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ABSTRACT
The problem of signal detection and trajectory estimation of a dy-
namic system when a variable number of measurements can be
taken is here considered. A sequential probability ratio test (SPRT)
when the parameter space has infinite cardinality is proposed for
the detection problem while trajectory estimation relies upon a
maximum-a-posteriori (MAP) estimate. The computational costs
of the proposed algorithm, whose statistics are computed through a
dynamic programming (DP) algorithm, are considered and applica-
tions to radar surveillance problems are inspected.

1. INTRODUCTION

Many statistical decision problems in engineering applications re-
quire to perform state estimation of a system under uncertainty of
signal presence. This includes fault detection and diagnosis in a dy-
namical system control [1], target detection and tracking [2], image
and speech segmentation [3], blind deconvolution of communica-
tion channels. Application of sequential decision rules to this prob-
lem arouses much interest since it promises a considerable gain in
sensitivity, measured by the reduction in the average sample number
(ASN), with respect to fixed sample size (FSS) procedures. These
advantages are particularly attractive in remote radar surveillance,
where the signal amplitude is weak compared to the background
noise and stringent detection specifications can be met only by pro-
cessing multiple image frames (thus integrating the backscattered
energy of the target along its trajectory [4]). In this case, FSS tech-
niques usually result to be inefficient while sequential procedures
are known to increase the sensitivity of power-limited radar sys-
tems or, alternatively, to reduce the average sample number (ASN).
The extension of such sequential procedures, however, poses some
difficulties: since the instant when the procedure stops sampling
is not determined in advance (it is a random stopping time, in-
deed) the set of trajectories of the dynamic system to be consid-
ered (i.e. the parameter space) has an infinite cardinality. On the
other hand, sequential testing rules have been already extended to
the case of composite hypothesis in [5, 6] while sub-optimal se-
quential classification procedures have been proposed over the past
years [7, 8, 9, 10, 11]. However, all of the proposed solutions are
restricted to the case where the parameter space consists of a finite
number of elements. This condition, when applied to the problem
of detection and tracking, results to be too restrictive: indeed, it
corresponds to requiring that the dynamic system may only lie in
a determined state, with no transition allowed [6, 8, 11]. Only few
works in the past have addressed this topic: in [12] the problems of
SPRTs for parametrized hidden Markov models (HMMs) are stud-
ied while in [13] the change point detection problem for HMM is
analyzed. None of them, however, have considered the situation of
joint detection and tracking and possible applications to the radar
framework.

This paper provides a generalization in this sense. An SPRT
for the detection task when the parameter space has infinite cardi-
nality is proposed while a MAP estimator is adopted for trajectory
estimation. A DP-based algorithm for efficient implementation of
the signal detector and of the trajectory estimator is adopted. New
analytical bounds on the ASN are derived and specific applications
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Figure 1: measurement generating process.

to radar surveillance are considered. Moreover, a thorough perfor-
mance analysis is provided in order to validate the correctness of
such bounds and to highlight the effects of system parameters, both
for the general case and for radar applications.

The rest of the paper is organized as follows. Next section
presents the elements of the problem while section 3 addresses the
problem of sequential joint detection and estimation and section 4
covers the radar surveillance problem. Finally, section 5 is devoted
to the presentation of numerical results, while concluding remarks
are given in section 6.

2. PROBLEM FORMULATION

The problem is formulated with reference to the dynamic system
shown in figure 1, whose elements are listed below [14].
1. The known first-order difference equation describing the dy-

namic system

Xi+1 = gi(Xi,Wi) ∈ S, ∀ i ∈ N, (1)

where S is a discrete non-empty set referred to as the state space
with cardinality M; Xi is the state vector for the dynamic system
at the i-th stage (or sampling instant) while Wi is the random
forcing function at the i-th stage.

2. The probability density of the initial state pX1 ; it is assumed that
X1 and {Wi}i∈N are independent.

3. The statistics of {Wi}i∈N, i.e. the probability density pWi for
all i ∈ N; {Wi}i∈N is assumed to be a zero-mean independent
process.

4. The known equation describing the measurement process
{Zi}i∈N

Zi = hi(Xi,Vi) ∈ R
d , ∀ i ∈ N,

if Zi is originated from the dynamic system described by the
difference equation (1) and by the noise or

Zi = hi(Vi) ∈ R
d ,

if Zi is generated by noise alone, {Vi}i∈N being the measurement
noise process.

5. The statistics of {Vi}i∈N, i.e. the probability density fVi for all
i ∈ N; {Vi}i∈N is assumed to be independent of X1 and {Wi}i∈N.

It is easy to verify that the state sequence {Xi}i∈N is a Markov
process and that the measurements given the state {Zi|Xi}i∈N are
independent; furthermore, the joint densities of X k = {Xi}k

i=1 and
Zk|Xk = {Zi}k

i=1|{Xi}k
i=1 are

pX k(xk) = pX1(x1)
k

∏
i=2

Pxi−1xi(i), (2)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



fZk |X k(zk|xk) =
k

∏
i=1

fZi|Xi
(zi,xi), (3)

respectively, where Pxi−1xi(i) = pXi|Xi−1
(xi,xi−1) denotes the transi-

tion probability from state xi−1 to xi at stage i.
Given these elements, one is to sample the process {Zi}i∈N se-

quentially and decide, after each observation, whether to stop sam-
pling and take an action or to continue and take an action some-
times later. The action to take is to decide, as soon as possible, if
measurements are generated by noise alone or if they come from
a dynamic system and, in the latter case, it is also required to esti-
mate the system trajectory which has generated such measurements.
The sequential nature of the decision process allows now a trade-off
between quickness of decision and decision accuracy.

As in [15], this is a problem where estimation has to be per-
formed under uncertainty as to the signal presence. Thus, there
is a mutual coupling of detection and estimation and two different
strategies may be adopted. The first one (detection-oriented) con-
sists in choosing a test function for the detection problem and then,
if the latter has decided that the signal is present, design an esti-
mator. The second (classification-oriented) concerns the design of
a classification rule where detection is embedded in the rule itself.
Since it exhibits certain optimal properties and since detection is
the primary interest in surveillance applications later discussed, the
former only will be discussed in the following sections.

3. DETECTION AND ESTIMATION PROCEDURES

The problem is to to find an ‘optimal’ sequential testing function.
After the sampling process has stopped, if a signal has been declared
to be present, an estimator operating on a fixed-size sample may be
used to provide an estimate of the state trajectory.

3.1 Sequential test

It is not difficult to see the detector design as a sequential test-
ing problem of a simple hypothesis versus a composite alternative
where the parameter space is (Θ,U ), Θ = Θ0 ∪Θ1 and U being a
σ -algebra of subsets of Θ. Θ0 = {θ0} characterizes the simple hy-
pothesis H0:‘noise only’ while Θ1 =×i∈NS characterizes the alter-
native H1:‘signal present’. The prior µ on Θ1 is given through the
sequence of increasing joint densities {pX k}k∈N. Thus, a sequential
rule (ϕ,φ) has to be found, i.e. a stopping rule ϕ = {ϕk}k∈N and a
terminal decision rule φ = {φk}k∈N, for testing H0. The strength of
such a sequential test is the pair of errors of first and second kind.
Often, in detection problems, these errors are referred to as proba-
bility of false alarm and probability of miss, respectively. Denoting
with τ the stopping time and with ψ = {ψk}k∈N its conditional dis-
tribution1, these errors are defined as follows.
(i) The probability of false alarm, Pfa, is the error of first kind, i.e.

Pfa = α = ∑k∈N Eθ0

[
ψk(Zk)φk(Zk)

]
2.

(ii) The probability of miss given the system is in state θ ∈ Θ1,
Pmiss(θ ), is the error of second kind, i.e. Pmiss(θ ) = β (θ ) =

∑k∈N Eθ
[
ψk(Z

k)
(
1−φk(Z

k)
)]

, ∀ θ ∈ Θ1.
(iii) Pmiss is the average probability of miss, i.e. Pmiss = β =

∑k∈N ∑xk∈Sk pX k(xk)Exk

[
ψk(Zk)

(
1 − φk(Zk)

)]
. On the other

hand, Pd =1−Pmiss denotes the average probability of detection.
Suppose that it is requested to find a sequential test whose

probability of error of first kind is equal to Pfa = α and such that
the weighted average of the probability of second kind is equal to
Pmiss = β . To this end, define first

fZk |H1
(zk) = ∑

xk∈Sk

pX k(xk) fZk |X k(zk|xk), ∀ k ∈ N.

1ψk(zk) is the probability that τ |{Zk = zk} = k; the relationship between
ψk and ϕk is: ψk(zk) = ϕ(zk)∏k−1

l=1

(
1−ϕ(zl)

)
, ∀k ∈ N.

2Throughout the paper, with Eθ it is denoted the operator of expectation
on the observations given that θ is the true state of nature.

Then the sequential probability ratio test of strength (α,β ) for test-
ing fZk |H0

against fZk |H1
gives a solution to the problem, i.e.

ϕk(z
k) =

{
0, if Λk(z

k) ∈ (γ0,γ1),

1, otherwise,
(4a)

φk(z
k) =

{
0, if Λk(z

k) ≤ γ0,

1, if Λk(z
k) ≥ γ1,

(4b)

where Λk is the likelihood ratio of fZk |H1
and fZk |H0

. The boundaries
of the test, γ0 and γ1, with 0 < γ0 ≤ 1≤ γ1 <+∞, are chosen in order
to have the required strength (α,β ).

The testing rule of (4) requires to evaluate the likelihood ratios

Λk(z
k) = ∑

xk∈Sk

pX k(xk)
fZk |X k (zk|xk)

fZk |H0
(zk)

, (5)

for k = 1, . . . ,τ . From equations (2) and (3) it results that (5) is a
stage separated function on the algebraic system (R,+, ·) and, thus,
it can be computed through the following dynamic programming
algorithm [16], which is known to lower the computational com-
plexity from exponential to linear in k.

Algorithm 3.1. Let {F i}i∈N be a sequence of real-valued functions
on S. Then the algorithm proceeds as follows.
1. Initialization.

F1(x) = pX1(x)
fZ1|X1

(z1|x)
fZ1|H0

(z1)
, ∀ x ∈ S,

Λ1(z
1) = ∑

x∈S

F1(x).

2. Recursion. For every i ≥ 2

F i(x) =
fZi|Xi

(zi|x)
fZi|H0

(zi)
∑

xi−1∈S

Pxi−1x(i)F
i−1(xi−1), ∀ x ∈ S,

Λi(z
i) = ∑

x∈S

F i(x).

3.2 Gated estimator

Suppose the detection test has stopped sampling at stage τ = k and
it has decided in favor of hypothesis H1. The problem of finding an
‘optimal’ classification rule starting from the set of measurements
Zk is immediately solved resorting to the MAP estimator

x̂k = arg max
xk∈Sk

pX k(xk) fZk |X k

(
zk|xk). (6)

The objective of (6) is a stage separated function on the algebraic
system (R,max, ·) and it can be computed through the following DP
algorithm.

Algorithm 3.2. Let {F i}k
i=1 be a sequence of real-valued functions

on S and {δi}k
i=2 be a sequence of endomorphisms on S. Then the

algorithm proceeds as follows.
1. Initialization. ∀ x ∈ S

F1(x) = pX1(x) fZ1|X1
(z1|x).

2. Recursion. For i = 2, . . . ,k and ∀ x ∈ S

F i(x) = fZi|Xi
(zi|x) max

xi−1∈S

{
Pxi−1x(i)F

i−1(xi−1)
}
,

δ i(x) =arg max
xi−1∈S

{
Pxi−1x(i)F

i−1(xi−1)
}
.

3. Termination.
x̂k = argmax

x∈S

Fk(x).
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4. Backtracing. For i = k−1,k−2, . . . ,1

x̂i = δi+1
(
xi+1

)
.

Notice that maximization in (6) is equivalent to
argmaxxk∈Sk pX k (xk) fZk |X k(zk|xk)/ fZk |H0

(zk), which means that the
estimator may work on the same data as the detector, thus lowering
the required computation complexity. Furthermore, the estimation
procedure of algorithm 3.2 may be carried on along the detection
one in algorithm 3.1 with the final estimate being discarded if the
detection test has accepted the null hypothesis. Finally notice that
the running time of algorithms 3.1 and 3.2 is O(kM2).

3.3 Bounds on the ASN and approximations for boundaries

Approximations of the ASN are difficult to obtain, since, in general,
they would depend on the prior µ on Θ1, i.e. on the sequence of
densities {pX k}k∈N, as it can be seen observing their definition:

ASNH0 =Eθ0 [τ] = ∑
k∈N

EH0

[
ψk(Z

k)
]
k,

ASNH1 = ∑
θ∈Θ1

µ(θ )Eθ0 [τ] = ∑
k∈N

∑
xk∈Sk

pX k(xk)Exk

[
ψk(Z

k)
]
k.

Nevertheless, some bounds may be still given. In particular, it can
be demonstrated that, under rather mild conditions, the ASN of the
SPRT detector, as a function of the prior µ , always lies between
two extrema: the deterministic case, for which µ(θ ) = 1 for some
θ ∈ Θ1, and the ‘maximum uncertainty’ case, for which µ is the
uniform distribution over Θ1. The derivation of these bounds is
carried out in multiple steps.

First, two auxiliary sequences of functions are defined:
{hk

10}k∈N and {hk
01}k∈N, with hk

10,h
k
01 : Hk → R, for all k ∈ N, and

Hk =
{

q ∈ [0,1]M
k

: ∑Mk

i=1 qi = 1
}

. Since every probability density
over Sk can be uniquely represented by a vector in Hk , Hk can be
thought of as the set of densities over Sk . On the other hand, hk

10,h
k
01

are defined, for all k ∈ N, as

hk
10(q) =D

(
∑Mk

i=1 qi fZk |X k (·|θ k
i ) ‖ fZk |H0

(·)
)
,

hk
01(q) =D

(
fZk |H0

(·) ‖ ∑Mk

i=1 qi fZk |X k(·|θ k
i )

)
,

where D( f ‖ g) denotes the Kullback-Leibler divergence between f
and g and θ k

i the i-th element of the set Sk (i.e. the i-th trajectory up
to epoch k). With this definition, it results that

hk
10

(
{pX k(xk)}xk∈Sk

)
=D( fZk |H1

‖ fZk |H0
) = EH1

[
ln(Λk)],

hk
01

(
{pX k(xk)}xk∈Sk

)
=D( fZk |H0

‖ fZk |H1
) = −EH0

[
ln(Λk)].

It is now given the following.

Condition 3.3. For every k ∈ N and for every permutation matrix
P3, functions hk

10 and hk
01 satisfy

hk
10(Pq) = hk

10(q), hk
01(Pq) = hk

10(q), ∀q ∈ Hk.

Condition 3.3 can be interpreted as follows. Since the
Kullback-Leibler divergence is a measure of the ‘distance’ or ‘di-
vergence’ between two statistical populations drawn from different
probability distributions, condition 3.3 requires that, after a weight-
ing vector q ∈ Hk has been chosen, any two mixtures fZk |H1,q =

∑Mk

i=1 qi fZk |X k(·|θ k
i ) and fZk |H1,Pq = ∑Mk

i=1(Pq)i fZk |X k(·|θ k
i ) are

equally distant from density fZk |H0
and vice versa (as Kullback-

Leibler divergence is not symmetric). This means that, at stage k,
if two different priors {pX k (xk)}xk∈Sk are considered, whose only

3A matrix P is a permutation matrix if exactly one entry in each row and
column is equal to 1 and all other entries are 0.

difference is a permutation in their elements, the two dynamical
system described would be equally detectable using likelihood ratio
techniques.

Now it can be seen that, if condition 3.3 holds, under the hy-
potheses of i.i.d. measurement noise and possibility of neglecting
the excesses of Λτ over boundaries γ0 and γ1, the ASN of the SPRT
detector defined in (4) always satisfies the following bounds:

β lnγ0 +(1−β ) ln γ1

D( fZi|Xi
‖ fZi|H0

)
≤ASNH1 ≤

β lnγ0 +(1−β ) ln γ1

D
( 1

M ∑M
j=1 fZi|Xi

(·,x j) ‖ fZi|H0

) ,

(8a)

(1−α) ln γ0 +α lnγ1

−D( fZi|H0
‖ fZi|Xi

)
≤ASNH0 ≤

(1−α) ln γ0 +α lnγ1

−D
(

fZi|H0
‖ 1

M ∑M
j=1 fZi|Xi

(·,x j)
) .

(8b)

The demonstration, whose details are omitted due to lack of space,
is based on the fact that hk

10 and hk
01 are convex functions on Hk and

that they both admit a minimum and a maximum for the determin-
istic and the uniform prior, respectively.

Since the ASN is finite, the test ends almost surely and approxi-
mation for the boundaries comes directly from [5]. Indeed, it results
that, ignoring overshoots, the boundaries

γ1 = (1−β )/α and γ0 = β/(1−α), (9)

result in an SPRT detector with strength approximately given by
(α,β ). As concerns the optimal property of the Wald-Wolfowitz
theorem, it generally does not hold for the test in (4). Nevertheless,
this test may represent a good choice among available procedures
in many problems. Furthermore, it can be demonstrated that, under
the additional hypotheses in [17] or [12], this procedure is asymp-
totically optimal.

3.4 Truncated SPRT

Even if the SPRT exhibits the smallest ASN under both H0 and
H1 and it terminates with probability one, occasionally long obser-
vations can be needed. Moreover, if there are mismatches between
design and actual values of some parameters, typically the signal-to-
noise ratio (SNR), the resulting ASN can be very large, especially
for small error probabilities. Truncation of the SPRT can be used to
prevent such a problem: a regular sequential test is carried out until
either a decision is made or a fixed stage K is reached, in which case
hypothesis H0 or H1 is accepted if ΛK ≶ γK , respectively. Trunca-
tion is, then, a compromise between an entirely sequential test and
a classical FSS test. It can be noticed that, as long as the probability
of truncation is negligible, the previously derived approximations
on error probabilities and ASN are still valid.

4. RADAR APPLICATIONS

The radar problem is characterized by the inherent presence of
multiple-resolution elements, which correspond to range ‘bins’ as
well as Doppler, azimuth and elevation cells. This problem has
been solved in [6, 8, 11] but all of these approaches concern the
case where the target is not allowed to change its position while be-
ing illuminated by the radar. This condition may be too restrictive,
especially in airborne applications where the relative radial velocity
between target and radar may go beyond Mach-2.

The physical situation considered in order to guarantee the pres-
ence of at most one target in the search region is that the surveillance
area is divided into smaller angular regions, each visited in turn by
the antenna beam in cyclic manner. In each region a sequential pro-
cedure is used to accept or reject the hypothesis that a single target
is present. Because in most sectors of the sky no target is present,
sequential procedures can result in a high saving of the average total
time spent scanning the surveillance region.

Since in surveillance radar applications the main objective con-
cerns early detections, the detection-oriented sequential strategy
presented in section 3 is applied. On the other hand, the possibil-
ity of occasionally long tests is ward off imposing a cut-off stage at
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which truncate the procedure: in this way, a control over the max-
imum dwell time on each angular sector is maintained thus avoid-
ing the possibility that targets may traverse undetected through the
surveillance region.

4.1 Sensor measurement model

The process of signal discretization is a standard calculation in radar
applications and is related to the fact that the target parameters (az-
imuth, elevation, delay and Doppler shift), which are inherently
continuous, can be estimated up to an uncertainty dictated by the
beamwidth of the transmit antenna and by the ambiguity function
of the transmitted signal. That is, the region that must be consid-
ered is divided into a grid and the continuous-time received signal
is discretized accordingly (if the grid is sufficiently fine, losses due
to possible mismatches may be neglected). The measurement at
stage ` is, for all ` ∈ N,

Z` =
{

Z`(n) : n∈{1, . . . ,Na}×{1, . . . ,Ne}×{1, . . . ,Nr}×{1, . . . ,Nd}
}
,

where Na,Ne,Nr,Nd are the number of resolution elements in az-
imuth, elevation, range and Doppler, respectively.

4.2 Target model

The target state variable is X` ∈ S and the target space consists of the
set of all the resolution cells, i.e. S = {1, . . . ,Na}×{1, . . . ,Ne}×
{1, . . . ,Nr}×{1, . . . ,Nd}, with M = NaNeNrNd . A more complex
state space could be considered (for example one involving also ve-
locities): as known, enlarging the state space leads to an improve-
ment of the system performances at the price of an increase of the
computational complexity. Since simple algorithms are required in
multi-frame radars, this section focus on the case of limited dimen-
sions state space, but all of the discussions can be easily extended
to the case of a larger state space.

A first-order Gaussian-Markov random walk model is used to
derive the transition probabilities, which are given by Pmn(i) =

∏4
j=1 Pm jn j , where Pm jn j = Q

(
n j−m j−1/2

σ j

√
∆T

)
− Q

(
n j−m j+1/2

σ j

√
∆T

)
4 for

j = 1,2,3, where σ j is a parameter related to the target mobility.
On the other hand, for j = 4 (i.e. for the transitions Doppler),
Pm jn j = 1/Nd since in surveillance applications low pulse repetition
frequency radars are usually adopted and, thus, Doppler measure-
ments are highly ambiguous. As concerns the initial probability, if
no other prior information is available (for example previous detec-
tions), it is reasonable to put pX1 = 1/M.

4.3 Sequential detection and tracking algorithms

It is supposed that each component Z`(n) of the measurement Zi, for
n∈ S, be an exponentially distributed random variable with density5

f1(y) =
e−

y
1+ρ

1+ρ
u(y), if the target is present in location n, (10a)

f0(y) =e−yu(y), otherwise, (10b)

where ρ denotes the SNR and u(y) is the Heaviside step function.
Supposing {Vi}i∈N to be an i.i.d. process (a condition commonly
verified), the density of the set of measurements up to epoch k is

fZk |X k(zk|xk) =
k

∏̀
=1

f1
(
z`(x`)

)
∏
x∈S
x 6=x`

f0
(
z`(x)

)
, (11)

fZk |H0
(zk) =

k

∏̀
=1

∏
x∈S

f0
(
z`(x)

)
, (12)

4Q(x) =
∫ +∞

x
1

2π e−x2/2dx. Notice that, even if all transitions are theoreti-
cally admissible, real targets necessarily need to satisfy physical constraints,
such as limitations on the maximum velocity and acceleration. In this case,
a truncated Gaussian density can be used.

5This is the case, for example, if measurements comes from a square law
envelope detector (commonly adopted in radar applications).

and the likelihood ratio

fZk |X k (zk|xk)

fZk |H0
(zk)

=
k

∏̀
=1

f1
(
z`(x`)

)

f0
(
z`(x`)

) =
k

∏̀
=1

ez`(x`)ρ/(1+ρ)

1+ρ
. (13)

At this point, algorithms 3.1 and 3.2 can be used to efficiently com-
pute the statistics in (5) and (6).

In the target model of section 4.2 it has been assumed that all of
the frequency transitions are allowed to take place with equal prob-
ability. This permits a reduction in the computational complexity
of the DP algorithms for detection and tracking since Doppler de-
tections may be actually carried out frame-by-frame. This may be
easily seen rewriting summation in (5) maximization in (6) as

∑
xk∈Sk

pX k (xk)
fZk |X k (zk|xk)

fZk |H0
(zk)

=

= ∑
nk

1,n
k
2,n

k
3

∑
nk

4

p(X k)1
(nk

1)p(X k)2
(nk

2)p(X k)3
(nk

3)
1

Nk
d

k

∏̀
=1

f1
(
z`(x`)

)

f0
(
z`(x`)

) =

= ∑
nk

1,n
k
2,n

k
3

p(X k)1
(nk

1)p(X k)2
(nk

2)p(X k)3
(nk

3)
k

∏̀
=1

[
1

Nd
∑
n4

f1
(
z`(x`)

)

f0
(
z`(x`)

)
]
,

max
xk∈Sk

pX k (xk)
fZk |X k (zk|xk)

fZk |H0
(zk)

= · · · =

= max
nk

1,n
k
2,n

k
3

p(X k)1
(nk

1)p(X k)2
(nk

2)p(X k)3
(nk

3)
k

∏̀
=1

[
1

Nd
max

n4

f1
(
z`(x`)

)

f0
(
z`(x`)

)
]
,

where (Xk)i =
{
(X1)i, . . . ,(Xk)i

}
, i.e. the target trajectory along

the i-th dimension. This corresponds to say that two 4-dimensional
(azimuth-elevation-range-Doppler) algorithms operating on statis-
tics f1

(
z`(x`)

)
/ f0

(
z`(x`)

)
can be replaced by two 3-dimensional

(azimuth-elevation-range) algorithms operating on

1
N ∑

n4

f1
(
z`(x`)

)

f0
(
z`(x`)

) and
1
N

max
n4

f1
(
z`(x`)

)

f0
(
z`(x`)

) .

Finally, the threshold γK at the cut-off stage K, needed to the
truncated algorithm, is simply chosen to be the geometric mean of
γ0 and γ1.

5. NUMERICAL RESULTS

First, a general target detection and trajectory estimation problem is
considered in order to corroborate the discussion in section 3. The
measurement model is that of equations (10)-(13), while the state
space is S = {1, . . . ,M}. It can be easily checked that the functions
hk

10 and hk
01 of equations (7) constructed starting upon these densi-

ties satisfy conditions 3.3. The first two curves presented are given
as a function of the target prior, which ranges from the determin-
istic case to the uniform one. The boundaries γ0 and γ1 have been
set as in equation (9), with design error probability P′

fa = 10−3 and
P′

miss = 10−3. Figure 2 shows the ASN under both H0 and H1 as a
function of M, with ρ = 0 dB. First, it can be seen that both ASNH0

and ASNH1 lie between the values corresponding to the determinis-
tic and the uniform distributions. Furthermore, since the SNR is not
large and the error probability are requested to be sufficiently low,
the hypothesis that the excesses over boundaries could be neglected
is verified and, thus, approximations in (8) are confirmed to be tight.
It can be also noticed the deleterious effect of the increase of M con-
firming the intuitive idea that it becomes more difficult to search a
target if it is allowed to wander in a larger state space. Furthermore,
it can be seen that more compact priors allows easier detections and,
in general, that priors with smaller entropy permit easier detections.
Figure 3 shows the effect of the SNR on Pc,last (the probability to
correctly classify the last target position with an accuracy of two
cells) and Pc,track (the probability to correctly classify the target tra-
jectory with an accuracy of five cells). Notice that, while Pd is not
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Figure 2: ASN under both hypotheses versus the prior for different
values of state space cardinality and SNR of 0 dB.
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Figure 3: probability of correct classification of the last stage Pc,last
and of the trajectory Pc,track versus the prior for different values of
the SNR.

influenced by the strength of the received signal (indeed the lower
SNRs are traded with a larger ASNs), Pc,last and even more Pc,track
decreases as the SNR is lowered.

Finally last plot concerns with the radar case of section 4. The
parameter of the radar considered are: Na = 3, Ne = 3, Nr = 100,
Nd = 16, K = 20. The transition probabilities of the target have
been set to be uniform among the admissible state transitions (in
turn equal to a single resolution cell) while constant false alarm
rate statistics have been used to cope with the uncertainty as to the
noise power. In figure 4, the ASN and the coefficient of variation6

is represented versus the SNR under both the hypotheses. Notice
the characteristic peak at intermediate values of the SNR, where
there is no pronounced tendency to cross either boundaries: yet the
deleterious effect of the beam antenna remaining ‘hung-up’ along a
particular direction has been avoided by truncation.

6. CONCLUSIONS

The general problem of sequential detection and trajectory estima-
tion of a dynamic system observed through a set of noisy mea-
surements has been considered and possible applications to radar
surveillance have been inspected. Previous limitation on the target
mobility imposed by other works present in literature have been re-
moved and a deep analysis on the ASN as a function of the prior
distribution has been given. Simulation results have shown correct-
ness of the bounds on the ASN and that the system performance
essentially follows the entropy of the prior distribution.

6The coefficient of variation of a random variable is the ratio σ/µ of its
standard deviation σ and its mean µ 6= 0.
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Figure 4: ASN and coefficient of variation versus the SNR for both
the hypotheses (radar environment).
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