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ABSTRACT are realized by irregular sampling and quantization of origi-

o . S . nal waveforms in the time-domain. Transform methods are
A preliminary investigation of an atomic model-based algo- ased on orthogonal transforms, such as Fourier, Karhunen-

rithm for the compression of single lead ECG is presentetﬁoeve (KL), DCT or wavelets.

The paper presents a novel coding scheme for ECG sig- ; .

nals based on time-frequency atomic signal representation Cén excellent over\r/:e_w of g'r?Ct ag%ot(ansform-gased
Signal-adaptive parametric models based on overcompltz%Z compre/ssmn techniques before 1990 is repc|>(rte_ I|<r'] [1]
dictionaries of time-frequency atoms are considered. Such%!EC: Fan/SAPA, TP, CORTES, DPCM, Peak-Picking

overcomplete expansions are here derived using the matcAd Cycle-to-Cycle are well-known examples of direct ECG
ing pursuit algorithm compression schemes. Regarding to transformation meth-

. . . ds, the wavelet-packet transform has received a great deal
The compression algorithm has been evaluated with th . .
MIT-BIH Arrhythmia Database. Our algorithm was com- gf attention over the past year (and even by now), being

pared with several well-known ECG compression algorlthmegy, including data compression [2, 3, 4, 5, 6]. The suc-

and was found to be superior at all tested bit rates. An avecrg?ss of wavelets for ECG compression is due to their time-
age compression rate of approximately 140 bps (Compress'cfrequency localization capability. High compression ratio are

ratio of about 28:1) has been achieved with a good recory 5 pieved by the Karhunen-Loeve transform [7] at the ex-

pense of a meaningful computational cost.
Other relevant works published in last years for ECG data
1. INTRODUCTION compression are [8, 9, 10, 11, 12, 13, 14].

Considering the great volume of ECG data which is gener- Recently, a ECG data compression approach based on
ated each year, the ability to efficiently manage the storag&tomic models and matching pursuit has been proposed [15].
and retrieval of this data for comparison and evaluation man Signal is decomposed into atoms that are included in an
dates the need for ECG compression techniques. Eﬁecti\;évercomplete dictionary. .The dictionary he_nce can be de-
storage of ECG information is required in the intensive coroJined to best maich the signal structure. It is expected that
nary care unit, or in the long-term (24-48 hours) wearabldhe time-frequency localization capability of matching pur-
monitoring tasks (Holter). For good diagnostic quality, eachsuit can be superior to o_rthogonal transforms. _Fur_thermore,
ECG lead provided by the Holter should be sampled at & féw waves appear during one heart-beat period in an ECG
rate of 250-500 Hz with 12 bits resolution. The informa-Signal. Itis expected that a small number of atoms can ap-
tion rate is thus approximately 11-22 Mbits/hour/lead. If ef-Proximate the ECG waveforms. . _
ficient compression methods are employed, memory require- In this paper, signal-adaptive parametric atomic mod-
ments may drastically drop to make the monitoring deviceels based on overcomplete dictionaries of wavelet functions
commercially feasible. ECG compression is also of practicall@ve also been applied to ECG waveform compression. Such
importance for other aspects of electrocardiography. Trangvercomplete expansions are derived using the matching pur-
mitting the ECG signal through telephone lines or mobileSuit algorithm.  The resulting representations are signal-
radio, for example, may save a crucial time and unnecessa&ﬂapF'Ve in that the atoms for the model are chosen to match
difficulties in emergency cases. Real-time heart rhythm anafh€ signal behavior; furthermore, the models are parametric
ysis algorithms require ECG data compression. Compressidf that the atoms can be described in terms of simple param-
parameters may also be valuable tools for developing patte@fers. . _ . _
recognition schemes and automatic diagnostic algorithms. ~ Atomic decompositions and matching pursuit are revised

In practice, efficient data compression may be achieved! Section 2. Section 3 describes in detail the proposed
only with lossy compression techniques. In ECG compresscheme for ECG compression. Experimental results are pre-
sion algorithms the goal is to achieve a minimum informa_s_ented in section 4. Finally, conclusions are resumed in sec-
tion rate, while retaining the relevant diagnostic informationtion S.
in the reconstructed signal.

Data compression methods have been mainly classifie@. ATOMIC DECOMPOSITIONS AND MATCHING
into three mayor categories: a) direct data compression, b) PURSUIT
transformation methods, and c) parameter extraction tec
nigues. Most of the existing data compression technique
for ECG signals lie in two of the three categories describedTime-frequency atomic signal representations have been of
direct methods and transformation methods. Direct methodsngoing interest since their introduction by Gabor several

Ssuccessfully applied to several problems in electrocardiol-

structed signal quality (PRD of about 7 % ).

.1 Principles of atomic modelling
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decades ago. The fundamental notions of atomic modellingroposed ECG compression scheme. Furthermore, it pro-
are that a signal can be decomposed into elementary fungides a framework for deriving such expansions by succes-
tions that are localized in time-frequency and that such desive refinements with low computational cost.

compositions are useful for applications such as signal anal-

ysis and coding. Here, an overview of the computation an@.2 Matching pursuit

properties of atomic models is presented. The overview igatching pursuit [17] is a greedy iterative algorithm that of-

based on an interpretation of atomic modelling as a lineajg g 4 sub-optimal solution for decomposing a sigdal in
algebraic inverse problem. terms of unit-norm expansion functioggn| chosen from an

A signal model of the form overcomplete dictionar. When a well-designed overcom-
" plete dictionary is used in matching pursuit, the nonlinear na-
x| =S amg [N} 1) ture of the algorithm leads to compact signal-adaptive para-
i; mei metric models [17, 18].
- At the first iteration, the atong;[n] which gives the
can be expressed in matrix notation as largest inner product with analyzed sigmad] is chosen. The
contribution of this vector is then subtracted from the signal
x=D-a with D=[g,0 -5 - Gyl (2)  and the process is repeated on the residual. Atrtitie iter-

ation, the residue is:

where the signak is a column vector§ x 1), a is a
column vector of expansion coefficient& (x 1), andD is an
(N x M) matrix whose columns are the expansion functions rMn] = { Xr[nrlll m=0 ()
gi[n]. In'this framework, derivation of the model coefficients rEN 4 Gy Gy [N M# 0
is an inverse problem. ) ) ) )

When the functiongy, [n] constitute a basis, such as in whereq; ., is the weight associated to optimum atom
Fourier and wavelet decompositions, the malbixs square g, [n] at them-th iteration, and(m) the dictionary index of
(N = M) and invertible, and the expansion coefficieatfor  the optimum atom chosen at theth iteration.

a signalx are uniquely given by The orthogonality principle gives the weighf” associ-
ated to each atom [n] € D at them-th iteration:

a=D"1x (3)
While this ease of computation is an attractive feature, (r™*[n],g[n]) = (r"[n] — &, - Gy [N, Gi[N]) = O
basis expansions are not generally useful for signal mod- __,  m_ (Mn.gn) _ (™inl.g an = (™[], g [n]) (%)
elling, because they do not provide compact models of ar- E {ginbgnh T gz G

bitrary signals [16]. To overcome the difficulties of basis
expansions, signals can instead be modelled using overco
plete set of atoms that exhibit a wide range of time—frequencry
behaviors. Such overcomplete expansions allow for compact
representation of arbitrary signals for the sake of compres-
sion and analysis. With respect to the interpretation of signal
modelling as an inverse problem, when the functigfig] I I
constitute an overcomplete or redundant gt N), the G ©)
dictionary matrixD is of rank N and the linear system in
equation (2) is underdetermined. The null spac®athen
has nonzero dimension and there are an infinite number of la™2 = [(r™[n], g [n]) [2 @)
expansions of the form of equation (1). : i

There are a wide variety of approaches for deriving over- ~ Therefore, the optimum atorg, , [n] (and its weight
complete signal expansions, which differ in the structure ob{i <m)) at them-th iteration are obtained from (8):
the dictionary and the manner in which dictionary atoms are
selected. Examples include best basis methods and adaptive o midrn2 " )
wavelet packet, where the overcomplete dictionary consistsd;, [N = arg fgg‘Hf [][[* = argmax(r™[n]. g [n))[* (8)
of a collection of bases. Signal decomposition schemes us- 9 Ge
ing more general overcomplete sets can also be considered. Thjs js simply equivalent to choosing the atom whose in-
Such approaches can be roughly grouped into two categorieger product with the signal has the highest magnitude.
a) parallel methods, such as the method of frames, basis pur- To enable representation of a wide range of signal fea-
suit, and FOCUSS, in which computation of the various exyyres, a large dictionary of time-frequency atoms is used
pansion components is coupled and derive exact solutiong; matching pursuit. The computation of correlations
b) sequential methods, such as matching pursuit and its varirmin] g.[n]) for all g;[n] € D at each iteration is highly com-
ations, in which models are computed one component at gytational consuming. As derived in [17], this computation
time and derive sparse approximate solutions according tgan be substantially reduced using an updating formula based

suboptimal criteria. All these methods can be interpreted agn equation (4). The correlations at theth iteration are
approaches to solving inverse problems. iven by:

Since sparse approximate solutions are of interest fo(‘:r]
compact signal modelling, matching pursuit is the chosen
method for deriving overcomplete signal expansions in the (r™[n], g[n]) = (r™[n],g;[n]) — iy (gi(m) (n],g;[n]) (9)

_ where the last step follows from restricting the atoms to
e unit-norm.
Thel? norm ofr™1[n] can be expressed as:

Ml a (R |2
w12 = (i 2 LGN gy 2 g2

which is minimized by maximizing
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where the only new computation required for the cor-3.1 Preprocessing

relation updating corresponds to the cross-correlation teriy,. ec signal is preprocessed prior to compression. Pre-
<gi(m) [, g [n)), W_h'Ch can be pre-calculated and sto.red, Ifprocessing consists of segmentation, alignment with respect
enough memory is available, once Betas been determined. to the fiducial point (R wave), nonuniform filtering and base-
line removal.
3. THE COMPRESSION ALGORITHM Segmentation divides the ECG signal into beats (com-

The ECG signal may be considered a quasi-periodic signagexes_)’ and every beat is further divided into three sections:
The main redundancies in the ECG signal exist in the form o sre]cglon, QRS section and Tfsectl(;]n. fThehmotlvanon forf
correlation between adjacent or past beats (inter-beat corrg?LJC eat segmentation arises from the fact that every one o

lation) and correlation between adjacent samples (intra-beH{€ three sections has a different diagnostic meaning and a
correlation). Ifferent power spectral density.

The inter-beat correlation suggests the idea of using a . '€ alignment with respect to the fiducial point between
Long-Term Predictor (LTP) [10]. The frequent existence ofdiacent beats involves sending side information to the de-
abnormal beats in some pathological cases suggests usinG@€r, which must be taken into account in the last step at the
beat codebook. The codebook is used to store "typical” pad€coder (postprocessing). . .
beats. The intra-beat correlation suggests using a Short-Teryy 1 "€ _nonuniform filtering consists of two different FIR
Predictor (STP). With LTP, STP and a beat codebook, a préilters- The P and T waves are filtered with a 0.01-50 Hz
dicted beat can be estimated, and a residual signal, which hgndpass FIR filter, and the QRS section with a 0.1-100 Hz
lower variance, can be calculated [13]. andpass FIR filter. The filters are switched according to seg-

Our approach is somewhat different to the one proposeH1e_ntat|on_. The last step of preprocessing is baseline removal
in [13]. Inter-beat correlation is reduced by pattern matching!Sing cubic splines.
between two consecutive beats in an analysis by synthesé,sz Th di bsvst
framework. Nevertheless, intra-beat correlation is reduced € encoding subsystem
by operating over the difference between consecutive beat§he encoder matches the current preprocessedbpesith

This residual signal is modelled using matching pursuit Oveéthe previous Synthesized 0@71’ and computes a differ-

an overcomplete dictionary of time-frequency atoms. ence signat,, taking into account thag, is anN-length zero
Figure 1 shows the encoding stage of the proposed EC@ector b, = b. — 0):
o =B =Y)-

coder and figure 2 shows the decoding stage of the same sys-

rk:%—ﬁ K1 (10)
Original w ll;?;z:;n g i xi?:r(:eters Bit stream k k k7 ! A
S m n | Matching Pursuit - If the length of the synthesized bégt , is different from
Preprocessing () =i ot coding that of the current beds,, the last one is cut or zero-padded
B, y at the edges. The difference or residual signais repre-
i Synthesizer sented by atomic modelling using matching pursuit with a

2 dictionary of orthogonal wavelet-based atoms and efficiently
coded. The current synthesized ECG sigﬁp(dt obtained by

i adding the current decoded residyéo the previous synthe-

: sized ECG signdb, ,:

Encoding stage

»(+

b, = b, +f, (11)
Figure 1: Encoding stage of the proposed ECG compression At each segment, the matching pursuit algorithm is iter-
system ated, extracting atoms from the original beat (first segment)

or the current residue (remaining segments), until the differ-
ence between the original ECG sigitgland the synthesized

Side Information

Recomsiructed Model _ oneb, reaches a predefined value of the PRD measure.
ECG signal parameters Bit stream In order to achieve the same PRD value at the encoder
<« {Postprocessing Synthesizer dE:C‘?Cgl{g and the decoder, the optimum weigmm) at each iteration

of matching pursuit must be quantized and the reconstructed
valueé{i<m> applied to achieve the residue:

Beat
delay

Decoding stage rm+l[n] = rm[n] - ai(m) 'gi(m) [n] m 7é 0 (12)
Lemarie wavelets have been chosen because we have
Figure 2: Decoding stage of the proposed ECG compressidiound that they best match to the waves within each ECG
system beat. Orthogonal wavelets are considered to speed up the
correlation updating procedure within the matching pursuit,
The general scheme of the proposed ECG compressidi indicated in [19]. The overcomplete dictionarys made
method consists of three main subsystems: 1) preprocessiri With those functions which give rise taJedepth wavelet
2) encoding (pattern matching and residual signal coding), 3jecomposition, beingl the frame length anv = 37~ &
decoding. These subsystems are described below. the wavelet dictionary size.
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Once the residual signal is completely modelled and the For the quantitative tests, a minute of 8 MIT-BIH records
parameters of the model quantified, they are finally entropyere processed: 100, 101, 103, 119, 202, 205, 207 and 209.
coded. The signals to be processed were chosen to show the per-
formance of the proposed ECG coder for a wide variety of
cases.

. . - . Figure 4 compares the distortion-rate curve obtained by
This subsystem exists at the transmission side as well as the proposed algorithm with those of the SAPA2 and LTP
receiver side, as expected of an analysis by synthesis basgg

; . "E€G coders. Each line is a polynomial fit of the resultin
ECG coding scheme. The decoder recovers the residual si dints for each compression rﬁetﬁod g
nal from its quantized parameters, and obtains the current '
reconstructed bedt, by adding the recovered residéigto g

the previous synthesized begt ; (see equation (11)). This
process is repeated beat to beat until the ECG signal is corzo}-
pletely coded.

It must be noted that the current reconstructed teat soor-
must be finally post-processed at the decoder in order to unc
the alignment with respect to the fiducial point between adjasoo!
cent beats performed at the encoder, which involves decodir
the received side information (beat time duration and fiduciaug|
point location).

3.3 The decoding subsystem

4. RESULTS AND DISCUSSION

The MIT-BIH Arrhythmia database [20] was used to evalu-"*[
ate the proposed compression algorithm and compare it wit
other known ECG compression methods (SAPA2 [21] anc®|
LTP [10]). These compressors were chosen because SAP/
is very often referred for comparison in the literature, anc ° s 6 s 10 12 m 16
LTP is one of the best ECG compressors available today.
Quantitative tests were performed using rate-distortiorFigure 4: PRD-rate curves for SAPA2, LTP and the proposed
curves for each one of the compression algorithms to be coneCG coder
pared. The rate was chosen to be expressed in terms of bits/s
of the compressed ECG signal, and the distortion was cho- Figure 4 suggests that the proposed ECG coding scheme
sen to be the PRD (in percentage units) between the recois-a profitable alternative to other existing ECG coders when
structed signal and the original one. the PRD measure is above a threshold of about 3%. Below
Figure 3 shows an example of reconstructed ECG signalghat value the ECG coder performance is not good enough
which were compressed by the proposed ECG compressidiie to matching pursuit extracts too many atoms, most of
scheme at two different PRD values. them representing noise-like components, mainly for noisy
ECG signals.

OUR CODER
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Figure 3: Example of reconstructed ECG signals (recor
202 of MIT-BIH Arrhythmia database). (a) Original signal;
(b) Reconstructed signal with PRD = 12% (bit rate = 51.48

124
(©)

5. CONCLUSIONS

The proposed ECG coder allows to achieve low transmission
rates (100-200 bits/s) while maintaining a good reconstructed
signal quality (PRD of 6-10%), being an interesting alterna-
tive to other existing ECG coders. The best performance with
regard to the ECG coders chosen for comparison was found
with a PRD of 4-10%),

The ECG coder complexity is low owing to the use of
orthogonal wavelet atoms, that make possible a fast correla-
tion updating procedure in matching pursuit. Therefore, the
compression system can be real-time implemented using in-
expensive DSP chips.

In atomic models based on matching pursuit, signal adap-
tivity is achieved by choosing expansion functions that match
the time-frequency behavior of the signal. By choosing a
dictionary with a parametric structure, such as the selected
wavelet one, the resultant ECG coder is both signal-adaptive
é\nd parametric, as the proposed one.
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