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ABSTRACT

The presented paper proposes a hybrid parallel factor
analysis-support vector machines (PARAFAC-SVM) method
for left and right index imagery movements classification.
The spatial-temporal-spectral characteristics of the single
trial electroencephalogram (EEG) signal are jointly consid-
ered. Within this novel scheme, we develop a parallel EEG
space-time-frequency (STF) decomposition in ¢ band (8-13
Hz) at the preprocessing stage of the BCI system. Using
PARAFAC, we elaborate two distinct factors in ¢ band for
each EEG trial. SVM classifier is utilised to classify the spa-
tial distribution of the movement related factor. This factor
is distinguished by its spectral, temporal, and spatial distri-
bution.

1. INTRODUCTION

Brain computer interfacing (BCI) based on EEG activities
is to enable the people suffering severe neurological dis-
abilities but cognitively intact to operate computers by in-
tention rather than by physical contact. In BCI the dis-
abled body imagines mental tasks and the computer identi-
fies the pattern of input EEG signals. It has been well es-
tablished that the planning and the execution of voluntary
(imagery or real) movements cause pre-movement attenua-
tion and post-movement increase in amplitude of y rhythm
over the sensory motor cortex, mainly over the contralateral
hemisphere [1].

For BCI, several EEG processing approaches have been
addressed to enhance the correct recognition rate of the
mental tasks. Most of these studies rely on the tempo-
ral and/or spectral features of the preprocessed EEG sig-
nals [2—4]. In [5] the spatial as well as temporal and spec-
tral information have been considered by means of multivari-
ate autoregressive (MVAR) modelling of the multi channel
EEG. Approaches based on analysis of joint time, frequency,
and space correlations are introduced in [6] where the EEG
signals are classified with respect to the correlative time-
frequency representations (CTFRs) of different channels.

Generally, existence of non-relevant potentials over the
scalp in parallel with the motion related signals restrains the
performance of BCI systems. Background activity of the
brain, motion and ocular artifacts are of such interferences.
In [7] we have contributed to ocular artifacts removal while
this work expertly meets the exclusion of the brain back-
ground activities in BCI by means of PARAFAC.

In the early paper on the PARAFAC [8] it was used in
order to decompose EEG signals. In [9] PARAFAC was re-
instated, termed as topographic component analysis and em-
ployed to study the event related potentials (ERPs). Topo-
graphic time-frequency decomposition of the EEG was also

adopted in [10] wherein the atoms were simultaneously char-
acterised by their temporal-spectral and spatial signatures.
The authors in [10] extracted physiologically significant ac-
tivities in the EEG imposing mathematical constraints that
in [11] have been figured out unnecessary. It has long been
known that unique multi-linear decomposition of multi-way
arrays of data is possible using PARAFAC [12]. We demon-
strate that PARAFAC is capable of successfully space-time-
frequency decomposition of the EEG for BCI and annihila-
tion of the brain background potentials. The inherent unique-
ness of the PARAFAC solution leads to single trial EEG
decomposition with a minimum a priori assumptions [12]
where previous applications of PARAFAC to EEG data have
considered only averaged EEG signals.

Studies of medical imaging (PET & fMRI) have estab-
lished that cortical sensorimotor systems are activated during
imagery as well as real motions. It has also been well es-
tablished that planning and execution of movement leads to
a short-lasting and circumscribed amplitude attenuation fol-
lowing by an amplification in the y rhythm (8-13 Hz) known
as event-related (de-)synchronisation (ERD/ERS) [1]. Due to
the fact that these brain activities are spatially smeared when
volume conducted through the scalp, their exact localization
is rather difficult and entails complex computations. Also the
clearest ERD/ERS, to be utilised in BCI, may occur at differ-
ent frequency bands and different time points. Index finger
(imagery) movement produces a short-lasting amplitude at-
tenuation (ERD) following by an amplification of the (ERS)
u rhythm, mainly in the contralateral central area [1].

To establish the usefulness of PARAFAC for BCI, we ap-
plied the decomposition of time-varying EEG spectrum for
differentiating single trial left and right index finger imagi-
nation. PARAFAC, is not only able to identify the aforemen-
tioned ERD/ERS phenomena, extracts the brain background
activity. We, omitting non-relevant factor, utiltised a SVM
classifier to distinguish between left and right index move-
ments. The feature set is the spatial distribution of the move-
ment triggered ( rhythm.

This paper is organised as follows. In Section II, the pro-
cedure for recording the EEG signals and the preprocessing
stages are presented. In Section III and IV, PARAFAC and
SVM are briefly reviewed, respectively. The results are sub-
sequently presented in Section V, followed by conclusions in
Sections VL.

2. SIGNAL ACQUISITION AND PREPROCESSING

The EEG dataset used in this research has been made
available by Dr. A. Osman of University of Pennsylvania for
NIPS2001 BCI Workshop. EEG signals had been detected
from 59 channels placed according to the international 10/20
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Figure 1: Time sequence of each EEG recording epoch.

system and sampled at the rate of 100 Hz. A fifth-order
Butterworth filter was used for temporal bandpass filtering
from 5 to 20 Hz, after baseline removal. The subjects
were seated in front of a display screen and asked to
imagine either left- or right-hand movement imagination
for 180 trials - 90 left, 90 right. Each trial starts with
one blank screen displayed for 2 s and lasts for 6 s as
shown in Fig. 1. Two highly predictable timing cues as
preparation and execution cues, were considered in the
recording procedure. During the former, which starts at
3.75 s and lasts for 250 ms, a letter “L” or “R” appears
on the screen indicating which hand movement should be
imagined. The second cue begins at 5.0 s and displays
an “X” for 50 ms to instruct the user to start imagination.
Since the finger imagination activates the sensorimotor
cortex area, the recorded signals from 15 channels, namely,

FC3;FCI7FCZ>FC27FC47C37C17CZ7C27C47CP3aCP17CP27CP27

and CPy, are considered in this paper.

2.1 Preprocessing

Preprocessing step consists of Laplacian spatial filtering and
complex wavelet transform to set up the multi-way array;

2.1.1 Surface Laplacian Filtering

Scalp recorded EEG signals are manifestation of the noisy
spatio-temporal superpositions (linear assumption) of elec-
trical activities originating from different brain regions. In
order to accentuate localized activity and reduce electrical
diffusion in multichannel EEG, we used the spatial filtering
technique. Assuming that the distances from a given elec-
trode to its four directional neighboring electrodes are ap-
proximately equal, the surface Laplacian filtered EEG signal
of channel i at time ¢, i.e. EEGlI-ﬂp (t), is approximated as
follows

1
EEG (1) = EEG(t) — i Y EEG; (1)
JEN;

where EEG,; is the scalp EEG signal of the i’ channel, and
N; is an index set of the four neighboring channels.

2.1.2 Complex Wavelet Transform (CWT)

Each trial lasts for 6 s, but not all the time points during this
period contain beneficial classification information of the dif-
ferent EEG patterns regarding left- and right index imagina-
tion. The important factor in BCI is the selection of time
window and frequency band over optimal subset of elec-
trodes. In this study instead of manually selection of fixed
time-frequency intervals over small number of electrodes,
say 2 when only C3 and Cy4 are considered, PARAFAC au-
tomatically extracts the time-space-frequency characteristics
of EEG signal during MI. To setup a 3-way array, in the

present study, Wavelet Transform (WT) is utilised to provide
a time-varying representation of the energy of the signal in
u band over the 15 aforementioned electrodes. The complex
Morlet wavelets w(t, fo),

)
w(t, fo) :Aexp(r.t_z)exp(Zinfot) 2)

t

with 6; = 1/270;, and A = (0;/7) /2, is used here in
which the trade-off ratio (fo/0y) is 7 to create a wavelet fam-
ily. The time-varying energy E (¢, fp) of a signal at a specific
frequency band is the squared norm of the convolution of a
complex wavelet of the signal EEG™P (1)

XI¥IxK _ E(t, fo) = |w(t, fo) *EEGMP(;)|2 3)

where EEG™P(t) are the Laplacian-filtered multi channel
EEG signals. X/*/*K ig a 3-way matrix indexed by I chan-
nels, and J X K of the estimated energy. The time window
from 2.75 to 5.75s and the frequency band from 8 to 13Hz
are chosen. PARAFAC extracts the underlying factors.

3. PARALLEL FACTOR ANALYSIS

Traditionally, the decomposition of EEG into its constituent
components has been based on independent component anal-
ysis (ICA) methods. It is not rational to presume that all
of the brain sources are mutually independent. Supposing
the motion related potentials are synchronous, highly local-
ized, and independent from the background neuronal activi-
ties, this assumption led us to exploit PARAFAC. The note-
worthy distinction of PARAFAC is that the decomposition
of multi-way data with PARAFAC is unique without further
orthogonality or independence constraints [12].

Multi-channel EEG data are altered into time-frequency
domain by CWT. The increase of dimensionality gives the
2-way array i.e. the matrix of space-time, an extra modal-
ity yielding a 3-way array of space-time-frequency. ICA can
merely analyse such data by unfolding some modalities into
others, reducing the multi-way array into matrices. The un-
folding process makes the interpretation of the results doubt-
ful since it removes some specific information endorsed by
those modalities. Consequently, rather than unfolding these
multi-way arrays into matrices, the data is analysed using the
multi-way PARAFAC model. In matrix notation, the factor
analysis method is expressed as

X! = AIXFGIxFT | gIxJ 4)

where A are the factor loadings, S the factor scores, E the
estimation errors, and F' is the number of factors. Here, T
denotes the transpose ogeration. Similarly, the PARAFAC
of the 3-way array X*/*K is articulated by unfolding one
modality to another as

X1><.IK _ AIXF(SKXF| ® |DJ><F)T +E1><JK (5)

where D are the factor scores corresponding to the second
modality and S|® |D = [s; ®d;,s; ®dy, -, sp @df] is the
Khatri Rao product. Equivalently, the j matrix correspond-
ing to the j'" slice of the second modality of the 3-way array
can be expressed as

Xl><j><K:AIXFDijSKxFT_i_Elxij (6)
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Figure 2: Sample STF decomposition of the 15 channel EEG
signal recorded during LEFT index imagination. The factor
demonstrated with solid line shows clear ERD in the con-
tralateral hemisphere. (a) Spectral contents of the two iden-
tified factors, (b) Temporal profile of the identified factors,
the onset of preparation and execution cues are in blue and
red, respectively, (c) and (d) Topographic mapping for the
two factors.

where D; is a diagonal matrix having the 7" row of D

along the diagonal. The main advantage of PARAFAC
over ICA is that uniqueness is ensured under mild condi-
tions, making it unnecessary to impose constraints such as
statistical independence. Alternating Least Squares (ALS) is
the most common way to estimate the PARAFAC model. In
ALS, in order to decompose the tensor to parallel factors a
cost function (normally the squared error) is minimised as

[A.8,D] =arg min |X"/K—A(S[@[D)"* (7

which corresponds to optimising the maximum likelihood of
a Gaussian noise model. This is done by alternating be-
tween re-estimating each parameter given the estimation of
the other parameters. The algorithm can be initialised in sev-
eral ways, i.e. by randomly defining all parameters and stop-
ping when all parameters have converged [12].

4. CLASSIFICATION

We use the SVM [7] to classify the spatial signatures of the
selected atoms. The goal of an SVM is to find an optimal sep-
arating hyperplane (OSH) for a given feature set. The OSH
is found by solving the following constrained optimisation
problem,

(31l +C Xy %)
st. gi(z-gi—b)+y%>0 i=1,2, -, 1. (8

MmNz py_; 5 ..

where [ is the number of training vectors, and ¢; € {1,—1}
are the output targets, ||z||*> = z” z is the squared Euclidean
norm, and () is the dot product. The parameter z determines

the orientation of the separating hyperplane, ¥; is the i'" posi-
tive slack parameter, and g; is a vector containing the features
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Figure 3: Sample STF decomposition of the 15 channel EEG
signal recorded during RIGHT index imagination. The fac-
tor demonstrated with dotted line shows clear ERD in the
contralateral hemisphere. (a) Spectral contents of the two
identified factors, (b) Temporal profile of the identified fac-
tors, the onset of preparation and execution cues are in blue
and red, respectively, (c) and (d) Topographic mapping for
the two factors.

g = [f1(i)f2(i)--- f15(i)]”. The non-negative parameter C is
the (misclassification) penalty term and can be considered as
the regularisation parameter and is selected by the user. A
larger C is equivalent to assigning a higher penalty to the
training errors. The optimum value for C is found such that
it minimises the cross validation error while yielding proper
generalisation performance. Support vectors (SVs) are the
points from the data set that fall closest to the separating hy-
perplane. Any vector that corresponds to a nonzero is an SV
of the optimal hyperplane. It is desirable to have the number
of SVs small to have a more compact and parsimonious clas-
sifier. The OSH (generally nonlinear) is then computed as a
decision surface of the form

LS
f(g) =sen() qiiK(g!,g)+b) )

i=1

where sgn(-) € {£1}, g} are SVs, K(g!,g) is the nonlinear
kernel function (if K(g!,g) = g} - g the SVM is linear), and
Ly is the number of support vectors. A Kernel for a nonlin-
ear SVM projects the samples to a feature space of higher
dimension via a nonlinear mapping function. Among non-
linear kernels, the radial- based function (RBF) defined as
K(g!,g) = exp(—|g — gi|>/2p), where p the adjustable pa-
rameter governs the variance of the function, is widely used
due to quasi-Gaussian distribution for data sets with a large
number of samples. In the following we describe the results
of the new PARAFAC-SVM scheme, where the PARAFAC
decomposes the EEGs and SVM classifies the extracted fea-
tures.

5. RESULTS

Two sample results for right and left index imagination are
shown in Fig. 2 and Fig. 3, respectively. Fig. 2-(a) shows the
spectral content of the two factors identified by PARAFAC
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in the pu band. Fig. 2-(b) is of great interests where two
temporal profiles are illustrated. Note that the blue and red
vertical lines indicate onset of “L/R” and “X” cues for prepa-
ration and execution, respectively. Fig. 2-(b) shows that even
before “X” which occurs at time point “3.75 s,” the subject
has started imagination. The dotted curves of Fig. 2-(a, b)
correspond to Fig. 2-(c), where obviously occurs under C3.
Note that red and blue areas indicate the level of activity of
the channels normalised between zero and one (left ear is
left, and the nose is up). Eventually, this outcome comes
along with previous researches where it is elaborated that an
ERD can be recorded on the contralateral hemisphere in
band [1]. The ERD must not necessarily be followed by an
ERS, as the complete ERD/ERS is merely visible in an av-
erage over a large number of EEG trials [1]. The other fac-
tor, demonstrated by solid line, occurs simultaneously within
brain but mostly in ipsilateral hemisphere. This factor shows
that EEG signals of u band have greater amplitude there.

Similarly, following the spectral signatures of the two
factors of Fig. 3-(a), in Fig. 3-(b), the two profiles are shown.
In Fig. 3, following the same logic as for Fig. 2, of the fac-
tors, demonstrated by solid line, indicates a clear ERD in
the contralateral hemisphere under C4 and the other factor,
illustrated by dotted line, corresponds to the brain activities
mostly in central and ipsilateral areas.

The hybrid PARAFAC-SVM approach after training with
90 trials; 45 for left and 45 for right index imagery move-
ment, was tested using another 90 trials. In order to test the
overall classification rate, classification were performed for
a number of iterations. Two different kernels namely, Lin-
ear and Gaussian RBF, were examined for the SVM. For this
dataset the value chosen for the parameter C was empirically
found to be 79 and for the case of linear kernel the average
number of SVs was found 63% of the training trials and the
best achieved classification rate was 68.33%. For the RBF
kernel the parameter p was set to 1 and C to 10. The opti-
mal values for C and p have found using grid search. The
average number of support vectors calculated when using
the RBF kernel was 57% of the training trials and the best
achieved classification rate was 76.22%. High dimensional
feature space causes the considerable number of support vec-
tors. Using transforms such as principle component analysis,
sufficient number of features can be selected while retaining
the discriminatory inormation. Using the above kernels any
overfitting can be easily avoided. From Fig. 4, it can be ver-
ified that the multidimensional feature space is nonseparable
due to the overlapping regions.

6. CONCLUSION

We have presented a robust method for distinguishing be-
tween left and right index imagery movements from scalp
EEGs using the resulting features of PARAFAC. The poten-
tial of PARAFAC to jointly Space-Time-Frequency decom-
pose the time-varying spectrum of multichannel EEG, en-
ables spatially localization of the ERD factor in contralateral
hemisphere clearly in parallel with time and frequency. The
classification is done by using the SVM. The experiments
herein demonstrate the potential of proposed PARAFAC-
SVM method to classify single trials EEG signals. Higher
classification rates are achieved when the RBF kernel is used
in SVM.
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Figure 4: Histogram plot showing the output of the classifier
pre sgn(+), using the linear kernel.
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