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ABSTRACT statistics. In the case of power radar images, it is well known

Determining similarity measures between two images is &1t the pixels follow a gamma distribution [5]. Therefore,
interesting problem for image registration or change deted¥/GDSs seem good candidates for the robust estimation of the
tion. Bivariate gamma distributions are good candidates fofo'relation coefficient between radar images.

radar images since their marginals are known to be univarilNiS Paper is organized as follows. Section 2 recalls some
ate gamma distributions. This paper addresses the probleffiPortant results on MGDs. Section 3 studies two estima-
of estimating the parameters of these bivariate gamma di42rs Of the unknown parameters of a BGD. These estimators
tributions by using the maximum likelihood method and the2'® based on the classical maximum likelihood method and

method of moments. The performances of both estimatorgeth‘)d of moments. Simulation results illustrating the per-

are compared. Asymptotic expressions for the estimatiofPrmance of bpth estimators are pre_sented in Section 4. Con-
variances are also derived. clusions are finally reported in Section 5.

1. INTRODUCTION 2. MULTIVARIATE GAMMA DISTRIBUTIONS

The univariate gamma distribution is uniquely defined in2'1 Definitions

many statistical textbooks. However, extensions definingh polynomialP(z) with respect t@ = (z1,...,z4) is affineif
multivariate gamma distributions (MGDs) are more contro-the one variable polynomial — P(z) can be writterAz; +B
versial. For instance, a full chapter of [1] is devoted to this(foranyj=1,...,d), whereAandB are polynomials with re-
problem (see also references therein). Most journal authogpect to the’'s with i # j. Arandom vectoX = (X, ..., Xq)
assume that a vectd = (Xq,...,Xq) is distributed accord-  is distributed according to an MGD @&f! with shape param-
ing to an MGD if the marginal distributions of are uni-  eterq and scale parametér (denoted aX ~ '(q,P)) if its
variate gamma distributions. However, the family of distri-moment generating function or Laplace transform is defined
butions satisfying this condition is very large. In order toas follows [3]:

reduce the size of the family of MGDs, S. Bar Lev and P.

Bernardoff recently defined MGDs by the form of their mo- qup(z) —E (e‘ Z?:1><m) = [P(z)] Y, (1)
ment generating function (or Laplace transform) [2], [3]. The ‘

main contribution of this paper is to study estimators for theyhereq > 0 andP is an affine polynomial. It is important to
parameters of bivariate gamma distributions (BGDs) define@ote the following points:

!n [2]3 [3]. These distributions are interesting for image reg- o the affine polynomiaP has to satisfy appropriate condi-
istration as discussed below. tions includingP(0) = 1. In the general case, determin-
Given two remote sensing images of the same s¢etiee ing necessary and sufficient conditions on the paiP)

reference, and, the secondary image, the registration prob-  gch thatr (g, P) exist is a difficult problem. The reader
lem can be defined as follows: determine a geometric trans- s invited to look at [3] for more details,

formationT which maximizes the correlation coefficient be- | by settingz; = O for j # i in (1), we obtain the Laplace

tween imagd and the result O.f the transfprmgtld'rb J. A transform ofX;, which is clearly a gamma distribution
fine modeling of the geometric deformation is required for ) shape parameterand scale parameter, wherep;
the estimation of the coordinates of every pixel of the refer- ;oo coefficient of; in P. ' !
ence image inside the secondary image. The geometric dﬁ\'BGD corresponds to the particular cage- 2 and is de-
formation is modeled by local rigid displacements [4]. ined by its La place transforr%

The key element of the image registration problem, is the esﬂne yits Lap

timation of the correlation coefficient between the images. _ —q

This is usually done with an estimation window in the nei%;h- V(z22) = (1+ P+ poz+ pro2aze) @
borhood of each pixel. In order to estimate the local rigid diswith the following conditions

placements with a good geometric resolution one needs the

smallest estimation window. However, this leads to estima- p1>0, p2 >0, p1p2— p12> 0. 3)

tions which may not be robust enough. In order to perforn]n the bi-dimensional case, the conditions (3) ensure that (2)

high quality estimations with a small number of samples R g S )
; o ; the Laplace transform of a probability distribution defined
we propose to introduce a priori knowledge about the imag n[o 00[2? Note again that (2)pimplies t%at the marginal dis-

This work was supported by CNES and by the CNRS under MathsTidlbutions of X; and X, are gamma distributions, i.eXy ~
Action No. 80/0244. (g, p1) andXz ~ ' (q, p2).
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2.2 Bivariate Gamma pdf 3.1 Maximum Likelihood Method

Obtaining tractable expressions for the probability density.1.1 Principles
function (pdf) ofa MGD defined by (1) is a challenging prob- -+ o \ayimum likelihood (ML) method can be applied in the

lem. However, in the bivariate case, the problem is muchy, o iate cased = 2) since a closed-form expression of the
simpler. Straightforward computations allow us to obtain thed

following density (see [1, p. 436] for a similar result)

—-1.,0-1
P2X1 + p1X2 Xg X5
f =exp| — fq(Cxaxa)l ,
2n(x) p( o2 ) oTr (@) a(Cx2)lgz (x)

where HRi (x) is the indicator function defined off, o[?
(]IRZ+ (x)=1if x3 >0,x2 >0 and]IRi (x) = 0 otherwise),
c= % and f4(2) is defined as follows

12

® X
fa(2) :k; KT (q 1K)

Note that fq(z) is related to the confluent hypergeometric
function (see [1, p. 462)).

2.3 BGD Moments

The Taylor series expansion of the Laplace transfgrican
be written:

- (_1)k+l
v(21,2) = kéo

The moments of a BGD can be obtained by differentiating

this expression with respect | andz. For instance, the
mean and variance of; (denotedE[X] and vatX;) respec-
tively) can be expressed as follows

E[X]=ap, var(X) = qpf,

fori=1,2. Similarly, the covariance c¥;, Xz) and corre-
lation coefficient (X1, X») of a BGD can be easily computed:

COV(Xy, X2) = E[X1Xo] — E[X1]E[X2] = q(p1p2 — P12),

r(Xe, X2) = CoV(X1,X2)  _ PiP2— P12
7 Jvar)varXe)  pipz

It is important to note that for a known value gf a BGD
is fully characterized by = (E[X1],E[Xz],r (X1, X2)) (since

6 and (p1, p2, p12) are related by a one-to-one transforma-

ensity is available. In this particular case, after removing the
terms which do not depend @h the log-likelihood function
can be written

ngX ngxX
[(X;0) =—nglog(mmp) — ml((_’qu—lr) - mz(ix,zr)
n L
—nglog(1—r)+ Z'Og fq(CX1%2), (4)
i=
, B o .
wherec = W, andXy = §3L X}, X2 = 1 3L %

are the sample means ®f andX,. By differentiating the
log-likelihood with respect t@ and by noting thaff}(z) =

fq+1(2), the following set of equations is obtained

7 2
ngxa q ., _
1—r MU AT m, =0
e o o,
1_r ndam (1—r)2m1A_0’
naXy ngX  14r ¢ A—0
(1-rm  (1-r)m (1—r)2 mmp ’
where

< iy fara(eXX)
- (i)

The maximum likelihood estimators (MLEs) af; and nm,
are then easily obtained
Mime = X1,  Mawe = Xa.

The MLE ofr is obtained by computing the roog]0, 1] of

q S i fq+1(6X{X£)
N=r—-1+ ——= X Xo————=21=0, (5
where 5
RN

(1-r)2X1Xa
This is achieved by using a Newton-Raphson procedure ini-

tion). Note also that the conditions (3) ensure that the cotialized by the standard empirical correlation coefficient de-

variance and correlation coefficient of the coupte, X,) are
both positive.

3. PARAMETER ESTIMATION
The following notations are used in the rest of the paper

E[X]_]7 My = E[Xz], r= r(Xl,Xz),

fined in (9). Itis possible to show that the function (5) has
a unique root ir0, 1] providedry, defined in (9) belongs in
[0,1]. The convergence of the Newton-Raphson procedure is
practically obtained after few iterations.

3.1.2 Performance

The asymptotic properties of the ML estimatang,, and
MimL can be derived from the univariate gamma distributions

inducing® = (my,mp, r). This section addresses the probleml (g, p1) andl (g, p2). These estimators are obviously unbi-

of estimatin% the unknown parameter vecéofrom n vec-
tors X = (X*,...,X"), whereX' = (X, X5) is distributed
according to a BGD with parameter vec#®r Note that the

ased, convergent and efficient. However, the performance
of fmL is more difficult to derive. Of course, the MLE is
known to be asymptotically unbiased and asymptotically ef-

parameteqis assumed to be known here, as in most practicdicient, under mild regularity conditions. Thus, the mean

applications. However, this assumption could be relaxed.

square error of the estimates can be approximated for large
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data records by the Cramer-Rao lower bound (CRLB). FowhereG(0) is the Jacobian matrix of the vectg(-) at point
unbiased estimators, the CRLB is obtained by inverting the = f(8) and

Fisher information matrix. The computation of this matrix

requires to determine the negative expectations of second- 3(8) = lim nE[(sh—9)(sn _s)T],

order derivatives (with respect to;, m, andr) of | (X; 0) in n—eo

(4). Closed-form expressions for the expectations are diffi- . . 5 3.
cult to obtain because of the term lag In such situation, it " the previous example, according to (g); R> — R* s
is very usual to approximate the expectations by using Montd€fined as follows

Carlo methods. This will provide interesting approximations

of the ML mean square errors (MSES) (see simulation results X5 — X1X2

of section 4). g(x) = (XLXZ’ ( )

X3 — X%)(le - X%)
3.2 Method of Moments
3.2.1 Principles The partial derivatives of; and g, with respect tox;,i =

i L 2 2
This section briefly recalls the principle of the method of mo-1:-+++ &re trivial. - By denotingy = /(xs —x{)(xa —%5),
ments. Consider a functida(.) : RM — RL and the statistic  those ofgs can be expressed as

s, of sizel defined as:

gz Xo . X1(Xa—X3)(Xs — X1X2)
1 n i W =——++ ,)/3 ’
Sn=— zih(X ) (6) 1 4
ni: % _ 7E+X2(X3—X%)(X5—X1X2)
whereh(.) is usually chosen such tha is composed of 2 v
empirical moments. Denote as: 993 (XaX2—Xs)(Xa — X3)
X3 2y3 ’
£(0) = E[sn] = E[h(X1)].
(6) = Elen] = Eln(X7)] 3G (axexs)06—) g 1
The moment estimator df is constructed as follows: oxXs 2y3 " dXs ¥
Ouo = g(sn), The elements oE(6) can be computed from the moments
L . of h(X) which are obtained by derivating the Laplace trans-
whereg(f(6)) = 6. By considering the function form (2). This allows us to compute the asymptotic MSE (10)

thanks to the general formula valid for any integets:
h(X) = (X1, X2, X7, XF, X1X2),
min(m,n)

k
the following result is obtained Eixmy ] — e (@Dm (A)n (=m)k(=n)k r*
XVI=mme e 2 (@ K

£(6) = [my,me,mi(1+q ), m(L+q "), mme(1+rg ).

where(a)y is the Pochhammer symbol such thaf, = 1 and
The unknown parametefsm, m,r) can then be expressed
as functions off(6) = (f1, fo, f3, 4, f5). For instance, the (A)ks1 = (a+Kk) (Qk=a(@+1)...(a+k),
following relations are obtained

(11)

for any integek (see [7, p. 256]).

m="f,mp="fr= fs—fufz . (D)
V(fa= 2)(fa— 13) 4. SIMULATION RESULTS
- . Many simulations have been conducted to validate the pre-
yielding the standard estimators: vious theoretical results. This section presents some exper-
_ - _ - iments obtained with a vectdX = (Xg,Xp) distributed ac-
Mimo = X1, Memo = X2, _ (8) cording to a BGD whose Laplace transform is (2).
N Yita(Xg = X1) (X — X2)

Fo = - (O 41 Generation
(X =X1)24 /30 (X —X5)2 '
\/z'—l( 1~ %) \/Z'—l( 2= %2) The generation oX has been performed as follows:

3.2.2 Performance ¢ simulate 2 independent multivariate Gaussian vectors of

. o R? denoted ag?,. .., Z%4 with meang0,0) and the 2 2
The asymptotic performance of the estimaig can be de- li—j]

rived by imitating the results of [6] derived in the context ~ covariance matri = (ci j);; j, With ¢ j =127,
of time series analysis. A key point of these proofs is the e compute thekth component ofX = (X;,Xz) as X =

assumptiors, 3 s = £(6) which is verified herein by apply- 2% Y1ci<aq(Z)?, whereZ is thekth component o',
ing the strong law of large numbers to (6). As a result, thegy computing the Laplace transform &, it can be shown
asymptotic mean square erroréi, can be derived: that the two previous steps allow us to generate random

_ R ) ¢ vectorsX = (X1, Xp) distributed according to a BGD. The
lim nE[(Buvo — 6)°] = G(6)X(0)G(6)",  (10)  marginal distributions ofX; and X, are univariate gamma

n—oo
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distributionsl” (q,m; /g) andl (g, my/q). Moreover, the co-
variance ofX can be computed as follows:

2q 2

E(X) = 3 zlEKza)Z(z;)Z]. (12)
i=1]=

The independence between vectdts. .., Z% yields
E(Z)2(Z)? = E[Z)PEIZ)A) =1, Vi#].
Moreover,
E[(Z1)*(20)?) = 2E(Z1Z,)E(Z12Z5) + E[(Z1)E[(2)?),
=2r+1,

for 1 <i < 2g. By replacing these two last expressions in
(12), the covariance qfX1, Xy) and the corresponding corre-
lation coefficient can be finally expressed as:

Mmmpr cov(Xy, Xp)
a ' /Nar(Xp)Var(Xz)

4.2 Estimation Performance

COV(X;]_7 Xz) =

The first simulations compare the performance of the method
of moments with the ML method as a functionrofNote that

the possible values aof corresponds to the numbers of pix-
els of squared windows of sizZ&p+ 1) x (2p+ 1), where

p € N. These values are appropriate to the image registration
problem. The number of Monte Carlo runs is 1000 for all fig-
ures presented in this section. The other parameters for this
example arany = 400, = 800 andg = 1. Figures 1 and

2 show the mean square errors (MSES) of the estimated cor-
relation coefficient (obtained from 1000 Monte Carlo runs)
for two different correlation structures £ 0.2 andr = 0.8).

The circle curves correspond to the estimator of moments
whereas the triangle curves correspond to the MLE. These

Figure 1: log MSEs versus ldg) for parameter (r
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figures show the interest of the ML method, which is muchFigure 2: log MSEs versus I¢g) for parameter (r = 0.8).

more efficient for this problem than the method of moments.
The figures also show that the difference between the two
methods is more significant for large values of the correla-
tion coefficientr.

The theoretical asymptotic MSEs of the ML and moment estl]
timators are also depicted on Figs. 1 and 2 (continuous lines).
The theoretical MSEs are clearly in good agreement with thé!
estimated MSEs, even for small valuesnofThis is partic-
ularly true for large values af. Finally, these figures show 3
that “reliable” estimates af can be obtained for values of

larger than 9< 9. [4]

5. CONCLUSIONS

This paper studied maximum likelihood and moment estimal®
tors for the parameters of bivariate gamma distributions. The
asymptotic performance of these estimators was also invesp)
gated. The maximum likelihood estimator has to be preferred
to the moment estimator when using bivariate gamma dis-
tributions. These results are potentially very interesting fo(i7
image registration and/or change detection. The interest oJ
reader is invited to consult [8] for more details. (8]

6. ACKNOWLEDGMENTS

The authors would like to thank G. Letac for fruitful discus-
sions regarding multivariate gamma distributions.

REFERENCES

S. Kotz, N. Balakrishnan, and N. L. Johns@pntinuous Multivariate
Distributions vol. 1. New York: Wiley, 2nd ed., 2000.

S. B. Lev, D. Bshouty, P. Enis, G. Letac, I. L. Lu, and D. Richards,
“The diagonal natural exponential families and their classificatidn,”
of Theoret. Proh.vol. 7, pp. 883-928, 1994.

] P. Bernardoff, “Which multivariate Gamma distributions are infinitely

divisible?,”Bernoulli, 2006.

J. Inglada and A. Giros, “On the possibility of automatic multi-sensor
image registration, Transactions on Geoscience and Remote Sensing
vol. 42, pp. 2104-2120, Oct. 2004.

T. F. Bush and F. T. Ulaby, “Fading characteristics of panchromatic
radar backscatter from selected agricultural targ¢EEE Trans. Geo-
science and Remote Sensiugl. 13, no. 4, pp. 149-157, 1975.

B. Porat and B. Friedlander, “Performance analysis of parameter esti-
mation algorithms based on high-order momenitstgrnational Jour-

nal of adaptive control and signal processjngol. 3, pp. 191-229,
1989.

M. Abramowitz and |. StegunHandbook of Mathematical Functions
New York: Dover, 1972.

F. Chatelain, J.-Y. Tourneret, A. Ferrari, and J. Inglada, “Bivariate
gamma distributions for image registration and change detecti®BE
Trans. Image Processing006. submitted.



