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ABSTRACT

The paper provides an analysis of the transient and the
steady-state behavior of a filtered-x partial error affine pro-
jection algorithm suitable for multichannel active noise con-
trol. The analysis relies on energy conservation arguments,
it does not apply the independence theory nor does it impose
any restriction to the signal distributions. The paper shows
that the partial error filtered-x affine projection algorithm in
presence of stationary input signals converges to a cyclosta-
tionary process, i.e., the mean value of the coefficient vector,
the mean-square-error and the mean-square-deviation tend
to periodic functions of the sample time.

1. INTRODUCTION

Active noise controllers are based on the destructive interfer-
ence in given locations of the noise produced by some pri-
mary sources and the interfering signals generated by some
secondary sources driven by an adaptive controller [1]. In
the multichannel approach, in order to spatially extend the
silenced region multiple reference sensors, actuators and er-
ror sensors are used. Due to the multiplicity of the signals
involved, to the strong correlations between them and to the
long impulse response of the acoustic paths, multichannel
active noise controllers suffer the complexity of the coeffi-
cient updates, the data storage requirements, and the slow
convergence of the adaptive algorithms [2]. To improve the
convergence speed, different filtered-x affine projection (FX-
AP) algorithms have been used [3], [4] in place of the usual
filtered-x LMS algorithms, but at the expense of a further,
even though limited, increment of the complexity of updates.
Various techniques have been proposed in the literature to
reduce the implementation complexity of adaptive FIR fil-
ters having long impulse responses. Interpolated FIR filters
[5], selected partial updates [6], [7] and set-membership fil-
ters [8] have attracted the interest of researchers. Among
the partial update strategies, a simple yet effective approach
is provided by the Partial Error (PE) technique, which has
been first applied in [6] for reducing the complexity of linear
multichannel controllers equipped with the filtered-x LMS
algorithm. The PE technique consists in using sequentially at
each iteration only one of the K error sensor signals in place
of their combination and it is capable to reduce the adapta-
tion complexity with a factor K. In [9], the PE technique
was applied, together with other methods, for reducing the
computational load of multichannel active noise controllers
equipped with filtered-x affine projection algorithms. When
dealing with novel adaptive filters, it is important to assess
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their performance not only through extensive simulations but
also with theoretical analysis results. In the literature, very
few results deal with the analysis of filtered-x, affine projec-
tion or partial-update algorithms. The convergence analysis
results for these algorithms are often based on the indepen-
dence theory (IT) and they constrain the probability distribu-
tion of the input signal to be Gaussian or spherically invari-
ant [10]. The IT hypothesis assumes statistical independence
of time-lagged input data vectors. As it is too strong for
filtered-x [11] and AP algorithms [12], different approaches
have been studied in the literature in order to overcome this
hypothesis. In [11], an analysis of the mean weight behav-
ior of the filtered-x LMS algorithm, based only on neglecting
the correlation between coefficient and signal vectors, is pre-
sented. Moreover, the analysis of [11] does not impose any
restriction on the signal distributions. Another analysis ap-
proach that avoids IT is applied in [12] for the mean-square
performance analysis of AP algorithms. This relies on en-
ergy conservation arguments, and no restriction is imposed
on the signal distributions. In [4], we applied and adapted the
approach of [12] for analyzing the convergence behavior of
multichannel FX-AP algorithms. In this paper, we extend the
analysis approach of [4] and study the transient and steady-
state behavior of a filtered-x partial error affine projection
(FX-PE-AP) algorithm. The paper shows that the FX-PE-AP
algorithm in presence of stationary input signals converges to
a cyclostationary process, i.e., that the mean value of the co-
efficient vector, the mean-square-error and the mean-square-
deviation tend to periodic functions of the sample time. In
the experimental results, we also show the FX-PE-AP algo-
rithm is capable to reduce the adaptation complexity with a
factor K with respect to an approximate FX-AP algorithm in-
troduced in [4], but it also reduces the convergence speed by
the same factor.

The paper is organized as follows. Section 2 reviews
the multichannel feedforward active noise controller struc-
ture and introduces the FX-PE-AP algorithm. Section 3 dis-
cusses the asymptotic solution of the FX-PE-AP algorithm
and compares it with that of FX-AP algorithms and with the
minimum-mean-square solution of the ANC problem. Sec-
tion 4 presents the analysis of the transient and steady-state
behavior of the FX-PE-AP algorithm. Section 5 provides
some experimental results. Conclusions follow in Section 6.

Throughout this paper small boldface letters are used
to denote vectors and bold capital letters are used to de-
note matrices, e.g., x and X, all vectors are column vec-
tors, the boldface symbol I indicates an identity matrix of
appropriate dimensions, the symbol � denotes linear con-
volution, diag{. . .} is a block-diagonal matrix of the entries,
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Figure 1: Delay-compensated filtered-x structure for active
noise control.

E[ · ] denotes mathematical expectation, ‖·‖Σ is the weighted
Euclidean norm, e.g., ‖w‖Σ = wTΣw with Σ a symmetric
positive definite matrix, vec{·} indicates the vector operator
and vec−1{·} the inverse vector operator that returns a square
matrix from an input vector of appropriate dimensions, ⊗
denotes the Kronecker product, a%b is the remainder of the
division of a by b.

2. THE PARTIAL ERROR FILTERED-X AP
ALGORITHM

Fig. 1 shows the block diagram of a multichannel delay-
compensated filtered-x active noise control system. As usual,
the primary and secondary paths, which propagate the pri-
mary and secondary source signals, respectively, are mod-
elled with linear FIR filters. In order to compensate for the
propagation delay introduced by the secondary paths, the
outputs d(n) of the primary paths are estimated by subtract-
ing the outputs of the secondary path models from the error
sensors signals e(n). In this paper we assume perfect mod-
elling of the secondary paths [we consider s̃k, j(z) = sk, j(z)
for any choice of j and k], but this limitation can be easily
removed by following the same methodology of [4].

For simplicity, we assume that any input i of the adaptive
controller is connected to any output j with an FIR filter. It
is worth noting that the theory we present in Sections 3 and 4
can be applied to any linear or nonlinear filter whose output
depends linearly on the filter coefficients [4].

The following notation is used throughout the paper:
I, J, and K are the number of primary source signals, sec-
ondary source signals, and error sensors, respectively,
L is the affine projection order,
sk, j(n) is the impulse response of the secondary path that con-
nects the j th secondary source to the k th error sensor,
w j,i(n) is the coefficient vector of the FIR filter that connects
the input i to the output j of the adaptive controller,
xi(n) is the i th primary source input signal vector,
x(n)=

[
xT

0 (n), . . . ,xT
I−1(n)

]T
,

w j(n)=
[
wT

j,0(n), . . . ,wT
j,I−1(n)]T ,

y j(n)=wT
j (n)x(n) is the j th secondary source signal,

dk(n) is the output of the k th primary path,

w(n)=
[
wT

0 (n), . . . ,wT
J−1(n)]T ,

M is the total number of coefficients of w(n),
uk(n)=

[
sk,0(n)�xT (n), . . . ,sk,J−1(n)�xT (n)]T ,

dk(n)=
[
dk(n), . . . ,dk(n−L+1)

]T
,

Uk(n)=
[
uk(n), . . . ,uk(n−L+1)

]
,

ek(n)=dk(n)+uT
k (n)w(n),

ek(n)=dk(n)+UT
k (n)w(n).

The FX-PE-AP algorithm considered in this paper is
characterized by the adaptation rule of (1),

w(n+1) = w(n)−μUn%K(n)R−1
n%K(n)en%K(n), (1)

where Rk(n) = UT
k (n)Uk(n)+δI.

By manipulating (1), the adaptation rule can also be writ-
ten in the compact form of (2),

w(n+1) = Vn%K(n)w(n)−vn%K(n), (2)

with Vk(n) = I − μUk(n)R−1
k (n)UT

k (n) and vk(n) =
μUk(n)R−1

k (n)dk(n).
By iterating K times equation (2) from n = mK + i till

n = mK + i + K − 1, with m ∈ N and 0 ≤ i < K, we obtain
the expression of (3), which will be used for the algorithm
analysis,

w(mK+i+K)=Mi(mK+i)w(mK+i)−mi(mK+i), (3)

where:
Mi(n)=V(i+K−1)%K(n+K−1)V(i+K−2)%K(n+K−2). . .Vi(n),

mi(n)=V(i+K−1)%K(n+K−1) . . .V(i+1)%K(n+1)vi%K(n)+

V(i+K−1)%K(n+K−1) . . .V(i+2)%K(n+2)v(i+1)%K(n+1)+

. . .+v(i+K−1)%K(n+K−1).

3. THE ASYMPTOTIC SOLUTION

For i ranging from 0 to K − 1, (3) provides a set of K inde-
pendent equations, that can be separately studied. The sys-
tem matrix Mi(n) and excitation matrix mi(n) have differ-
ent statistical properties for different indexes i. For every i
the recursion in (3) converges to a different asymptotic coef-
ficient vector and it provides different values of the steady-
state mean-square-error and the mean-square-deviation. If
the input signals are stationary and if the recursion in (3) is
convergent for every i, it can be shown that the algorithm
converges to a cyclostationary process of periodicity K.

For every index i, the coefficient vector w(mK + i) tends
for m → +∞ to a asymptotic vector w∞,i. As we already
observed for FX-AP algorithms [4], this asymptotic solution
differs from the minimum-mean-square (MMS) solution of
the active noise control problem and it depends on the statis-
tical properties of the input signals. In fact, by taking the ex-
pectation of (3) and considering the fixed-point of this equa-
tion, it can be easily deduced that

w∞,i =(E [Mi(n)]− I)−1 E [mi(n)] . (4)

Since the matrices E [Mi(n)] and [mi(n)] vary with i, so do
the asymptotic coefficient vectors w∞,i. Thus, the vector
w(n) for n → +∞ tends to the periodic sequence formed by
the repetition of the K vectors w∞,i with i = 0,1, . . . ,K − 1.
The asymptotic sequence depends from the step-size μ and
differs from the asymptotic solution of FX-AP algorithms re-
ported in [4].
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4. TRANSIENT ANALYSIS AND STEADY-STATE
ANALYSIS

The aim of the transient and steady-state analysis is to
study the time evolution of the expectation of the weighted
Euclidean norm of the coefficient vector E

[‖w(n)‖2
Σ

]
=

w(n)TΣw(n) for some choices of the symmetric positive
definite matrix Σ [12].

According to equation 3, we can separately analyze the
evolution of E

[‖w(mK + i)‖2
Σ

]
for the different indexes i.

By applying the approach of [12], the following result, which
describes the transient behavior of the FX-PE-AP algorithm
can be proven, as done in [4] for FX-AP algorithms.

Theorem 1 For every i with 0 ≤ i < K and for n = mK + i
with m ∈ N, under the assumption that w(n) is uncorrelated
with Mi(n) and with qΣ,i(n) = MT

i (n)Σmi(n), the tran-
sient behavior of the FX-PE-AP algorithm with updating rule
given by (3) is described by the state recursions

E [w(n+K)] = Mi E [w(n)]−mi, (5)

and
W(n+K) = Gi W(n)+yi(n), (6)

where Mi = E [Mi(n)], mi = E [mi(n)],

Gi =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−p0,i −p1,i −p2,i . . . −pM2−1,i

⎤
⎥⎥⎥⎥⎦ ,

W(n) =

⎡
⎢⎢⎢⎣

E[‖w(n)‖vec−1{σ}
E[‖w(n)‖vec−1{Fiσ}

...
E[‖w(n)‖vec−1{Fi

M2−1σ}

⎤
⎥⎥⎥⎦,

yi(n) =

⎡
⎢⎢⎢⎣

(
gT

i −2E[wT (n)]Qi
)

σ(
gT

i −2E[wT (n)]Qi
)
Fiσ

...(
gT

i −2E[wT (n)]Qi
)
FM2−1

i σ

⎤
⎥⎥⎥⎦,

the M2 ×M2 matrix Fi = E
[
MT

i (n)⊗MT
i (n)

]
,

the M×M2 matrix Qi = E
[
mT

i (n)⊗MT
i (n)

]
,

the M2 ×1 vector gi = vec{E[mi(n)mT
i (n)]}

the p j,i are the coefficients of the characteristic polynomial

of Fi, i.e., pi(x) = xM2
+ pM2−1,ix

M2−1 + . . .+ p1,ix+ p0,i =
det(xI−Fi), and σ = vec{Σ}.

According to Theorem 1, for every index i the transient
behavior of the FX-PE-AP algorithm is described by the cas-
cade of two linear systems, with system matrices Mi and
Fi, respectively. The stability in the mean sense and in the
mean-square sense can be deduced by the stability properties
of these two linear systems. Indeed, the FX-PE-AP algo-
rithm will converge in the mean for any step-size matrix μ
such that, for every i, |λmax (Mi) | < 1. The algorithm will
converge in the mean-square sense if, in addition, for every i
|λmax (Fi) | < 1 .

With the steady-state analysis we are interested in eval-
uating the mean-square-deviation (MSD) and the mean-
square-error (MSE) at steady-state. The adaptation rule of

(3) provides different values of MSE and MSD for the differ-
ent indexes i. Therefore, in what follows we define:

MSDi = lim
m→+∞

E
[‖w(mK + i)−w∞,i‖2]

= lim
m→+∞

E
[
wT (mK + i)w(mK + i)

]−‖w∞,i‖2, (7)

MSEi = lim
m→+∞

E

[
K

∑
k=1

e2
k(mK + i)

]
. (8)

In the hypothesis that, for every n, w(n) is independent from
K

∑
k=1

uk(n)uT
k (n) and from

K

∑
k=1

dk(n)uk(n), the MSE can be ex-

pressed as

MSEi = Sd +2RT
udw∞,i +

lim
m→+∞

E
[
wT (mK + i)Ruuw(mK + i)

]
, (9)

where: Sd = E

[
K

∑
k=1

d2
k (n)

]
, Ruu = E

[
K

∑
k=1

uk(n)uT
k (n)

]
,

and Rud = E

[
K

∑
k=1

uk(n)dk(n)

]
.

The computations in (7) and (9) require the evaluation of
lim

m→+∞
E [‖w(mK + i)‖Σ] , where Σ = I in (7) and Σ = Ruu

in (9). This limit can be estimated with the same methodol-
ogy of [12] and thus the following expressions for the MSDi
and MSEi are obtained

MSDi=
(
gT

i −2wT
∞,iQi

)
(I−Fi)

−1 vec{I}−‖w∞,i‖2, (10)

MSEi=Sd +2RT
udw∞,i +(

gT
i −2wT

∞,iQi
)
(I−Fi)

−1 vec{Ruu}. (11)

5. EXPERIMENTAL RESULTS

In this section, we provide a few experimental results that
compare theoretically predicted values with values obtain
from simulations. We also compare the performance of the
FX-PE-AP algorithm with that of the approximate FX-AP
algorithm with adaptation rule given by (12),

w(n+1) = w(n)−μ
K

∑
k=0

Uk(n)R−1
k (n)ek(n). (12)

whose convergence properties where analyzed in [4]. Indeed,
the FX-PE-AP algorithm in (1) has been obtained by apply-
ing the PE methodology to the FX-AP algorithm in (12).
Compared with (12), the FX-PE-AP adaptation in (1) reduces
the computational load by a factor K.

We considered a multichannel active noise controller
with I = 1, J = 2, K = 2. The transfer functions of the pri-
mary paths are given by

p1,1(z) = 1.0z−2 −0.3z−3 +0.2z−4,

p2,1(z) = 1.0z−2 −0.2z−3 +0.1z−4.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



and the transfer functions of the secondary paths are

s1,1(z) = 2.0z−1 −0.5z−2 +0.1z−3,

s1,2(z) = 2.0z−1 −0.3z−2 −0.1z−3,

s2,1(z) = 1.0z−1 −0.7z−2 −0.2z−3,

s2,2(z) = 1.0z−1 −0.2z−2 +0.2z−3.

The input signal is a zero-mean, unit-variance colored
Gaussian noise with E[x(n)x(n − m)] = 0.9|m| and a zero-
mean, white Gaussian noise is added to dk(n) to get a 40 dB
signal-to-noise ratio. The controller is a two-channel linear
filter with memory length 5, i.e. with M = 10, and the para-
meter δ is set to 0.001.

Table 1 provides with three-digits precision the first five
coefficients of the MMS solution, wo, and the asymptotic
solutions of the FX-PE-AP algorithm at even samples, w∞,0,
and odd samples, w∞,1, and of the approximate FX-AP algo-
rithm, w∞, for μ = 0.5 and for the affine projection orders
L = 1,2, and 3. From Table 1 it is evident that the bias varies
with the affine projection order and that the asymptotic solu-
tions w∞,0, w∞,1, and w∞ are different. However, we must
point out that their differences reduce with the step-size and
for smaller step-sizes they can be difficulty appreciated.

Figure 2 diagrams the steady-state MSE, estimated with
(11) or obtained from simulations with time averages over
half billion samples, versus step-size μ and for AP order
L = 1, 2 and 3. Figures 2-(a) and 2-(b) plot the steady-
state MSE of the FX-PE-AP algorithm for the even and odd
samples, respectively, and Figure 2-(c) plots the steady-state
MSE of the approximate FX-AP algorithm. While for large
values of the step-size the FX-PE-AP algorithm provides
steady-state mean-square-errors higher than those of the FX-
AP, the MSE of the two algorithms tends to the same value
when μ tends to zero. Moreover, from Figure 2 we see that
the expression in (11) provides reasonable estimates of the
steady-state MSE of the adaptive algorithm, with errors that
can be both positive or negative depending on the AP order,
the step-size and the odd or even sample times. The same
observation applies to the expression of the MSD in (10).
For example, Figure 3 diagrams the steady-state MSD of the
FX-PE-AP algorithm, estimated with (10) or obtained from
simulations, versus step-size μ at even samples and for AP
order L = 1, 2 and 3. While an error of one order of magni-
tude is observed for L = 1, the estimation for L = 2 and L = 3
are very accurate.

Eventually, Figure 4 diagrams the learning curves of the
residual error for the FX-PE-AP algorithm and the approxi-
mate FX-AP algorithm with a step-size equal to 0.015. Each
point of Figure 4 represents the ensemble average, estimated
over 100 runs of the algorithm, of the mean value of the resid-
ual error computed on 100 successive samples. In the figure
the asymptotic values (dashed lines) of the residual errors es-
timated with (11) are also shown. As already observed for
the filtered-x PE LMS algorithm [2], from Figure 4 it is ap-
parent that for this step-size the FX-PE-AP algorithm has a
convergence speed that is the half (i.e., 1/K) of the approx-
imate FX-AP algorithm. In fact, the two diagrams can be
overlapped but the time scale of the FX-PE-AP algorithm is
the double of the FX-AP algorithm. We must point out that,
for larger value of the step-size, the reduction of convergence
FX-PE-AP algorithm can be even larger than a factor K.

6. CONCLUSION

In this paper, we have provided an analysis of the transient
and the steady-state behavior of a FX-PE-AP algorithm. We
have shown that the algorithm in presence of stationary input
signals converges to a cyclostationary process, i.e., the mean
value of the coefficient vector, the mean-square-error and the
mean-square-deviation tend to periodic functions of the sam-
ple time. Moreover, we have compared the FX-PE-AP with
the approximate FX-AP algorithm introduced in [4]. Com-
pared with the approximate FX-AP algorithm, the FX-PE-
AP algorithm is capable of reducing the adaptation complex-
ity of a factor K. Nevertheless, also the convergence speed
of the algorithm reduces of the same value.
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Table 1: First five coefficients of the MMS solution (wo) and of the asymptotic solutions of FX-PE-AP (w∞,0, w∞,1) and of
FX-AP algorithm (w∞).

L = 1 L = 2 L = 3
wo w∞,0 w∞,1 w∞ w∞,0 w∞,1 w∞ w∞,0 w∞,1 w∞

0.958 0.951 0.960 0.944 0.876 0.884 0.885 0.876 0.878 0.877
-0.787 -0.789 -0.800 -0.783 -0.716 -0.713 -0.729 -0.752 -0.737 -0.745
0.363 0.344 0.351 0.343 0.300 0.295 0.309 0.332 0.319 0.322

-0.212 -0.181 -0.186 -0.180 -0.148 -0.141 -0.148 -0.158 -0.147 -0.147
0.047 0.040 0.041 0.039 0.036 0.027 0.031 0.036 0.026 0.029
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Figure 2: Theoretical (- -) and simulation values (–) of steady-state MSE versus step-size of the FX-PE-AP algorithm (a) at
even samples and (b) at odd samples, and (c) of the approximate FX-AP algorithm for L = 1,2, and 3.
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Figure 3: Theoretical (- -) and simulation values (–) of steady-state MSD versus step-size of the FX-PE-AP algorithm at even
samples for L = 1,2, and 3.
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Figure 4: Evolution of residual error with (a) FX-PE-AP and (b) FX-AP algorithm for L = 1,2, and 3.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


