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ABSTRACT

In this paper a new method of speech segmentation is sug-
gested. It is based on power fluctuations of the wavelet
spectrum for a speech signal. In most approaches to speech
recognition, the speech signals are segmented using constant-
time segmentation. Constant segmentation needs to use win-
dows to decrease the boundary distortions. A more natural
approach is to segment the speech signals on the basis of
time-frequency analysis. Boundaries are assigned in places
where some energy of a frequency band rapidly changes.
Most methods of non-constant segmentation need training
for particular data or are realized as a part of modelling. In
this paper we apply the discrete wavelet transform (DWT) to
analyse speech signals, the resulting power spectrum and its
derivatives. This information allows us to locate the bound-
aries of phonemes. It is the first stage of speech recognition
process. Additionally we present an evaluation by compar-
ing our method with hand segmentation. The segmentation
method proves effective for finding most phoneme bound-
aries. Results are more useful for speech recognition than
constant segmentation.

1. INTRODUCTION

As information technology has an impact on more and more
aspects of our daily lives, the problem of communication be-
tween human beings and information-processing devices be-
come increasingly important. Up to now such communica-
tion has been run almost entirely by means of keyboards and
screens, but speech is by far the most widely used, natural
and fast means of communication for people. Unfortunately,
machine capabilities for interpreting speech is still poor in
comparison to what a human can achieve.

In the vast majority of approaches to speech recognition,
the speech signals need to be divided into segments before
recognition can take place. The properties of the signal con-
tained in each segment are then assumed to be constant, or in
other words to be characteristic of a single part of speech.

The most often used current method is to use constant-
time framing, for example into 25 ms blocks [12]. This
method benefits from simplicity of implementation and the
ease of comparing blocks of the same length. However, the
different length of phonemes is a natural phenomenon which
cannot be ignored. Moreover, boundary effects provide ad-
ditional distortion (which is typically reduced by applying
the Hamming window). Obviously framing creates more
boundaries than phoneme segmentation. Constant segmen-
tation therefore risks losing information about the phonemes
due to merging different sounds into single blocks, losing

phoneme length information and losing complexity of indi-
vidual phonemes.

A more satisfactory approach is an attempt to find the
phoneme boundaries from the time-varying speech signal
properties. A number of approaches have been previously
suggested for this task [6, 11, 13] but these utilise features
derived from acoustic knowledge of the phonemes. Such
methods need to be optimised to particular phoneme data and
cannot be performed in isolation from phoneme recognition.
Neural networks [9] have also been tested, but they require
time consuming training. Segmentation can be applied by the
segment models (SM) instead of the hidden Markov models
(HMM) [7]. This solution groups frames into sequences of
frames using modelling. Such a solution means segmenta-
tion and recognition are conducted at once and there is a set
of possible observation lengths. In a general SM, duration
distribution gives the segment length likelihood so in fact it
describes the likelihood of a particular segmentation of an
utterance. SM for a given label is also characterised by a
family of output densities. It gives information about obser-
vation sequences of different lengths. These features of SM
solution allow to locate boundaries only on several fixed po-
sitions dependent on framing (on multiplied length of one
frame).

Spectral analysis is a very efficient method for extracting
information from speech signals. Discrete wavelet transform
(DWT) has been successfully used in many speech process-
ing applications [3, 4, 5, 8, 10] for the spectral analysis of sig-
nals. For the speech recognition case, it was mainly used to
improve accuracy of parameterisation. Experimental results
show superiority of DWT methods over more classic ones
like mel-frequency cepstral coefficients (MFCC) [3, 4, 5].
The analysis of the power in different frequency subbands
gives an excellent opportunity to distinguish the beginning
and the end of phonemes. For many boundaries, there is
no discernible drop in overall power, and at some frequen-
cies, the power is broadly constant over the phoneme du-
ration. However, many phonemes exhibit rapid changes in
particular subbands which can determine their beginnings
and endpoints. Our method differs from most of others be-
cause it analyses the signal itself in frequency domain. This
means we do not use any information based on modelling
or phonemes recognition. The segmentation step can be
conducted independently and finished before the recognition
step. Additionly it does not need any training or adaptation
to the user.

The outline of this paper is as follows: in section 2, we
describe the DWT decomposition, as the main tool of our
method. In section 3 we present the formation of envelopes
and subband filtering to get rate-of-change information. The
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segmentation process as a comparison of smoothed power
and its rate-of-change function is described as are some other
general rules of the segmentation and the method. In section
4 we describe the implemented algorithm. Section 5 presents
details of our experiments including comparison of applying
different wavelets and constant segmentation (framing). The
new general evaluation method for phoneme segmentation is
described, and results are presented for a database of Polish
words.

2. THE DISCRETE WAVELET TRANSFORM, ITS
POWER AND AN ENVELOPE

The human ear uses a frequency processing in the first step
of sound analysis [2]. This encourages us to use a DWT
in an artificial method of speech analyzing as perceptually
motivated solution.

The original signal and its wavelet spectrum are of 16
bits accuracy. The wavelet transform belongs to the group of
frequency transforms. As a result, it is easy to find speech pa-
rameters which are important for the human hearing system
[10]. In order to obtain DWT, the coefficients of series

s(t) =Y emeriGmi1i(r) (1)

need to be computed, where ¢, 1 ; is the ith wavelet function
at the (m + 1)th resolution level.

The coefficients of the lower level are calculated by ap-
plying the well-known formulae [2, 8]

Cmn = Zhi—Zn Cmil,i 2)
7

dppn = Zgi—Zn Cmt1,i 3)
:

where h and g are the constant coefficients which depend on
the assumed pair: scale function ¢ and wavelet y. The for-
mulae (2) and (3) are used for the signal decomposition by
digital filtering of wavelet coefficients. If there are given
the wavelet coefficients c,,41; of the (m + 1)th resolution
level, we can apply (2) and (3) to compute the coefficients
of the mth resolution level. The elements of the DWT for a
particular level may be collected into a vector, for example
dy = (dm1,dp2,...)T. The coefficients of other resolution
levels are calculated recursively by applying formulae (2)
and (3). The multiresolution analysis leads naturally to a hi-
erarchical and fast scheme for the computation of the wavelet
coefficients for a given speech signal s. In this way the values

DWT(S)Z{dM,dM_17...,d1,C1} (4)

of the DWT for M + 1 levels are obtained. The wavelet spec-
tra are produced by using a filter bank (cascading the filtering
and downsampling operations). The wavelet transformation
can be viewed as a tree. The root of the tree consists of the
coefficients of wavelet series (1) of the original speech signal.
The next level of the tree is the result of one step of the DWT.
Subsequent levels in the tree are constructed by recursively
applying the wavelet transform step to split the signal into
the low (approximation) and high (detail) parts. The under-
taken experiments showed that the speech signal should be
decomposed into six levels, which cover the frequency band
of a human voice (see Table 1). The energy of the speech
signal above 5.5 kHz and below 86 Hz is very low.
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Figure 1: Discrete Meyer Wavelet

The usefulness of six wavelet functions was verified. The
obtained results for different wavelets (see Table 2) shows
small differences in their efficiency. It seems that discrete
Meyer wavelet (Fig. 1) [1] or symlets should be chosen as a
basis for the DWT because of their symmetry in time domain
and compact support in the frequency domain.

3. SEGMENTATION

Clearly, we would expect the absolute value of the rate-of-
change of power to be large at the beginning and at the end
of phonemes. However, this does not uniquely define start
and end points, for two reasons. Firstly, the power can rise
over a considerable length of time at the start of a phoneme,
leading to an ambiguous start time. Secondly, there may also
be rapid changes in power in the middle of a segment. A
better method of detecting the boundary of phonemes relies
on power transitions between the DWT subbands.

A properly chosen segmentation method should increase
the efficiency of speech recognition. Our approach is based
on six level DWT analysis (i.e. M = 6) of a speech signal
(Fig. 2).

The amount 2~*"~1 N of wavelet spectrum samples in
n-level (where n = 1,...,M) depends on the length N of
speech signal in time domain, assuming N is a power of 2.
Table 1 presents their number at each level relative to the
lowest resolution level. For each n-level decomposition the
power waveform

where i=0,....27 YN -1, (5)

is computed in a different way to obtain the equal number of
power samples.

The DWT subband power shows rapid variations (see
Fig.2). Despite smoothing (5) power waveforms change
rapidly. The first order differences in the power are inevitably
noisy, and so we calculate the envelopes p/, for power fluctua-
tions in each subband by choosing the highest values of p, in
a window of given size ® to obtain a power envelope (Fig.3
and Table 1). Additionally we use a smoothed differencing
operator. The subband power p, is convolved with the mask
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Table 1: Characteristics of the discrete wavelet transform levels and their envelopes

DWT Level | Frequency band (Hz) | Number of samples in compare with level 1 | Window size @
6 2756-5512 32 3
5 1378-2756 16 3
4 689-1378 8 3
3 345-689 4 5
2 172-345 2 5
1 86-172 1 5
DWT level B DWT level 5 not necessarily cross them. We found the threshold p of the
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Figure 2: Power of DWT sub-bands of the name ’Andrzej’
/a:ndgel/. Dotted lines are hand segmentation boundaries.

Table 2: Comparison on constant segmentation and proposed
method using different wavelets

Method av. g, av. £, | Overall error
Const 23.2 ms | 2.9018 | 5.6380 20.1472
Const 92.8 ms | 0.0796 | 5.2479 5.6459

Meyer 0.1602 | 3.2325 4.0334
db2 0.2325 | 2.8531 4.0157
db6 0.1927 | 3.0752 4.0385
db20 0.1716 | 3.2724 4.1305

sym6 0.1816 | 3.0581 3.9660
haar 0.2663 | 2.8783 4.2099

[1,2,—2,—1] to obtain smoothed rate-of-change information
rn(i).

The start of a phoneme should be marked by an initially
small but rapidly rising power level in one or more of the
DWT levels. In other words, we should expect the power
to be small and the derivative to be large. We can detect
phoneme boundaries searching for i-points for which the in-
equality

p = |Blra(D)] = pu(D)| ©)

holds for the phoneme boundaries, where constant p is a
value of threshold which accounts for the time scale and sen-
sitivity of the crossing points. Rate-of-change function r;,
is multiplied by scaling factor 8 approximatelly equal to 1.
In practice we seek indexes for which the smoothed power
and rate-of-change function approach close to each other and

distance between smoothed power and rate-of-change func-
tion as 0.02 for the best results. Another condition improv-
ing an accuracy is overrunning of a minimal threshold p,;,
of subband DWT power which was chosen experimentally
as 0.003. It prevents us from analysing noise instead of the
speech signal.

4. PHONEME DETECTION ALGORITHM

The presented above method without additional details
would not precisely detect the phoneme boundaries for a
number of reasons. Firstly, the precise positions of the
boundaries may vary slightly between levels. For some
phonemes, only one frequency band may show significant
variations in power, for others several. In the second case,
each subband analysis will detect separate boundary. They
may differ slightly. Secondly, despite smoothing the deriva-
tive, near the threshold there may be a number of transitions
which represent the same boundary. These problems are
overcome by grouping together all transition points across
all the bands, provided they are less than time «, apart where
o represents the minimum length of a phoneme. We put 5
as its value in the discretised power which represents 29 ms.
Neighboring values gave worse results in the evaluation test.
The boundary position is the centre of these grouped transi-
tion points. Surprisingly we found pre-emphasis filtering as
a step degradating quality so we did not use it in the final
version of the algorithm.
The algorithm consists of following steps:

1. Normalise a speech signal by dividing by its maximum
value.

2. Decompose a signal into six levels of the DWT.

3. Calculate the sum of power samples in all frequency sub-
bands according to Table 1 to obtain (5), the power rep-
resentations p, (i) of the nth subband.

4. Calculate the envelopes p/, for power fluctuations in each
subband by choosing the highest values of p, in a win-
dow of a given size @ (Fig. 3 and Table 1).

5. Calculate the rate-of-change function r,(i) by filtering
pu(i) with [1, 2, -2, -1] mask.

6. Given a threshold p of the distance between r, (i) and
p,, and a threshold p,,;, of minimal p/,, find indexes for
which |B[r(i)| — ph (i) < p AND (|B[ra(i+1)| - pl, (i +
DI > p O |BJru(i=1)| — p}(i— 1)| > p) AND pl(i) >
Pmin» Where B = 1. Write such indexes in one vector
(marked as asterisks in Fig. 3).

7. Find and group indexes where there is no space between
neighboring ones longer than attribute o.

8. Calculate an average index value (rounded to the nearest
integer) for each group found in the previous step as the
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representative of a group. They are indexes of phonemes’
boundaries in indexing order of DWT level 1.

5. EXPERIMENTAL RESULTS AND EVALUATION
METHOD

In our implementation we assumed the sampling frequency
fo = 11025 Hz. This gives sampling period #p = 90.7 us.
In order to assess the quality of our results, we have hand-
segmented 50 Polish words for comparison. The hand seg-
mentation itself is not an entirely accurate process because of
human ear errors. Additionally the phonemes typically over-
lap each other. The reason for this is that voiced sounds are
produced by modulation of the airflow from the lungs by vi-
bration of vocal cords. This modulation react on changes in
vocal cords vibrations with a delay. There may be a degree
of uncertainty precisely where the phoneme starts and ends,
to within a few samples.

The words are segmented not only using our automatic
technique. Constant segmentation method where the speech
is broken into fixed length segments was also evaluated as a
baseline. The quality of segmentation may be assessed on
two criteria. Firstly, the right number of segments should
be found - the number of segments should correspond to the
number of phonemes present in the speech. The error in the
number of segments for word w is defined to be

|na — np|

(N

E\w) =
n( ) np

where n, and ny, are the number of segments in the automatic
and hand segmentation respectively.

The second criterion is accuracy of the position of the
segmentation. This is based on the closeness of the bound-
ary to the hand-segmented boundary. Since we do not know
which boundary corresponds to a particular boundary in the
hand segmentation, we take the closest boundary as the cor-
rect one. The error in placement for word w is

& (w) =}, min|p; - gil ®)
J

where p; is the position of the i-th boundary in the auto-
matic segmentation, and ¢; is the j-th boundary position in
the hand segmentation. Finally, we construct an overall error
of |

ew)=— Z ag,(w) + &p (w), 9

My

where n,, is the number of words in evaluation set (50 in our
example) and « equals 5 which represents 29 ms. The er-
ror in the number of segments &,(w) has a larger impact on
the further recognition than the boundary shift represented by
€,(w). We decided to scale &,(w) by & the minimum length
of a phoneme because boundary displacement smaller than
a is typically less degradating than missing the boundary at
all. Such a criterion describes the possible inaccuracy of seg-
mentation. It takes into account all important issues however
the solution is not without flaws. It counts small differences
between hand segmentation and automatic segmentation as
errors while such shifts should not be necessarily considered
in that way. As it was mentioned before it is difficult to show
statistics of correct segmentation because we cannot compare
them with the ideal ones. Hand segmentation is not perfect
enough to be a fully convincing template.

Table 3: Comparison of detected phoneme boundaries with
hand segmentation for word *Andrzej’ /a:ndzel/

Segment boundaries positions

Auto [ O [ 6 | 38 |45 |55 |63 |86 |97 | 107 | 118
Hand | O | 4 | 27 52 | 66 | 86 105 | 118

Table 4: The effect of introducing white noise to detected
phoneme boundaries (using sym6 wavelet) on error inplace-
ment €,. In columns marked by + we presented maximal
value of noise.

+ | av.g | £ | av g | = | av. g
0 ] 3.0581 | 2 | 3.3600 | 6 | 3.9704
0.5 | 3.0780 | 3 | 3.4931 | 7 | 4.0035
1 | 32340 | 4 | 3.7579 | 8 | 4.0326
1.5 | 32881 | 5 | 3.8002 | 9 | 4.2065

The evaluation method would be improved if several peo-
ple do hand segmentation. In such case the template would
be not an average value over different observers but rather
a short range of possible correct answers for each boundary.
The error would be counted if automatic segmentation went
outside the range and its value was the distance to the closer
end of the range. It would protect, at least partly, the evalua-
tion method from human error of limited accuracy of human
ear. The overall error for our data set is summarised in Table
2. The greatest error for the constant segmentation 23.2 ms
and much smaller for 92.8 ms is caused by the fact that the
length of phonemes is typically around 100 ms in average.

Fig. 3 shows an example of the segmentation process.
The six smoothed wavelet bands are shown, along with the
automatic and hand segmented boundaries. For this word,
the boundary positions are shown in Table 3. The method
finds nearly all the boundaries accurately, to within 2 sam-
ples, but misplaces one boundary too far to the end of one
phoneme and the phoneme was split twice on separate ele-
ments.

We did an additional experiment for the further evalu-
ation. We introduced white noise to automatically found
phoneme boundaries. We increased the power of noise by
adding or substracting larger random values to each bound-
ary in successive comparisons. We found the average error in
placement g, growing as presented in (Table 4). This shows
that evaluation is degradated by introducing white noise to
results.

6. CONCLUSIONS

We loose some information on the meaning of speech by con-
stant segmentation. An effective and fast algorithm of speech
segmentation allows us to introduce an opportunity of better
automatic speech recognition.

The proposed method is based on DWT analysis. It is ef-
ficient because some phonemes have power variations in the
narrow band only. It is much easier to detect them analysing
DWT subsignals than the power of the whole signal. En-
velopes of DWT subsignal power should be calculated for
an easier and faster analysis of power variations. Rate-of-
change information is a crucial parameter for the method. It
is easy to detect most single phonemes by using our algo-
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Figure 3: An example of the segmentation of a name ’Andrzej’ /a:ndzel/. Dotted lines are hand segmentation boundaries;
dashed lines are automatic segmentation boundaries, bold grey lines are envelopes and thin lines are smoothed rate-of-change
functions. Asterisks are candidates for boundaries for which r,(i) and p/,(i) come close to each other or cross (compare with

6-th step of the algorithm).

rithm. Additionally a simple evaluation method of segmen-
tation based on comparing with hand segmentation is pre-
sented.
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