(αkα̂k +βkβ̂k)}2

+
1
4
µ2

k(−αkβ̂k + α̂kβk)(−α̂kβk +αkβ̂k) = 0 (34)

If λr = 1, (34) produces µk = 0, which can be regarded
as a lower bound for the step size. If λr =−1, (34) forces
µk to be complex or negative. Second, if λc 6= 0, then

λr = 1− 1
2
µk(αkα̂k +βkβ̂k) (35)

Using the above equation and λ2
r + λ2

c = 1 in the real
part of (33) yields
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1
4

{
(αkα̂k +βkβ̂k)2 +(−αkβ̂k + α̂kβk)

×(−α̂kβk +αkβ̂k)
}

µ2
k− (αkα̂k +βkβ̂k)µk = 0 (36)

which eventually gives a upper stability bound for the
step size µk as follows
µk,bound = (37)

4(αkα̂k +βkβ̂k)

(αkα̂k +βkβ̂k)2 +(−αkβ̂k + α̂kβk)(−α̂kβk +αkβ̂k)

Now we have following comments in order regarding
all the analytical results obtained in this Section.
C1 If the estimated secondary path Ŝ(z) is the same

as its truth S(z), then α̂k = αk and β̂k = βk and
the 2nd terms in right-hand sides (RHS) of the lin-
ear difference equations (16) and (17) for the con-
vergence in the mean sense will vanish. Therefore,
the DFC mean errors become independent with each
other, and a stability bound for the step size pa-
rameter can be easily derived from (16) or (17) as
µk,bound = 4/(α2

k +β2
k), which is identical to (37).

C2 The difference equations for the convergence in the
mean square sense are also of linear nature if one
regards E[εai

(n)]E[εbi
(n)] (i = 1,2, · · · , q) involved

in (18) and (21) as time-varying driving terms. Dy-
namics of the algorithm in the mean square can be
obtained by solving the difference equations for the
convergence in the mean and mean square senses si-
multaneously. A tighter stability bound may be ob-
tained based on a grid search by numerically solving
these difference equations repeatedly.

C3 From (32), we see that the remaining noise power
will be always larger than that of the additive white
noise residing in the primary noise as long as Ŝ(z)
is so close to S(z) that α̂k ≈ αk and β̂k ≈ βk, as η
is positive in such a case. The denominator of η,
αmα̂m +βmβ̂m may become negative by using some
special Ŝ(z) such as z−t (t is a properly selected in-
teger). However, this may make the stability bound
(37) become negative.

C4 In theory, users have freedom in selecting the sec-
ondary path Ŝ(z) that makes (37) and η positive.
One such a case will be shown in next Section. This
implies interestingly that there is no need to esti-
mate the secondary path at all, if one can find a
good guess that makes the system work. But this is
not practical, and a coarse guess is basically needed.

3. SIMULATIONS

Extensive simulations are performed to demonstrate the
validity of the analytical results. In all the simulations,
the true secondary path S(z) is generated by a Matlab
lowpass filter function (FIR1) with filter order M and
cutoff frequency 0.4π. The secondary path Ŝ(z) is esti-
mated based on the system identification configuration
with white noise excitation and the LMS algorithm. The
ANC system is simulated after S(z) is generated and its
substitute Ŝ(z) is estimated. Some typical simulation
results are given below.

First, the difference equations for the convergence in
the mean and mean square senses are compared to the
simulated dynamics of the algorithm in Fig.2, where M̂
(20) is much smaller than its truth M (41). Apparently,
the analytical results provide excellent agreement with
the simulation. When M̂ is set smaller than 20, both
theory and simulation diverged. This confirms the fact
that relatively shorter error path may be used in nar-
rowband ANC systems. Second, comparisons between
theory and simulations are given in Fig.3, where M̂ (45)
is larger than its truth M (41). It has been found that
theory is always very close to the simulated values as
long as M̂ ≥ M . Third, Fig.4 shows simulations and
theoretical results for a case that a pure delay is selected
as the error path. Obviously, the system is stable and
the theory explains simulations quite well. Fourth, the
steady-state MSE expression is compared to the simu-
lated points in Fig.5. A very good fit is observed.

4. CONCLUSIONS
In this paper, dynamics, steady-state properties and a
stability bound for the convergence in the mean sense
are derived for the FXLMS based ANC system. Simu-
lations have been conducted to prove the validity of the
analytical findings.
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Fig.2(a) Estimation error E[εa1(n)].
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Fig. 2 Comparisons between theory and simulations
(signal frequency: ω0 = 0.10π, 0.20π, 0.30π, a1 = 2.0,
b1 =−1.0, a2 = 1.0, b2 =−0.5,a3 = 0.5, b3 = 0.1, µ1 =
µ2 = µ3 = 0.01, σp = 0.33, M = 41, M̂ = 20, 100 runs).
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Fig.3(a) Estimation error E[εa1(n)].
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Fig. 3 Comparisons between theory and simulations
(M = 41, M̂ = 45, other conditions the same as in

Fig.2).
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Fig. 4 Comparisons between theory and simulations
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(n)], M = 41, Ŝ(z) = z−22 (pure delay), other

conditions the same as in Fig.2).
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Fig. 5 Comparisons between theory and simulations
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(∞)], M = 11, M̂ = 11, 40 runs, other conditions

the same as in Fig.2).
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