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ABSTRACT

We present universal bit-error rate (BER) performance
ordering for different receive antenna sizes in Multiple-
Input Multiple-Output (MIMO) wireless systems with linear
equalizations, which hold for all SNR. We show that when
the number of transmit antennas is fixed, BER of each sym-
bol degrades with a decrease in the number of receive anten-
nas even if the received SNR is kept constant. This is due to
the convexity property of the BER functions. Then for any
i.i.d. channels, we show that the BER averaged over random
channels also degrades with a decrease in the number of re-
ceive antennas. These highlight the advantage and the limit
of MIMO with linear equalizations.

1. INTRODUCTION

Multiple-Input Multiple-Output (or the so-called MIMO)
system, which employs multiple antennas at both ends of
the receiver and transmitter terminals, has been the subject
of intensive research efforts in the past decade with poten-
tial application in future high speed wireless communications
network. This is motivated by the benefits of 1) diversity
gain, which can be achieved by averaging over multiple path
gains to combat fading, to improve bit-error rate (BER); 2)
the fading-induced spatial multiplexing gain, which makes
use of the degrees of freedom in communication system by
transmitting independent symbol streams in parallel through
spatial channels, to improve capacity and/or BER (see e.g.,
[1, 2, 3, 4, 5] and references therein).

It has been shown that the diversity order of MIMO trans-
missions withNt transmit andNr receive antennas over i.i.d.
Rayleigh channels isNr−Nt +1 at full multiplexing [6]. The
diversity order is usually measured by the slope of the BER
curve at high SNR. From this we can infer that the diver-
sity order is improved by increasing the numberNr of re-
ceive antennas, whereas the diversity order is degraded by
increasing the numberNt of transmit antennas (which also
contributes to multiplexing gain). In [1], gains induced by
different schemes of MIMO systems were analytically and
numerically compared. For a fix number of receive anten-
nas, numerical simulations show a loss in signal-to-noise
ratio (SNR) with an increase in the number of transmit an-
tennas but no analytical explanation for this phenomenon is
given. On the other hand, the exact expressions for the sym-
bol error-rate (SER) of MIMO with minimum mean squared
error (MMSE) equalization is rigorously derived in [7], while
an approximate BER expression of MIMO with zero-forcing
(ZF) equalization is derived in [8]. However, these analy-
sis are heavily dependent on the specific channel pdf. They

require integration over a given channel probability density
function (pdf), without which no conclusion can be made.

Indepth theoretical study of MIMO systems which in-
cludes Vertical Bell Laboratories Layered Space-Time (V-
BLAST), has also been reported in [9] which focuses on
the tradeoff between the multiplexing gain and diversity
gain based on an approximate outage probability expression
that is satisfied only asymptotically at high SNR. Diversity-
multiplexing tradeoff with regard to group detection for
MIMO at high SNR has been done in [10]. The insights
glimpsed from these analysis are important and beneficial.
However, the common shortcoming of these works is that
they are approximations or bounds in the high/low SNR
regimes which may be obsolete at practical range of SNR.
We also bring attention to the fact that diversity gain at
high SNR does not necessarily mean BER or diversity gain
at a particular value of SNR. Furthermore, diversity gain
achieved for Rayleigh channels may not be achieved for other
types of channels.

In this paper, we develop a novel approach to analyze the
error-rate performance in MIMO system with linear equal-
izations that is not limited to the SNR extremes but apply
for all range of SNR. In particular, we focus on the impact
of receive antenna size on the BER performance. As sug-
gested from the diversity order at high SNR, increasing the
number of receive antennas should enhance the BER perfor-
mance since the receive SNR increases, while decreasing the
number of transmit antennas should do the same, because
the symbols transmitted from other antennas can be regarded
as interferences. However, it is not obvious that these still
hold after linear equalization which stimulates the need for
our theoretical analysis. Especially for the former case, un-
der the condition that the receive SNR is kept constant, i.e.,
without power gain/loss due to the increase/decrease of the
number of receive antennas, it will be interesting to analyze
how the BER will be affected by the change in the number
of receive antennas. We explicitly show that when the num-
ber of transmit antennas is fixed, the BER degrades with a
decrease in the number of receive antennas, even if the re-
ceived SNR is fixed. This receive diversity loss or BER loss
is due to the inherent convexity property of BER functions.

Albeit we do not evaluate how much gains there actually
are, which require the knowledge of the channel coefficients
or the associated channel pdf, our results are universal in the
sense that performance ordering with the number of receive
antennas holds true at all SNR irrespective of channel pdf.
Simulations to corroborate our theoretical analysis are pre-
sented.
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2. PRELIMINARIES AND SYSTEM MODEL

We consider a MIMO transmission withNt transmit andNr
receive antennas (Nr ≥ Nt) over flat-fading channels. Let us
defineρ/Nt as the transmit power at each transmit antenna
for the Nr ×Nt MIMO system. Denote the path gain from
transmit antennan (n ∈ [1,Nt ]) to receive antennam (m∈
[1,Nr ]) ashmn. The path gains are assumed to be perfectly
known at the receiver but unknown at the transmitter. At
the receiver, theNr received samples,x = [x1 . . . xNr ]

T ,
is expressed as

x =
√

ρ
Nt

Hs+w, (1)

where theNt ×1 combined data vectors having i.i.d. entries
with unit variance, theNr ×1 vectorw of zero mean circular
complex additive white Gaussian noise (AWGN) entries with
unit variance and theNr ×Nt channel matrixH are respec-
tively given by

s = [s1 . . . sNt ]
T

,w = [w1 . . . wNr ]
T

,

H =




h11 . . . h1Nt
...

.. .
...

hNr 1 . . . hNr Nt


 =




h1
...

hNr


 =

[
h̃1 · · · h̃Nt

]
,

such that themth row (which corresponds to themth receive
antenna) of the channel matrixH is hm for m∈ [1,Nr ], and
the nth column (which corresponds to thenth transmit an-
tenna) of the channel matrixH is h̃n for n∈ [1,Nt ].

The signal-to-noise ratio (SNR) at receive antennam is
found to beρ ||hm||2/Nt , where|| · || is the 2-norm of a vector,
while the overall receive power of the symbol transmitted
from antennan, i.e., the sum of power for symbolsn at all
receive antennas, isρ ||h̃n||2/Nt .

Mathematical capacity analysis reveals that the channel
capacity scales with the minimum of the number of transmit
antennas and the number of receive antennas [3], while the
analysis of the diversity gain, which is fully achieved by non-
linear Maximum Likelihood (ML) equalization, shows that
there is a tradeoff between the number of transmit antennas
and diversity advantage [9]. In this paper, we consider more
practical linear equalizations and analyze their performance
with respect to antenna size.

Let us review linear equalizations for MIMO systems.
The output of a zero-forcing (ZF) equalizer is obtained by

multiplying G =
√

Nt
ρ (HHH)−1HH to x, which gives us

ŝ = s+Gw, where(·)H stands for complex conjugate trans-
position. To enable ZF equalization, we require that the chan-
nel matrix is tall and has column full rank.

The covariance ofGw is given by( ρ
Nt

HHH)−1. Let us
define

RNr ,Nt = HHH =
Nr

∑
m=1

hH
mhm, (2)

and denote thenth diagonal entry ofR−1
Nr ,Nt

asλNr ,Nt ,n. Then,
it follows from ŝ = s+Gw that the (post-processing) receive
SNR of symbolsn after ZF equalization is expressed as

SNRNr ,Nt ,n =
ρ
Nt

1
λNr ,Nt ,n

, for n∈ [1,Nt ]. (3)

On the other hand, the MMSE equalizer is given byG =√
ρ
Nt

HH( ρ
Nt

HHH + I)−1. The equalized output is thus ex-

pressed aŝs = Gx. We define thenth entry of the equalized
output asŝn = pnsn +vn, wherevn is the effective noise con-
taminating thenth symbol. Then, we can show that the co-
variance of the effective noise meetsE{|vn|2}= pn(1− pn).
The received signal-to-interference noise ratio (SINR) of
symboln after MMSE equalization is then expressed as

SINRNr ,Nt ,n =
ρ
Nt

1
ξn
−1, (4)

whereξn is thenth diagonal entry of[HHH+ Nt
ρ I]−1.

We remark that SNRs or SINRs are fundamental param-
eters of system performances. If a symbol-by-symbol detec-
tion is employed, the BER or symbol-error rate (SER) func-
tion can usually be described by SNR or SINR. Suppose that
we draw symbols from a fixed digital modulation with finite
constellation. For the constellation, let us denotef (·) as a
function in SNR or SINR to describe the bit-error probabil-
ity of the transmitted symbols. It is obvious thatf (·) is a
decreasing function in SNR or SINR. Take for example, the
symbol-by-symbol hard detection of QPSK constellation and
ZF equalization. Then, the BER of symboln for Nr ×Nt sys-
tem is expressed as

BERNr ,Nt ,n = f (SNRNr ,Nt ,n) = Q(
√

SNRNr ,Nt ,n), (5)

where Q(x) denotes the Gaussian-Q functionQ(x) ≡
(1/
√

2π)
∫ ∞

x e−t2/2dt.
In the sequel, we focus our attention on ZF equalization.

The same results as SNR of ZF equalization can be devel-
oped for SINR of MMSE equalization. However, since the
effective noises of MMSE equalization are in general non-
Gaussian and depend on the channel structure, e.g., the num-
ber of transmit and receive antennas, we cannot describe the
BER function of MMSE equalized symbols by one function.
If BER of any antenna size can be approximated as one func-
tion of SINR, then the discussion on BER in the rest of the
paper will also hold for BER with MMSE equalization.

3. DECREASING THE NUMBER OF RECEIVE
ANTENNAS

Now, let us study the BER performance of MIMO system
when we decrease the number of receive antennas, while
fixing the number of transmit antennas. As the number of
receive antennas decreases, the overall receive power of a
transmitted symbol decreases. Thus, it may be obvious that
the BER performance degrades due to the power loss. How-
ever, under the condition that the overall receive power of
each symbol is kept constant even if the number of receive
antennas decreases, it is not clear if the same conclusion can
also be made. We investigate how the BER performance is
affected by the number of receive antennas when the overall
receive power of each symbol is fixed.

Let us assume thatNr − 1≥ Nt . We fix the number of
transmit antennas atNt and decrease the numberNr of re-
ceive antennas by one. When receive antennaµ is removed
from theNr×Nt system, the corresponding channel matrix is
denoted asH(µ), which is assumed to have column full rank.
The (Nr − 1)×Nt channel matrixH(µ) yields theNt ×Nt
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matrixR(µ)
Nr−1,Nt

, corresponding to (2), expressed as

R(µ)
Nr−1,Nt

= H(µ)HH(µ) =
Nr

∑
m=1,m6=µ

hH
mhm. (6)

It is easy to see that the matricesRNr ,Nt andR(µ)
Nr−1,Nt

are re-

lated as∑Nr
µ=1R(µ)

Nr−1,Nt
= (Nr −1)RNr ,Nt . Then, we can ex-

press SNRNr ,Nt ,n in (3) as

SNRNr ,Nt ,n =
ρ
Nt

1

(Nr −1)[(∑Nr
µ=1R(µ)

Nr−1,Nt
)−1]n,n

, (7)

where[ · ]m,n denotes the(m,n)th entry of a matrix.
To compare theNr ×Nt system with the(Nr − 1)×Nt

system, it is reasonable to uniformly remove one antenna
amongNr antennas, i.e., the selection of any one receive an-
tenna has the same probability1/Nr . If receive antennaµ
is removed from theNr ×Nt system, then the overall receive
power of symbolsn reduces toρ ∑Nr

m=1,m6=µ |hmn|2/Nt . Thus,
for (Nr−1)×Nt system, the average overall receive power of
symbolsn with respect to random receive antenna dropping
is given by

1
Nr

Nr

∑
µ=1

(
Nr

∑
m=1,m6=µ

ρ
|hmn|2

Nt

)
=

(
Nr −1

Nr

)
ρ
||h̃n||2

Nt
. (8)

To ensure that the average overall receive power of each sym-
bol remains constant even when the number of receive an-
tennas reduce by one, we increase the transmit power of the
(Nr −1)×Nt system by a factor of Nr

Nr−1, i.e., we replaceρ
in (8) by Nr

Nr−1ρ . Then, for this(Nr −1)×Nt system, the re-

ceive SNR at receive antennam increases to Nr
Nr−1

ρ||hm||2
Nt

and
hence the average overall receive power of the(Nr −1)×Nt
system is equal to the overall receive power of theNr ×Nt
system.

Let us define the symbol SNR for symbolsn after
ZF equalization when receive antennaµ is removed as

SNR(µ)
Nr−1,Nt ,n

for n ∈ [1,Nt ]. Then, similar to (3), the sym-
bol SNR for symbolsn of the(Nr −1)×Nt system becomes

SNR(µ)
Nr−1,Nt ,n

=
Nr

Nr −1
ρ
Nt

1

[(R(µ)
Nr−1,Nt

)−1]n,n

. (9)

To compare the(Nr − 1)×Nt system with the original
Nr ×Nt system, we utilize the following lemma: (See [11]
for a proof)

Lemma 3.1 For a given channel matrix, ifH(µ) has column
full rank for µ ∈ [1,Nr ], then for n∈ [1,Nt ],

1

[(∑Nr
µ=1R(µ)

Nr−1,Nt
)−1]n,n

≥
Nr

∑
µ=1

1

[(R(µ)
Nr−1,Nt

)−1]n,n

. (10)

From (7) and Lemma 3.1, we obtain

SNRNr ,Nt ,n ≥
Nr

∑
µ=1

ρ
(Nr −1)Nt

1

[(R(µ)
Nr−1,Nt

)−1]n,n

=
1
Nr

Nr

∑
µ=1

SNR(µ)
Nr−1,Nt ,n

, (11)

where 1
Nr

∑Nr
µ=1SNR(µ)

Nr−1,Nt ,n
denotes the average symbol

SNR of symbolsn when one receive antenna is randomly
dropped. This shows that the average SNR of symbolsn de-
grades when we randomly remove one receive antenna even
if the average overall receive symbol power remains con-
stant.

Similar to (5), we denote the BER of symbolsn for
(Nr − 1)×Nt system when receive antennaµ is removed

as BER(µ)
Nr−1,Nt ,n

= f (SNR(µ)
Nr−1,Nt ,n

). Then, its BER averaged
with respect to random receive antenna dropping is simply

BER′Nr−1,Nt ,n =
1
Nr

Nr

∑
µ=1

BER(µ)
Nr−1,Nt ,n

. (12)

Although from (11), SNRNr ,Nt ,n≥ 1
Nr

∑Nr
µ=1SNR(µ)

Nr−1,Nt ,n
, this

does not necessarily imply that BERNr ,Nt ,n is lower than
BER′Nr−1,Nt ,n. To show this, we require that

Assumption 3.1 f (·) is a convex function in SNR.

This is quite a reasonable assumption. For example, the
Gaussian-Q functionQ(

√
x) is convex inx≥ 0. The BER

functions of most digital modulations are expressed (at least
approximately) as a Gaussian-Q function or a linear combi-
nation of Gaussian-Q functions. For such a digital modula-
tion, the BER function is invariably convex in all SNR.

Coupled with Assumption 3.1, sincef (·) is a decreasing
function in SNR, we have

f (SNRNr ,Nt ,n) ≤ f

(
1
Nr

Nr

∑
µ=1

SNR(µ)
Nr−1,Nt ,n

)

≤ 1
Nr

Nr

∑
µ=1

f (SNR(µ)
Nr−1,Nt ,n

), (13)

for n ∈ [1,Nt ]. This reveals that removing one receive an-
tenna randomly degrades the average BER of each symbol
even if we increase the transmit power to keep the average
overall receive symbol power equal to the overall receive
symbol power of the originalNr ×Nt system. We summa-
rize this result in the following theorem:

Theorem 3.1 Suppose ZF equalization in anNr ×Nt MIMO
transmission over a fixed static channel. We randomly re-
move one receive antenna but increase the transmit power by
a factor ofNr/(Nr −1), If the channel matrices are column
full rank, then for all SNR, we have

BERNr ,Nt ,n ≤ BER′Nr−1,Nt ,n, (14)

provided thatNr −1≥ Nt .

Theorem 3.1 clearly states the BER gain of a symbol in
MIMO transmission over afixed staticchannel from the re-
ceive diversity acquired by simply increasing the number of
receive antennas. Remember that the effect of power loss
is eliminated. It has already been shown that at high SNR,
the diversity order ofNr ×Nt systems over i.i.d. Rayleigh
distributed channels isNr −Nt + 1 [6] at full multiplexing,
which implies that BER gain resulted from the receive diver-
sity is obtained by increasingNr . Unlike [6], we embraced
a more pragmatic approach where no approximation is made
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and no fading is assumed. Theorem 3.1 can be applied to
all digital modulations satisfying Assumption 3.1, regard-
less of the underlying channel pdf. Importantly, it states a
universal and deterministic characteristics of the BER per-
formance of MIMO systems that is contributed in large part
by theconvexityproperty of the BER function. For a given
channel environment and at all SNR, if a receive antenna is
randomly dropped, the average BER performance deterio-
rates. To know how much the exact deterioration is, one has
to evaluate using the channel coefficients. Indeed, the aver-
age symbol BER depends on the number of receive antennas
and a fortiori deteriorates as the number of receive anten-
nas is lessened. This highlights the advantage/disadvantage
of MIMO system upon increasing/decreasing the number of
receive antennas.

So far, we have not specified any channel pdf. To gain
more insights, let us denote the channel pdf of channelH as
P(H) and ofH(µ) asP(H(µ)). To see the BER of symbolsn
averaged over random channels, we consider the following
channel characteristics:

Assumption 3.2

P(H(1)) = P(H(2)) = · · ·= P(H(Nr )). (15)

This implies that when any one row is removed from the
Nr ×Nt channel matrix, the resultant(Nr − 1)×Nt channel
matrix has the same pdf. Clearly, if the entries ofH are i.i.d.,
then (15) holds true. However, it should be remarked that a
more general class of channels which includes for example,
non i.i.d. channels having correlation between channel gains,
also meets (15).

Under Assumption 3.2, we have forµ ∈ [1,Nr ],
∫

BER(µ)
Nr−1,Nt ,n

P(H(µ))dH(µ) ≡ BERNr−1,Nt ,n, (16)

whereBERNr−1,Nt ,n is the BER of symbolsn averaged over
random(Nr − 1)×Nt channels. Utilizing (14) of Theorem
3.1, straightforward manipulation yields

∫
BERNr ,Nt ,nP(H)dH≤

∫
BER′Nr−1,Nt ,nP(H)dH. (17)

It follows from (12) and (16) that the R.H.S of (17) is equiv-
alent toBERNr−1,Nt ,n.

On the other hand, if we denote the BER of symbolsn
of Nr ×Nt system averaged over randomNr ×Nt channels as
BERNr ,Nt ,n, then

∫
BERNr ,Nt ,nP(H)dH = BERNr ,Nt ,n. Since

the equality in (10) holds only for some special channels, we
can conclude that:

Theorem 3.2 Suppose anNr ×Nt MIMO transmission with
ZF equalization. Then, for a fix number of transmit antennas,
the BER of symbolsn averaged over random channels is a
decreasing function in the number of receive antennas for all
SNR such that

BERNr ,Nt ,n < BERNr−1,Nt ,n, (18)

providedNr −1≥ Nt .

In addition to degrading the BER of each symbol aver-
aged over random receive antenna dropping (as proven in

Theorem 3.1), Theorem 3.2 states that decreasing the num-
ber of receive antennas also degrades the BER performance
averaged over random channels (or equivalently, increasing
the number of receive antennas improves the average BER
performance). The BER gain attributed to an increase in the
number of receive antennas comes from the convexity of the
BER function irrespective of channel pdf and SNR. The im-
plication is that receive diversity gain is always available for
any channel pdf and at any value of SNR. To further empha-
size the importance of the convexity property, let us suppose
that the BER function is concave (which is of course impos-
sible in practice). Then, all the inequality signs in the equa-
tions are reversed. In this case, all the results derived so far
will also be reversed, and we getBERNr ,Nt ,n > BERNr−1,Nt ,n.,
i.e., BER gain will only be achieved with a decrease in the
number of receive antennas.

4. NUMERICAL SIMULATIONS

To validate our theoretical findings, we test the MIMO sys-
tem with ZF equalization for different receive antenna sizes.
The results for MMSE equalization are also presented. The
information symbols are drawn from a QPSK constellation.
The average overall receive power of each symbol is kept
the same as in our theoretical analysis. In our simulations,
we utilize the average BER in one transmitted block, i.e., the
BER averaged over theNt symbols, as the comparison pa-
rameter. To differentiate this with the BER of each symbol,
we call thisblock BER. The block BER ofNr ×Nt MIMO
system is

BERNr ,Nt =
1
Nt

Nt

∑
n=1

f (SNRNr ,Nt ,n), (19)

while the block BER ofNr × (Nt−1) system without receive
antennaµ is

BER(µ)
Nr−1,Nt

=
1
Nt

Nt

∑
n=1

BER(µ)
Nr−1,Nt ,n

. (20)

We plot the block BER with respect toEb/N0 where at each
Eb/N0, the average receive power of each symbol is kept con-
stant regardless of the antenna configuration.

In this simulation, we send the transmitted symbols over
a fix channel. Fig. 1 illustrates the result for a fixNt = 2
andNr varying from4 to 2 for ZF equalization and MMSE
equalization, respectively for the fix channel. We observe
that the block BER averaged with respect to random receive
antenna dropping degrades with a decrease inNr . This result
holds not just for this fix channel but for any other channels
we tested, which confirms Theorem 3.1.

In our subsequent simulations, we average the results
over105 Rayleigh channels that compose of zero mean Gaus-
sian taps with unit variance, and over105 Rice channels with
Rice factor2. Fig. 2 and Fig. 3 depict the results for a fix
Nt = 2 andNr varying from4 to 2 for linear equalizations for
Rayleigh channels and for Rice channels, respectively. From
both figures, the block BER averaged over random channels
degrades with a decrease inNr . This is a direct corollary of
Theorem 3.2 since it holds for all symbols and for any chan-
nel under Assumption 3.2 at all range of SNR.
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Figure 1: BER with respect to random receive antenna drop-
ping for a fixNt = 2 and varyingNr over a fix channel.

5. CONCLUSIONS

We have demonstrated theoretically that for linear equaliza-
tion, under the condition of a fix overall received power and
a fix number of transmit antennas, the symbol BER averaged
over random receive antenna dropping and the symbol BER
averaged over random channels degrade with a decrease in
the number of receive antennas. The same can also be said
of the block BER. This is a direct consequence of the con-
vexity of the BER function of each symbol. The above an-
alytical results are universal that hold true for all SNR and
for any i.i.d. channels. All these are supported by numerical
simulations.
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Figure 3: BER for a fixNt = 2 and varyingNr over Rice
channels.
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