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ABSTRACT 
Successful adaptive echo cancellation in telecommunica-
tions depends on a control device called a double-talk (DT) 
detector. DT refers to the situation when signals from both 
ends of an echo cancellation system are simultaneously ac-
tive. In the presence of a DT condition, the role of a DT de-
tector is to prevent divergence of the adaptive filter in an 
echo cancellation system. This paper presents a novel dou-
ble-talk detection (DTD) algorithm using a psychoacoustic 
auditory model. The model exploits the frequency masking 
properties of the human auditory system. It performs an 
analysis of the far-end signal and removes spectral compo-
nents below a perceptual threshold, to create spectral holes 
without affecting the perceptual quality of the signal. A DT 
condition can be detected by monitoring the energy level in 
the created holes. Simulations with real speech data and 
comparisons with other DTD algorithms are presented to 
show the performance of the proposed algorithm. 

1. INTRODUCTION 

An echo canceller removes undesired echoes in a full-
duplex telecommunications system. The cancellation is done 
by modeling the echo path with an adaptive filter and sub-
tracting the echo estimate from the signal received at the 
near end, as depicted in Figure 1. The signals x(n) and v(n) 
represent the far-end and near-end speeches, respectively. 
The signals y(n) and ŷ(n) represent the echo generated by the 
actual echo path with impulse response h and the echo esti-
mate made by the adaptive filter, respectively. The signal 
e(n) denotes the residual error, which is transmitted to the 
far-end and is used to update the coefficient vector  ĥ of the 
adaptive filter. w(n) represents additive background noise. 
 
When v(n) is zero and the background noise w(n) at the 
near-end is insignificant, the adaptive filter can converge to 
a good estimate of the echo path and can largely cancel the 
echo. However, when both x(n) and v(n) are not zero, i.e. a 
DT situation, v(n) which acts as an uncorrelated noise to the 
adaptive algorithm can cause the adaptive filter to diverge 
and allow the undesired echo to pass through to the far-end. 
A common solution to prevent the divergence of the adap-
tive filter is to slow down or completely stop the filter adap-

tation in the presence of a near-end speech. This is deter-
mined by a DT detector. 
 
The masking properties of the human auditory system have 
been widely exploited in many areas of research such as 
audio coding, digital watermarking, and speech enhance-
ment. Masking refers to a psychoacoustic phenomenon 
where one sound is rendered inaudible because of the pres-
ence of another. One of the most important masking proper-
ties is the simultaneous (frequency) masking which occurs 
when two separate sounds are close enough in frequency; 
the stronger one covering up the other. In this paper, the 
frequency masking property of the human auditory system is 
used, based on a psychoacoustic auditory model, to create 
spectral holes in frames of the signal x(n). By monitoring the 
energy of the signal d(n) in the created holes, the presence of 
v(n), i.e. a DT condition, can be detected. 
 
This paper is organized as follows. Section 2 reviews some 
basics of a generic DTD algorithm and describes two typical 
DTD algorithms, which are later used for performance com-
parison against the proposed algorithm. Section 3 describes 
the proposed DTD scheme using a psychoacoustic auditory 
model proposed in [7]. Using real speech data, Section 4 
evaluates the proposed DTD algorithm and compares it with 
other typical DTD algorithms, and Section 5 concludes the 
paper. 
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2. BASICS OF A GENERIC DTD ALGORITHM 

2.1 Basics 
A common basic operation for most DTD algorithms in-
volves the computation of a detection variable from the 
available signals such as the near-end d(n), the far-end x(n), 
the residual error e(n), and/or the estimated filter weights ĥ. 
The detection variable is then compared with a certain 
threshold. Depending on whether the detection variable is 
above or below the threshold, a decision is made on whether 
a DT condition is present or not. If the condition is declared, 
the filter adaptation is stopped or slowed down for a mini-
mum period of hold time. When a non-DT condition lasts 
continuously for a period longer than the hold time, the filter 
can resume the adaptation until the next double-talk condi-
tion occurs. The hold time is necessary to suppress detection 
dropouts, because of the noisy behavior of the detection 
variable [5]. 
 
A special case that some DTD algorithms are struggling 
with is when there is a sudden change in the echo path, for 
example in an acoustic environment. This can often be 
falsely detected as a DT condition. This is a case where the 
adaptive filter really needs to adapt to the change in the echo 
path, and it is not desired for the adaptation to be turned off 
by the false alarm. Furthermore, background noise at the 
near-end should not be detected as a DT condition. 
  
There are many DTD algorithms existing in the literature. 
They can mostly be classified into energy-based or correla-
tion-based techniques. In the following subsection, we re-
view the Geigel algorithm, which is an energy-based DTD 
algorithm, and the normalized cross correlation algorithm, 
which is a correlation-based DTD algorithm. The perform-
ance of the proposed algorithm will be compared against 
these two DTD algorithms in Section 4. 

2.2 Geigel Algorithm 
The Geigel algorithm [4] compares the magnitude of the 
near-end signal d(n) with the maximum magnitude of the N 
most recent samples of the far-end signal x(n), where N is 
the adaptive filter length. N past samples are used because of 
the possible end delay of x(n) through the echo path. The 
echo path typically dampens the signal x(n), and as a result 
the magnitude of the signal d(n) containing only the echo 
y(n) will be smaller than that containing both y(n) and v(n). 
The Geigel algorithm computes its detection variable as 

ξ = 
{ }

( )
max ( ) , ..., ( - 1)

d n
x n x n N +

 (1) 

If ξ is larger than a threshold T, DT is declared, otherwise it 
is not. The choice for T needs to be made with care, and will 
strongly affect the performance of the detector. For line echo 
cancellers, T is set to 0.5 because the hybrid attenuation is 
assumed to be 6dB. For acoustic echo cancellers, the back-
ground noise level and/or the echo path can be time varying. 
Therefore, it is not easy to decide a proper value for T. In 
particular, for the time-varying echo path, the Geigel algo-

rithm can falsely regard a change of the echo path as a DT 
situation. As a result, the adaptive filter stops updating the 
coefficients when the coefficients update is actually needed.  

2.3 Normalized Cross-Correlation Algorithm 
A DTD algorithm was proposed in [1] based on a normal-
ized cross-correlation (NCC) measurement between the sig-
nal vector x(n) = [x(n)   x(n-1)   …   x(n-N+1)]T and the 
near-end signal d(n). The algorithm normalizes the detection 
variable such that it is equal to 1 when the near-end speech 
v(n) is zero, and less than 1 when v(n) is not zero, i.e. DT 
condition. Therefore, the threshold T can be selected be-
tween 0 and 1 and is independent of the input signal. The 
detection variable is defined as following:  

ξ = 2 -1( )T
xd d x xdr R rσ           (2) 

where 2
dσ  is the variance of d(n), XR is the autocorrelation 

matrix of the vector x(n), and rxd is the cross-correlation vec-
tor between vector x(n) and signal d(n). When the detection 
variable ξ < T, a DT condition is declared; when ξ ≥ T, DT 
is not present. In practice, equation (2) is computationally 
expensive. For computational simplicity, (2) can be simpli-
fied by assuming that -1ˆ   x xdh h R r≈ =  when the adaptive 
filter has converged. Therefore, the detection variable in (2) 
can be written as: 

ξ = 2ˆT
xd dr hσ −    (3) 

Also, 2
dσ  and rxd can be practically estimated by averaging 

over a window of W samples, for example as: 
1

  0

1 ( - ) ( - )
W

xd
k

r x n k d
W

−

=

≈ ∑ n k               (4) 

3. PROPOSED DTD ALGORITHM 
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x(n) are segmented into overlapping frames. Each frame is 
transformed into the frequency domain, and then fed into a 
psychoacoustic auditory model to determine a masking 
threshold. A binary masking template is generated by com-
paring the power spectrum of a frame with its corresponding 
masking threshold. The masking template is set with a value 
of zero at frequency components below the masking thresh-
old, and a value of one elsewhere. Spectral holes are created 
by multiplying the complex spectrum of a frame with its cor-
responding masking template at each frequency component. 
The masked signal z(n) is generated by transforming the 
masked spectrum of frames back to the time domain and 
adding back together overlapped sections between consecu-
tive frames. Note that the masking template should be stored 
for use in locating the spectral holes in a frame of the near-
end signal d(n). At the input port of the near end side, a DT 
condition can be detected by monitoring the energy level at 
the locations of the created holes, for the presence of the 
near-end speech v(n). 

3.2 Spectral Hole Insertions Using a Psychoacoustic 
Auditory Model 

This section briefly describes the process of creating spectral 
holes based on the frequency masking properties of the hu-
man auditory system. The psychoacoustic auditory model 
proposed by Johnston in [7] is used in determining a masking 
threshold for an input signal. 
1. Segmenting the signal x(n) into overlapping frames of 

length N, with one frame being  x(n) = [x(n)   x(n-1)   …   
x(n-N+1)] T. 

2. Computing a 2N-point Fast Fourier Transform (FFT) on 
the input frame x(n) that has been appended with N ze-
roes and previously weighted by a Hanning window of 
length N. The power spectrum is calculated as Px(k) = 
|X(k)|2, where X(k) = FFT2N{x(n)}. 

3. Mapping the power spectrum from the frequency do-
main into a critical band (Bark) scale, by adding up en-
ergies in critical bands as: 

( ) ( )
h

l

f

b x
k f

P z P k
=

= ∑  

where fh and fl are, respectively, the high and low fre-
quencies in the critical band z, and z = 1, 2,…, Zt (the to-
tal number of critical bands for speech with 8 kHz sam-
pling rate is Zt =18; see [8] for more details). 

4. Convolving critical band energies Pb(z) with a spreading 
function defined as : 
B(z) = 15.91+7.5(z + 0.474)-17.5 21 ( 0 .474)z+ +   
where z = |j-i|, i is the Bark index of the masked compo-
nent and j is the Bark index of the masking component. 
This step basically takes into account the masking be-
tween different critical bands to give Pbs(z) = Pb(z) * 
B(z). 

5. Computing a relative threshold offset based on whether 
the spectral flatness measure (SFM) of the frame is 
noise-like or tone-like. The relative threshold offset is 
defined as Toffset(z) = α(14.5 + z) + (1-α)5.5, where 

min ,1
-60

db

db

SFMα
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 
1

tZGeometricMeanSFM
ArithmeticMean

⎧ ⎫= ⎨ ⎬
⎩ ⎭

 

6. Computing a raw masking threshold by subtracting the 
threshold offset from the spread power spectrum as: 

( )10 bs offsetlog ( ( )) 0.1 ( )
raw ( ) 10 P z T zT z −=  

7. Normalizing the Traw(z) to take into account different 
number of frequency components in critical bands. The 
normalized threshold is defined as: 

r a w
n o r m

( )( )
z

T zT z
P

=  

where Pz is the number of frequency components in 
critical band z (z = 1, 2, …, Zt). 

8. Calculating a final masking threshold T(z), taking into 
account the absolute threshold of hearing Tabs(z) (see  [8] 
for details), as T(z) = max[Tnorm(z), Tabs(z)]. 

9. Mapping the final masking threshold from the Bark 
scale back to the linear frequency scale. A binary mask-
ing template is then created by comparing the spectral 
components with the final masking threshold. Compo-
nents with energy above the threshold are retained; oth-
erwise they are set to zero. This masking template will 
also be used to locate spectral holes for detecting the 
near-end signal. Figure 3a shows in log scale the spec-
trum of an input frame of x(n) with its masking thresh-
old, and Figure 3b shows the masked or holed spectrum 
with the generated masking template, in linear scale.  

10. Computing an inverse FFT2N of the masked spectrum to 
get a signal frame of z(n) in the time domain, with the 
overlapped portions of consecutive frames properly 
added together. 

3.3 Detection of Near-end Signal at Spectral Holes 
The near-end signal d(n), being the sum of the echo y(n), the 
speech v(n) and the additive noise w(n), is segmented into 
frames in the same way as x(n) previously. The masking 
template generated in Step 8 of Section 3.2 is stored to keep 
track of the spectral holes locations for a corresponding 
frame of d(n). It is important to properly synchronize a mask-
ing template pulled out of the storage with a d(n) frame prop-
erly, so that the created spectral holes in d(n) align with those 
of the template. The alignment can be done by monitoring 
the magnitude peak of the adaptive filter coefficients, or by a 
signal cross-correlation method between x(n) and d(n). The 
detection of v(n), i.e. a DT condition, is performed by com-
paring the spectral level of the d(n) frame at the spectral 
holes with a threshold T just above the monitored noise floor 
level. If the spectral level is greater than T, then a DT condi-
tion is declared. The detection variable of the proposed algo-
rithm is defined as ξ = {PD(k)} > T, for any k ∈  {hole indi-
ces set}, where PD(k) = |D(k)|2, and  D(k) = FFT2N{d(n)}.  

3.4 Smearing Effect at Spectral Holes 
The smearing effect refers to a leakage or spilling of energy 
into the spectral holes. Since the proposed algorithm de-
pends on the integrity of spectral holes for detection of DT, 
any excessive level of the smearing effect at the spectral 
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holes can cause the algorithm to falsely detect the condition 
as a DT. The following discusses briefly the causes of the 
smearing effect on the spectral holes in the frequency mask-
ing process. Also a remedy to the problem is discussed. 

 
Figure 3: Spectral holes and smearing effect on the same 

frame: a) spectrum and masking threshold of x(n) in log scale, 
b) masking template and holed spectrum c) zoomed masking 

template and smearing effect at spectral holes of y(n), d) smear-
ing template and smearing estimates at spectral holes of ŷ(n), e) 

modified masking template as the union of the masking tem-
plate and the smearing template. 

First, spectral holes determined by the masking template can 
change from frame to frame, therefore the overlap-add proc-
ess as described in Step 10 of Section 3.2 may add non-zero 
spectral components from the previous frame to the spectral 
holes in the current frame. Second, because of the filtering 
by the echo path h, the echo y(n) is a weighted sum of sig-
nals originating from consecutive frames with different hole 
locations. As a result, some “would be” holes of a frame of 
y(n) are being filled up by signal components from previous 
frames.  
 
As explained above, the smearing effect on spectral holes is 
certainly unavoidable. So the detection of v(n), i.e. a DT con-
dition, should be done only at intact locations of spectral 
holes. Therefore, it is very important to identify the positions 
of spectral holes where the level of smearing is excessively 
high, so that the DT detection can be avoided at these places. 
A remedy to the problem is to use the output ŷ(n) of the adap-
tive filter to identify these places, because it is a reasonable 
estimate of y(n) once the adaptive filter has converged. A 
smearing template is created by comparing the level of ŷ(n) 
at positions of the spectral holes with a threshold. Compo-
nents with a level above the threshold are excluded from the 
spectral holes in the DT detection process. To demonstrate 
the idea, Figure 3c-e shows a zoom-in section of the same 
signal frame as in Figure 3a-b. Figure 3c illustrates the smear-
ing effect at some spectral holes of the echo y(n). Figure 3d 
shows the corresponding spectral holes in the echo estimate 

ŷ(n) and a smearing template which identifies the spectral 
components at the holes where the smearing level is high. 
Note that the misadjustment level for the echo estimate 
shown in Figure 3d is at around -10db. Figure 3e shows the 
spectral holes of y(n) and the modified masking template 
which is a union of the masking and the smearing templates.  

4. SIMULATION RESULTS 

4.1 Evaluation Methodology 

 
Figure 4: Echo Path IR (first 200 of 1200 samples) 

The proposed algorithm is evaluated based on the method 
proposed in [3]. The algorithm is compared against the 
Geigel algorithm (1) and the NCC algorithm (3) and (4), us-
ing the probability of miss Pm as a measure versus other vari-
able parameters such as the Near-end v(n) to Echo y(n) Ratio 
(NER), the Echo y(n) to Near-end Noise w(n) Ratio (ENNR),  
and probability of false alarm Pf. The Pm is defined as the 
percentage of samples where a true DT condition is not de-
tected. The Pf is defined as the percentage of samples where 
a DT is falsely claimed. The tests for this paper were con-
ducted using a real impulse response from a small conference 
room with 1200 samples and is shown in Figure 4. The far-
end and near-end signals were taken from the Harvard sen-
tences speech database, at 8 kHz sampling rate. The far-end 
signal from a female talker was about 10 s long. The 6 DT 
signals from 3 different female and 3 different male talkers 
were about 2 s long. The noise w(n) was a white noise at dif-
ferent levels with respect to the echo level. For all simula-
tions, the DT detector was turned on from sample number 
20000, to allow the NLMS adaptive filter to converge 
roughly in the first 2.5 s. The adaptive filter had 1024 
weights and the step size for the NLMS was set at 1.0 for the 
first 2.5 s and then reduced to 0.1 when the DT detector was 
turned on. For the proposed algorithm, a FFT length of 256 
was used on a frame length of 128 samples, with a 50% over-
lap between frames. A short frame length is preferred as it 
reduces the delay of the system, and that of the DTD deci-
sion. Note that informal subjective tests for the psychoacous-
tic auditory model used in the proposed algorithm showed a 
minimal degradation of the output (i.e. partially masked) 
speech signals. The Geigel algorithm used a window length 
of the N = 1024 most recent samples, whereas the NCC algo-
rithm used a window of size W = 500 to estimate the correla-
tion measures. The DTD hold time was set at 30ms for all 
algorithms. The following describes the procedure in evaluat-
ing and comparing the DTD algorithms: 
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1. Select one of the parameters Pf, NER or ENNR as a 
variable and set the others to fixed values. 

2. With DT signal v(n) = 0, select a threshold T for each 
algorithm that results in the selected Pf.  

3. For each value of the variable selected in Step 1: 
• Select one of the six DT signals 
• Select six random positions within the last 7.5 s of 

the far-end speech 
• Compute Pm 

4. Average the Pm obtained in Step 3 over all 36 conditions. 
5. Plot the averaged Pm as a function of the variable. 

4.2 Results and Discussion 

 
Figure 5: Pm versus NER for ENNR = 30 dB and Pf = 0.1 

Figure 5 shows a plot of Pm as a function of the NER for a 
range from -20dB to 10dB, a fixed ENNR = 30 dB and Pf = 
0.1. For all algorithms, it can be seen that as the power of 
the near-end speech v(n) increases compared to the far-end 
signal x(n), Pm decreases. The Geigel algorithm performs 
much worse than the other two algorithms, while the pro-
posed algorithm performs the best for the whole range of 
NER. 

 
Figure 6: Pm versus Pf for NER = -10 dB and ENNR = 30 dB 

Figure 6 shows a plot of Pm as a function of Pf in a range 
from 0 to 0.3, with NER = -10 dB and ENNR = 30 dB. 
From the plot, it can be seen that there is a trade off between 
Pm and Pf. Setting a DT detector at a low Pm would increase 
Pf. Again, the proposed algorithm performs the best for the 
whole range of Pf. 

 
Figure 7: Pm versus ENNR for NER = 0 dB and Pf = 0.1 

Figure 7 shows a plot of Pm as a function of the ENNR for a 
range from 0 dB to 50 dB, with NER = 0 dB and Pf = 0.1. As 
the power of near-end noise w(n) increases, Pf increases. 
Thus, the threshold T has to be adjusted to keep Pf = 0.1. This 
increases Pm as a result. From the plot, all 3 algorithms do 
not perform very well when the echo level, which is the same 
as the DT signal level, is only 0-10dB greater than the near-
end noise level. However, the proposed algorithm still per-
forms better than the other algorithms overall. 

5. CONCLUSIONS 

This paper presents a novel DTD algorithm using a psycho-
acoustic auditory model and investigates the feasibility of 
the idea. Simulation results show the superior performance 
of the proposed method compared with the Geigel and the 
normalized cross correlation DTD algorithms. 
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