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ABSTRACT

This paper introduces a class of oversampled complex-
modulated causal IIR filter banks for flexible frequency-band
reallocation networks. In the simplest case, they have near
perfect magnitude reconstruction (NPMR), but by adding a
phase equalizer they can achieve near-PR.

1. INTRODUCTION

The European Space Agency (ESA) outlines three major
”standard architectures” for future satellite-based broad-
band systems [1]. Two of these are the distributed access
network and professional user network which are to provide
high-capacity point-to-point and multicast services for ubiq-
uitous Internet access. The satellites are to communicate
with user units via multiple spot beams. In order to use the
limited available frequency spectrum efficiently, the satel-
lite on-board signal processing must support frequency-band
reusage among the beams and also flexibility in bandwidth
and transmission power allocated to each user. Further, dy-
namic frequency allocation is desired for covering different
service types requiring different data rates and bandwidths.
An important issue in the next-generation satellite-based
communication system is therefore the on-board realloca-
tion of information. In technical terms, this calls for digital
flexible frequency-band reallocation (FBR) networks which
thus are critical components.

In a straightforward realization of the flexible FBR net-
work, the filter banks (FBs) need to incorporate variable fil-
ters which are costly to implement. Therefore, the authors of
[2] propose a solution with fixed FBs as shown in Fig. 1 1. A
channel switch and some complex multipliers µkr (for phase
rotation compensation), together with properly chosen FBs,
are used to achieve the necessary flexibility. This solution
reduces the arithmetic complexity significantly and outper-
forms the previously existing networks when flexibility and
low complexity are considered simultaneously [2]. The chan-
nel switch redirects its inputs xr(n) at the different positions
to its new output positions. A variable channel combiner is
also needed after the synthesis bank to combine the contents
in the different granularity bands into each output yr(n).
The FBR network is based on a class of variable oversam-
pled complex-modulated N-channel FBs which makes use of
decimation and interpolation by M . The input and output
signals contain an adjustable number of user subbands, q
with 1 ≤ q ≤ Q. The input and output subbands are de-
noted xr(n) and yr(n), respectively, with r = 0, 1, . . . , q − 1.
The constant Q is the number of granularity bands and is

1A practical multicast systems requires a multiple-input
multiple-output (MIMO) network. However, properly designed
FBs for single-input single-output (SISO) networks can be used
in MIMO networks as well. Therefore only SISO networks are
considered in this paper.
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Figure 1: Proposed flexible FBR network with fixed analy-
sis and synthesis FBs. The variable parts are the channel
switch, µkr, and the channel combiner.

related to M as M = BQ with the integer B ≥ 1. In the fi-
nal implementation, M and N are fixed, whereas q is on-line
variable. Further, N = AQ, which means that N = (A/B)M
with A being an integer greater than B. For more details,
see [2].

In this paper, we introduce a class of complex-modulated
causal IIR FBs for the flexible FBR networks mentioned
above. Complex-modulated FBs are known to be very ef-
ficient since each of the analysis and synthesis parts can be
implemented with the aid of one prototype filter alone and
an IDFT (DFT) [3]. FIR filters (used in [2]) offer several
good properties, like guaranteed stability and exact linear
phase. However, in general they need a higher filter order
to fulfill a given specification compared to IIR filters; espe-
cially when the transition band is narrow. In this paper, we
therefore introduce IIR prototype filters instead of FIR ones,
the latter being used in most publications on modulated FBs
(see e.g. [3] and [4]). This allows us to lower even further the
implementation complexity as well as the design complexity
of the proposed flexible FBR network.

The FBs do not fulfill perfect reconstruction (PR). How-
ever near-PR can be achieved. This means that the FB in-
troduces small magnitude and phase errors. Further, if the
phase response is not approximately linear, we say that it is
a near perfect magnitude reconstruction (NPMR) FB. In the
simplest case, the introduced FBs have NPMR, and by intro-
ducing a phase equalizer, the NPR FBs are obtained. Using
NPR or NPMR FBs, instead of PR ones, is usually advan-
tageous since the complexity thereby can be reduced [5], [6].
The proposed solution offers additional flexibility, since the
optional equalizer can be implemented either in the satellite
or at the receiver on earth. Finally, a general design pro-
cedure is proposed which can be used to design the FBs to
approximate general specifications as close as desired.
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2. PROPOSED FILTER BANK CLASS

This section treats filter transfer functions, distortion func-
tion and aliasing of the proposed FB class.

2.1 Filter transfer functions

Let the transfer function of the lowpass prototype filter be
given as

P (z) =
A(z)

C(zN)
(1)

where N is even2. The filters A(z) and C(z) are of order NA

and NC , respectively, and given by

A(z) =

NA
X

n=0

a(n)z−n C(z) =

NC
X

n=0

c(n)z−n.

Further, A(z) is a linear-phase FIR filter with symmetric
impulse response a(n) = a(NA − n). The analysis filters
Hk(z) are obtained by modulation of the prototype filter
P (z) according to

Hk(z) = βkP (zW
(k+α)
N ), k = 0, 1, . . . , N − 1 (2)

where WN = e−j2π/N and βk = W
(k+α)NA/2
N . The constant

α is real-valued and arbitrary. Using (1) and (2), Hk(z) can
be rewritten as

Hk(z) =
Ak(z)

C(W αN
N zN)

, Ak(z) = βkA(zW
(k+α)
N ).

All the filters Hk(z) thus share the same denominator poly-
nomial which leads to few optimization parameters and an
efficient implementation at the end.

2.2 Distortion function and aliasing

In [2], general formulas for the distortion function are given.
These formulas depend on the number of input subbands, the
length of each subband and how each subband is reallocated
in the network (the channel switch). It is also shown that all
µkr become equal to unity by introducing some additional
delay to the system.

As to the filter design, this paper’s focus is on the fixed
FBs and their properties as it has been shown in [2] that a
properly designed FB for the special case with only one in-
put subband (covering the whole frequency range) is enough
to ensure that the system also works for all possible combi-
nations of input subbands and reallocation schemes 3. The
price to pay is a slight overdesign. If we add the restriction
that A/B must be an integer, this fact will hold also for the
proposed FB class. Thus, when designing FBs in this paper
we study only the special case with q = 1 (r = 0) and we
restrict A/B to be an integer. With these choices, the syn-
thesis filters Gk(z) described in [2] become identical to the
analysis filters (all µkr = 1) and the distortion function can
be written as

V0(e
jωT ) =

e−j(NAωT+2ΦC (NωT ))

|C(W αN
N ejNωT )|2

N−1
X

k=0

|Ak(ejωT )|2 (3)

2N is chosen to be even to allow an efficient implementation
with a half-band IIR filter; see Section 4.1.

3We note that with only one subband user, no reallocation can
be done.
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Figure 2: General realization of the analysis FB.
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Figure 3: Realization of the analysis FB when the filters
work at the lowest sampling rate available.

where ΦC(ωT ) is the phase response of C(W αN
N ejωT ). From

(3) it readily follows that the magnitude and phase responses
of V0(z) are given by

|V0(e
jωT )| =

1

|C(W αN
N ejNωT )|2

N−1
X

k=0

|Ak(ejωT )|2 (4)

ΦV (ωT ) = −NAωT − 2ΦC(NωT ). (5)

We note that the non-linear phase of (5) is due only to
ΦC(NωT ).

Since the FB is oversampled, alias emanating from the
decimation process can be suppressed. The aliasing terms
are bounded by the stopband attenuation of the analysis
filters and can be made arbitrary small by properly designing
the prototype filter.

3. REALIZATION

In Fig. 2, a general realization of the analysis FB is shown.
The filters Qp(z), p = 0, 1, . . . , N −1 are the polyphase com-
ponents of A(z) according to

A(z) =

N−1
X

p=0

z−pQp(z
N)

where αi = W−αi
N . For α = 0 and α = 0.5, we get W αN

N = 1

and W αN
N = −1, respectively. Either of these choices will

thus lead to real-valued polyphase components Qp(z) and a
decreased implementation cost.

Further, since the polyphase components are functions of
zN and N is a multiple of M (N = (A/B)M) it is possible to
rearrange the decimators and the filters so that they work at
the lowest sampling rate present with kept real coefficients.
This is shown in Fig. 3. By moving the filter 1/C into each
branch, each filter work at a lower sampling rate, which can
be an advantage in terms of speed in an implementation.
However, in terms of mults/sample, nothing is gained.

The synthesis FB is realized in a corresponding way us-
ing the notation γk = βkW−k

N . In Fig. 4, a straightforward
implementation is shown, using the fixed FB, and in Fig. 5
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Figure 4: General realization of the synthesis FB.
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it is shown how the filters are placed so that they work at
the lowest available sampling rate. Given that the delay is
not critical, and thus that all µkr can be set to one, the only
overhead cost compared to a fixed modulated FB is due to
the channel switch4.

4. FILTER BANK DESIGN

This section introduces a technique to design the proposed
IIR FBs. We consider both NPMR and NPR. By choosing
an NPMR approach, the arithmetic complexity of the on-
board processing can be minimized, and if necessary, a phase
equalization can be made later at the receiver on earth. For
flexible FBR networks, the number of conditions to satisfy
is substantially larger than for regular FBs and it is not
possible in practice to design PR FBs fulfilling all these con-
ditions. For example, there are specifications for all possible
numbers of users, subbands, combinations and reallocations
schemes (for details, see [2]). It has been shown in [2], that
by solving the minimax problem below, there will be a slight
over-design, but on the other hand, the optimization be-
comes very straightforward. In the section on NPMR design
below, it is shown how to find a good initial solution to this
nonlinear problem and Section 4.2 explains how to design
the optional phase equalizer.

4.1 NPMR design

Following the design pocedure in [2] the prototype filter is
designed to satisfy

||V0(e
jωT )| − 1| ≤ δ0, ωT ∈ [0, π] (6)

|P (ejωT )| ≤
δ1

N
, ωT ∈ [

π

N
+ ∆, π] (7)

where ∆ denotes half the transition bandwidth of the pro-
totype filter P (z). The parameters δ0 and δ1 are prescribed

4In this efficient realization, the separate yr(n) are not avail-
able. This is however not a problem, since only the composite
output y(n) is supposed to be transmitted.

distortion and aliasing errors. The number of conditions are
thus reduced to only two, and these can be achieved by solv-
ing the following minimax optimization problem:

minimize δ (8)

subject to ||V0(e
jωT )| − 1| ≤ δ, ωT ∈ [0, π]

|P (ejωT )| ≤ δ( δ1
Nδ0

), ωT ∈ [
π

N
+ ∆, π].

The specifications in (6) and (7) are met when δ ≤ δ0. Since
(8) is here a nonlinear optimization, it is crucial to have
a good solution to start with. Utilizing (4), and ignoring
higher-order terms such as squared stopband ripples, it can
be shown that (6) and (7) are satisfied if the prototype filter
P (z) fulfills

1 − 0.5δ0 ≤ |P (ejωT )| ≤ 1 + 0.5δ0, ωT ∈ [0,
π

N
− ∆]

|P (ejωT )| ≤ δ1/N, ωT ∈ [
π

N
+ ∆, π]

1 − δ0 ≤ |P |2 + |Psh|
2 ≤ 1 + δ0, ωT ∈ [

π

N
− ∆,

π

N
]

where P = P (ejωT ) and Psh = P (ejωT WN). A convenient
way to design P (z) to meet the specification above is to
make use of narrow-band frequency-masking techniques for
IIR filters [7], [8]. This allows P (z) to be designed with
a sharp transition band and few distinct coefficients. We
therefore express P (z) as

P (z) = E(zN/2)S(z) =
F (zN/2)S(z)

C(zN)
(9)

whereby A(z) in (1) becomes A(z) = F (zN/2)S(z). By
choosing P (z) as in (9), it is obvious that N must be re-
stricted to even integers. The functions F (z) and zC(z2) are
the numerator and denominator polynomials, respectively, of
an NEth-order half-band IIR filter, E(z), [4], where NE is
odd. (In other words, C(z2) is the denominator polynomial
less the pole at the origin.) The polynomial F (z) is thus an
odd-order linear-phase FIR filter whereas C(z2) is an even-
order filter. Further, S(z) is an NSth-order linear-phase FIR
filter. Thereby, A(z) will be a linear-phase FIR filter of order
NA = N

2
NE +NS. The functions E(z) and S(z) are referred

to as model and masking filters respectively. The role of S(z)
is to remove the N/2 − 1 images present due to the factor

zN/2 in the polynomial E(zN/2) in (9) [8]. In this way, the
prototype filter can be made narrow-band and at the same
time be implemented with a low arithmetic complexity, as
will be illustrated in Section 5. It can be shown that a sim-
ple way to meet the specification of the prototype filter is to
design E(z) and S(z) to fulfill

|E(ejωT )| ≤ δ1/N, ωT ∈ [
π

2
+

N

2
∆, π]

with E(1) = 1, and

1 − 0.5δ0 ≤ |S(ejωT )| ≤ 1 + 0.5δ0, ωT ∈ [0,
π

N
+ ∆]

|S(ejωT )| ≤ δ1/N, ωT ∈ [
3π

N
− ∆, π].

The filters can be designed with conventional methods [9],
[10] and combined to form an initial solution to the nonlinear
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minimax problem (8). The minimax optimization is thus a
joint optimization of the subfilters E(z) and S(z).

After the joint minimax optimization, it might be possi-
ble to reduce the filter orders of the subfilters E(z) and S(z)
and still fulfill (6) and (7). This must be done in order to en-
sure that the minimum-complexity prototype filter fulfilling
the specification is found. A flow chart of the NPMR design
procedure is shown in Fig. 6.

4.2 NPR design

In the design procedure above, the phase response of the
distortion function was ignored which means that it may be
too nonlinear for the application at hand. One simple way
to improve the phase linearity is to equalize it with the aid of
an allpass filter. Since such a filter has a constant magnitude
response for all frequencies it will not affect the magnitude
response of the distortion and aliasing functions. It thus
suffices to consider only the phase response in this step.

Here, it follows from (5) that the nonlinearity in the
phase response ΦV (ωT ) emanates from ΦC(NωT ) which
is the phase response of the denominator polynomial
C(zNW αN

N ). The problem thus reduces to that of equalizing
ΦC(NωT ). Further, since this is a function with a period-
icity of 2π/N , we use an allpass filter with transfer function
HAP (zN ) as equalizer. The allpass filter is designed so as to
minimize the maximum magnitude of the phase error Φe(ωT )
which is given by

Φe(ωT ) = ΦV (ωT ) + ΦAP (NωT ) + KωT

where ΦAP (ωT ) is the phase response of HAP (z). The
overall filter bank delay after the allpass equalization is
K = NA +N ×NAP where NAP is the order of HAP (z). It is
well known that the equiripple solution minimizes |Φe(ωT )|
[11]. There are many different techniques available to find
this solution but we use the algorithm in [12].

5. DESIGN EXAMPLES

To demonstrate the proposed design method, two examples
are given. In the first one δ0 and δ1 are equal to 0.01, and in
the second one δ0 = δ1 = 0.001. The rest of the FB specifica-
tion is the same as for the example in [2], which means that
M = 4, N = 8, Q = 4, ∆ = 0.125π/Q, and α = 0.5. The
simplest channel switch [Gk(z) = Hk(z)] is used since the
choice of switching does not affect the orders of the errors
in the FB. Each of the examples considers both the NPR
and the NPMR designs and are compared with the FIR case
(that is with C(z) = 1). Implementation complexity (the

NA NC mults/sample # of coeffs delay
NPMR 42 2 25.5 24 42
NPMR 34 3 23.5 21 34
NPMR 39 4 28 24 39

NPR 42 2 45.5 44 202
NPR 34 3 44.5 42 202

FIR 119 – 60 60 119

Table 1: Comparison with δ0 = δ1 = 0.01, Example 1. For
the NPR FBs, the phase error is designed to be less than
0.01. Since the NPMR FB with NC = 4 did not give a good
solution, it was not studied with phase equalizer.

number of multiplications per input/output sample, in short
mults/sample), design complexity (the number of distinct
coefficients to optimize), and the total delay for the different
FBs are studied and compared 5. For the NPMR design the
measure of implementation complexity is given by

2(
MNE + NS + 1

M
+

NE − 1

2
) = 2(

NA + 1

M
+ NC) (10)

mults/sample, and the one for design complexity is

⌊
MNE + NS

2
+ 1⌋ +

NE − 1

2
= ⌊

NA

2
+ 1⌋ + NC (11)

distinct coefficients. Further, the total delay through the FB
is

2(NA/2) = NA (12)

samples. For the NPR design, NAP must be added to (10)
and (11), whereas N×NAP must be added to (12). Note also
that the regular FIR design is a special case of the NPMR
measures with NC = 0.

5.1 Example 1

The best NPMR design fulfilling the specification in all as-
pects studied is the one with NC = 3 and NA = 34. In
Fig. 7 the magnitude responses of the analysis (and synthe-
sis) filters are shown. Their passband ripples are less than
0.005 and stopband ripple less than 0.0012. Figure 8 shows
the distortion function which has an error less than 0.0093 6.
The aliasing functions are shown in Fig. 9 and have a maxi-
mum value of -51.4 dB. An NPR design can be achieved by
appending an allpass filter to the FB. In Fig. 10, the phase
error for NC = 3 and NA = 34 is plotted as a function of
NAP . For example, if a phase error less than 0.01 is required,
an allpass filter of order 21 is needed. As a comparison, a
corresponding FIR filter (with NC = 0) would need a fil-
ter order of 119 to fulfill the same specification. Figures of
interest are summarized in Table 1.

5.2 Example 2

In this example, δ0 = δ1 = 0.001 and the NPMR FB with
the lowest arithmetic as well as design complexity was found
for NC = 4 and NA = 50. Figures of interest are shown
in Table 2, where two NPR specifications are shown. One
with phase error less than 0.01 and one with 0.001. As
seen in Tables 1 and 2, the proposed IIR FBs require fewer
mults/sample and distinct coefficients than the FIR FBs,

5One should keep in mind that the FIR FBs have the additional
feature of providing an overall linear phase response.

6The large variations in Fig. 8 is caused by the fact that δ0 =
δ1, and thus that the optimizations of P (ejωT ) and V0(ejωT ) are
weighted differently [see (6) and (7)].
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Figure 10: Maximum phase error for NC = 3 and NA = 34
as a function of the allpass filter order NAP in Example 1.

even with the smaller phase error. However, the proposed
method becomes of course more interesting if larger phase
errors can be allowed.

6. CONCLUSIONS

This paper introduced a class of oversampled complex-
modulated causal IIR FBs for flexible frequency-band re-
allocation networks. In the simplest case, they have near
perfect magnitude reconstruction (NPMR), but by adding
a phase equalizer they can achieve near-PR. A general de-
sign procedure for the FBs was given and design examples
showed that the implementation and design complexities are
reduced compared to the corresponding FIR solution.
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[2] H. Johansson and P. Löwenborg, “Flexible frequency-
band reallocation network based on variable oversam-
pled complex-modulated filter banks,” in Proc. IEEE
Int. Conf. Acoust. Speech, Signal Processing, Philadel-
phia, USA, Mar. 2005.

[3] P. P. Vaidyanathan, Multirate Systems and Filter
Banks, Prentice-Hall, Englewood Cliffs, N.J. USA,
1993.

[4] P. N. Heller, T. Karp, and T. Q. Nguyen, “A general
formulation of modulated filter banks,” IEEE Trans.
Signal Processing, vol. 47, no. 4, pp. 986–1002, Apr.
1999.

[5] R. Bregovic and T. Saramäki, “An efficient approach
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